1
|
Tseng CH, Jaspers J, Romero AM, Wielopolski P, Smits M, van Osch MJP, Vos F. Improved reliability of perfusion estimation in dynamic susceptibility contrast MRI by using the arterial input function from dynamic contrast enhanced MRI. NMR IN BIOMEDICINE 2024; 37:e5038. [PMID: 37712359 DOI: 10.1002/nbm.5038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
The arterial input function (AIF) plays a crucial role in estimating quantitative perfusion properties from dynamic susceptibility contrast (DSC) MRI. An important issue, however, is that measuring the AIF in absolute contrast-agent concentrations is challenging, due to uncertainty in relation to the measuredR 2 ∗ -weighted signal, signal depletion at high concentration, and partial-volume effects. A potential solution could be to derive the AIF from separately acquired dynamic contrast enhanced (DCE) MRI data. We aim to compare the AIF determined from DCE MRI with the AIF from DSC MRI, and estimated perfusion coefficients derived from DSC data using a DCE-driven AIF with perfusion coefficients determined using a DSC-based AIF. AIFs were manually selected in branches of the middle cerebral artery (MCA) in both DCE and DSC data in each patient. In addition, a semi-automatic AIF-selection algorithm was applied to the DSC data. The amplitude and full width at half-maximum of the AIFs were compared statistically using the Wilcoxon rank-sum test, applying a 0.05 significance level. Cerebral blood flow (CBF) was derived with different AIF approaches and compared further. The results showed that the AIFs extracted from DSC scans yielded highly variable peaks across arteries within the same patient. The semi-automatic DSC-AIF had significantly narrower width compared with the manual AIFs, and a significantly larger peak than the manual DSC-AIF. Additionally, the DCE-based AIF provided a more stable measurement of relative CBF and absolute CBF values estimated with DCE-AIFs that were compatible with previously reported values. In conclusion, DCE-based AIFs were reproduced significantly better across vessels, showed more realistic profiles, and delivered more stable and reasonable CBF measurements. The DCE-AIF can, therefore, be considered as an alternative AIF source for quantitative perfusion estimations in DSC MRI.
Collapse
Affiliation(s)
- Chih-Hsien Tseng
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
- Medical Delta, Delft, the Netherlands
- Holland Proton Therapy Center Consortium-Erasmus MC, Rotterdam, Holland Proton Therapy Centre, Delft, Leiden University Medical Center, Leiden and Delft University of Technology, Delft, the Netherlands
| | - Jaap Jaspers
- Holland Proton Therapy Center Consortium-Erasmus MC, Rotterdam, Holland Proton Therapy Centre, Delft, Leiden University Medical Center, Leiden and Delft University of Technology, Delft, the Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Alejandra Mendez Romero
- Holland Proton Therapy Center Consortium-Erasmus MC, Rotterdam, Holland Proton Therapy Centre, Delft, Leiden University Medical Center, Leiden and Delft University of Technology, Delft, the Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Piotr Wielopolski
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marion Smits
- Medical Delta, Delft, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Brain Tumour Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Matthias J P van Osch
- Medical Delta, Delft, the Netherlands
- Holland Proton Therapy Center Consortium-Erasmus MC, Rotterdam, Holland Proton Therapy Centre, Delft, Leiden University Medical Center, Leiden and Delft University of Technology, Delft, the Netherlands
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frans Vos
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
- Medical Delta, Delft, the Netherlands
- Holland Proton Therapy Center Consortium-Erasmus MC, Rotterdam, Holland Proton Therapy Centre, Delft, Leiden University Medical Center, Leiden and Delft University of Technology, Delft, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
2
|
Kufner A, Khalil AA, Galinovic I, Kellner E, Mekle R, Rackoll T, Boehm-Sturm P, Fiebach JB, Flöel A, Ebinger M, Endres M, Nave AH. Magnetic resonance imaging-based changes in vascular morphology and cerebral perfusion in subacute ischemic stroke. J Cereb Blood Flow Metab 2021; 41:2617-2627. [PMID: 33866849 PMCID: PMC8504415 DOI: 10.1177/0271678x211010071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
MRI-based vessel size imaging (VSI) allows for in-vivo assessment of cerebral microvasculature and perfusion. This exploratory analysis of vessel size (VS) and density (Q; both assessed via VSI) in the subacute phase of ischemic stroke involved sixty-two patients from the BAPTISe cohort ('Biomarkers And Perfusion--Training-Induced changes after Stroke') nested within a randomized controlled trial (intervention: 4-week training vs. relaxation). Relative VS, Q, cerebral blood volume (rCBV) and -flow (rCBF) were calculated for: ischemic lesion, perilesional tissue, and region corresponding to ischemic lesion on the contralateral side (mirrored lesion). Linear mixed-models detected significantly increased rVS and decreased rQ within the ischemic lesion compared to the mirrored lesion (coefficient[standard error]: 0.2[0.08] p = 0.03 and -1.0[0.3] p = 0.02, respectively); lesion rCBF and rCBV were also significantly reduced. Mixed-models did not identify time-to-MRI, nor training as modifying factors in terms of rVS or rQ up to two months post-stroke. Larger lesion VS was associated with larger lesion volumes (β 34, 95%CI 6.2-62; p = 0.02) and higher baseline NIHSS (β 3.0, 95%CI 0.49-5.3;p = 0.02), but was not predictive of six-month outcome. In summary, VSI can assess the cerebral microvasculature and tissue perfusion in the subacute phases of ischemic stroke, and may carry relevant prognostic value in terms of lesion volume and stroke severity.
Collapse
Affiliation(s)
- Anna Kufner
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Ahmed A Khalil
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany.,Department of Neurology, Max Plank Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ivana Galinovic
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin, Berlin, Germany
| | - Elias Kellner
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany
| | - Ralf Mekle
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin, Berlin, Germany
| | - Torsten Rackoll
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin, Berlin, Germany.,QUEST Center for Transforming Biomedical Research, Berlin Institute of Health, Berlin, Germany.,ExcellenceCluster NeuroCure, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen B Fiebach
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Agnes Flöel
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin, Berlin, Germany.,Department of Neurology, University Medicine Greifswald, Greifswald, Germany.,German Center for Neurodegenerative Diseases, Partner Site Rostock/Greifswald, Greifswald, Germany
| | - Martin Ebinger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin, Berlin, Germany.,Department of Neurology, Medical Park Berlin Humboldtmühle, Berlin, Germany
| | - Matthias Endres
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,ExcellenceCluster NeuroCure, Charite-Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Alexander H Nave
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| |
Collapse
|
3
|
Debs N, Rasti P, Victor L, Cho TH, Frindel C, Rousseau D. Simulated perfusion MRI data to boost training of convolutional neural networks for lesion fate prediction in acute stroke. Comput Biol Med 2019; 116:103579. [PMID: 31999557 DOI: 10.1016/j.compbiomed.2019.103579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/04/2019] [Accepted: 12/08/2019] [Indexed: 11/16/2022]
Abstract
The problem of final tissue outcome prediction of acute ischemic stroke is assessed from physically realistic simulated perfusion magnetic resonance images. Different types of simulations with a focus on the arterial input function are discussed. These simulated perfusion magnetic resonance images are fed to convolutional neural network to predict real patients. Performances close to the state-of-the-art performances are obtained with a patient specific approach. This approach consists in training a model only from simulated images tuned to the arterial input function of a tested real patient. This demonstrates the added value of physically realistic simulated images to predict the final infarct from perfusion.
Collapse
Affiliation(s)
- Noëlie Debs
- CREATIS, CNRS UMR-5220, INSERM U1206, Université Lyon 1, INSA Lyon Bât, Blaise Pascal, 7 Avenue Jean Capelle, 69621, Villeurbanne, France
| | - Pejman Rasti
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), UMR INRA IRHS, Université d'Angers, 62 Avenue Notre Dame du Lac, 49000 Angers, France
| | - Léon Victor
- CREATIS, CNRS UMR-5220, INSERM U1206, Université Lyon 1, INSA Lyon Bât, Blaise Pascal, 7 Avenue Jean Capelle, 69621, Villeurbanne, France
| | - Tae-Hee Cho
- CREATIS, CNRS UMR-5220, INSERM U1206, Université Lyon 1, INSA Lyon Bât, Blaise Pascal, 7 Avenue Jean Capelle, 69621, Villeurbanne, France
| | - Carole Frindel
- CREATIS, CNRS UMR-5220, INSERM U1206, Université Lyon 1, INSA Lyon Bât, Blaise Pascal, 7 Avenue Jean Capelle, 69621, Villeurbanne, France
| | - David Rousseau
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), UMR INRA IRHS, Université d'Angers, 62 Avenue Notre Dame du Lac, 49000 Angers, France.
| |
Collapse
|
4
|
Kellner E, Mader I, Reisert M, Urbach H, Kiselev VG. Arterial input function in a dedicated slice for cerebral perfusion measurements in humans. MAGMA (NEW YORK, N.Y.) 2018; 31:439-448. [PMID: 29224052 DOI: 10.1007/s10334-017-0663-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/02/2017] [Accepted: 11/13/2017] [Indexed: 11/30/2022]
Abstract
OBJECT We aimed to modify our previously published method for arterial input function measurements for evaluation of cerebral perfusion (dynamic susceptibility contrast MRI) such that it can be applied in humans in a clinical setting. MATERIALS AND METHODS Similarly to our previous work, a conventional measurement sequence for dynamic susceptibility contrast MRI is extended with an additional measurement slice at the neck. Measurement parameters at this slice were optimized for the blood signal (short echo time, background suppression, magnitude and phase images). Phase-based evaluation of the signal in the carotid arteries is used to obtain quantitative arterial input functions. RESULTS In all pilot measurements, quantitative arterial input functions were obtained. The resulting absolute perfusion parameters agree well with literature values (gray and white matter mean values of 46 and 24 mL/100 g/min, respectively, for cerebral blood flow and 3.0% and 1.6%, respectively, for cerebral blood volume). CONCLUSIONS The proposed method has the potential to quantify arterial input functions in the carotid arteries from a direct measurement without any additional normalization.
Collapse
Affiliation(s)
- Elias Kellner
- Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Breisacher Str. 60a, 79115, Freiburg, Germany.
| | - Irina Mader
- Department of Neuroradiology, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Breisacher Str. 60a, Freiburg, 79115, Germany
| | - Marco Reisert
- Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Breisacher Str. 60a, 79115, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Breisacher Str. 60a, Freiburg, 79115, Germany
| | - Valerij Gennadevic Kiselev
- Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Breisacher Str. 60a, 79115, Freiburg, Germany
| |
Collapse
|
5
|
Kim H. Detection of severity in Alzheimer's disease (AD) using computational modeling. Bioinformation 2018; 14:259-264. [PMID: 30108425 PMCID: PMC6077821 DOI: 10.6026/97320630014259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/09/2018] [Accepted: 05/19/2018] [Indexed: 01/08/2023] Open
Abstract
The prevalent cause of dementia - Alzheimer's disease (AD) is characterized by an early cholinergic deficit that is in part responsible for the cognitive deficits (especially memory and attention defects). Prolonged AD leads to moderate-to-severe AD, which is one of the leading causes of death. Placebo-controlled, randomized clinical trials have shown significant effects of Acetyl cholin esterase inhibitors (ChEIs) on function, cognition, activities of daily living (ADL) and behavioral symptoms in patients. Studies have shown comparable effects for ChEIs in patients with moderate-to-severe or mild AD. Setting a fixed measurement (e.g. a Mini-Mental State Examination score, as a 'when to stop treatment limit) for the disease is not clinically rational. Detection of changed regional cerebral blood flow in mild cognitive impairment and early AD by perfusion-weighted magnetic resonance imaging has been a challenge. The utility of perfusion-weighted magnetic resonance imaging (PW-MRI) for detecting changes in regional cerebral blood flow (rCBF) in patients with mild cognitive impairment (MCI) and early AD was evaluated. We describe a computer aided prediction model to determine the severity of AD using known data in literature. We designed an automated system for the determination of AD severity. It is used to predict the clinical cases and conditions with disagreements from specialist. The model described is useful in clinical practice to validate diagnosis.
Collapse
Affiliation(s)
- Hyunjo Kim
- Department of Life Science, University of Gachon, Seungnam, Kyeonggido, Korea
- Medical Informatics Department of Ajou Medical Center, South Korea
| |
Collapse
|
6
|
Knutsson L, Xu X, Ståhlberg F, Barker PB, Lind E, Sundgren PC, van Zijl PCM, Wirestam R. Dynamic Susceptibility Contrast MRI at 7 T: Tail-Scaling Analysis and Inferences About Field Strength Dependence. Tomography 2017; 3:74-78. [PMID: 28825038 PMCID: PMC5558863 DOI: 10.18383/j.tom.2017.00001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) following bolus injection of gadolinium contrast agent (CA) is widely used for the estimation of brain perfusion parameters such as cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT) for both clinical and research purposes. Although it is predicted that DSC-MRI will have superior performance at high magnetic field strengths, to the best of our knowledge, there are no reports of 7 T DSC-MRI in the literature. It is plausible that the transfer of DSC-MRI to 7 T may be accompanied by increased R2* relaxivity in tissue and a larger difference in ΔR2*-versus-concentration relationships between tissue and large vessels. If not accounted for, this will subsequently result in apparent CBV and CBF estimates that are higher than those reported previously at lower field strengths. The aims of this study were therefore to assess the feasibility of 7 T DSC-MRI and to investigate the apparent field-strength dependence of CBV and CBF estimates. In total, 8 healthy volunteers were examined using DSC-MRI at 7 T. A reduced CA dose of 0.05 mmol/kg was administered to decrease susceptibility artifacts. CBV, CBF, and MTT maps were calculated using standard DSC-MRI tracer-kinetic theory. Subject-specific arterial partial volume correction factors were obtained using a tail-scaling approach. Compared with literature values obtained using the tail-scaling approach at 1.5 T and 3 T, the CBV and CBF values of the present study were found to be further overestimated. This observation is potentially related to an inferred field-strength dependence of transverse relaxivities, although issues related to the CA dose must also be considered.
Collapse
Affiliation(s)
- Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden.,Department of Radiology (Adjunct), Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Xiang Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Freddy Ståhlberg
- Department of Medical Radiation Physics, Lund University, Lund, Sweden.,Department of Diagnostic Radiology, Lund University, Lund, Sweden.,Lund University Bioimaging Center, Lund University, Lund, Sweden
| | - Peter B Barker
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Emelie Lind
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Pia C Sundgren
- Department of Diagnostic Radiology, Lund University, Lund, Sweden
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Ronnie Wirestam
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Newton AT, Pruthi S, Stokes AM, Skinner JT, Quarles CC. Improving Perfusion Measurement in DSC-MR Imaging with Multiecho Information for Arterial Input Function Determination. AJNR Am J Neuroradiol 2016; 37:1237-43. [PMID: 26988812 DOI: 10.3174/ajnr.a4700] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/14/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND PURPOSE Clinical measurements of cerebral perfusion have been increasingly performed with multiecho dynamic susceptibility contrast-MR imaging techniques due to their ability to remove confounding T1 effects of contrast agent extravasation from perfusion quantification. However, to this point, the extra information provided by multiecho techniques has not been used to improve the process of estimating the arterial input function, which is critical to accurate perfusion quantification. The purpose of this study is to investigate methods by which multiecho DSC-MRI data can be used to automatically avoid voxels whose signal decreases to the level of noise when calculating the arterial input function. MATERIALS AND METHODS Here we compare postprocessing strategies for clinical multiecho DSC-MR imaging data to test whether arterial input function measures could be improved by automatically identifying and removing voxels exhibiting signal attenuation (truncation) artifacts. RESULTS In a clinical pediatric population, we found that the Pearson correlation coefficient between ΔR2* time-series calculated from each TE individually was a valuable criterion for automated estimation of the arterial input function, resulting in higher peak arterial input function values while maintaining smooth and reliable arterial input function shapes. CONCLUSIONS This work is the first to demonstrate that multiecho information may be useful in clinically important automatic arterial input function estimation because it can be used to improve automatic selection of voxels from which the arterial input function should be measured.
Collapse
Affiliation(s)
- A T Newton
- From the Department of Radiology and Radiological Sciences (A.T.N., S.P.), Vanderbilt University Medical Center, Nashville, Tennessee Institute of Imaging Science (A.T.N.), Vanderbilt University, Nashville, Tennessee
| | - S Pruthi
- From the Department of Radiology and Radiological Sciences (A.T.N., S.P.), Vanderbilt University Medical Center, Nashville, Tennessee Monroe Carell Jr. Children's Hospital at Vanderbilt (S.P.), Nashville, Tennessee
| | - A M Stokes
- Barrow Neurological Institute (A.M.S., C.C.Q.), Phoenix, Arizona Saint Joseph's Hospital and Medical Center (A.M.S., C.C.Q.), Phoenix, Arizona
| | - J T Skinner
- National Comprehensive Cancer Network (J.T.S.), Fort Washington, Pennsylvania
| | - C C Quarles
- Barrow Neurological Institute (A.M.S., C.C.Q.), Phoenix, Arizona Saint Joseph's Hospital and Medical Center (A.M.S., C.C.Q.), Phoenix, Arizona
| |
Collapse
|
8
|
Wirestam R, Lind E, Ahlgren A, Ståhlberg F, Knutsson L. Dynamic susceptibility contrast perfusion MRI using phase-based venous output functions: comparison with pseudo-continuous arterial spin labelling and assessment of contrast agent concentration in large veins. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:823-831. [PMID: 27295051 DOI: 10.1007/s10334-016-0567-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Contrast agent (CA) relaxivities are generally not well established in vivo, and the relationship between frequency/phase shift and magnetic susceptibility might be a useful alternative for CA quantification. MATERIALS AND METHODS Twenty volunteers (25-84 years old) were investigated using test-retest pre-bolus dynamic susceptibility-contrast (DSC) magnetic resonance imaging (MRI). The pre-bolus phase-based venous output function (VOF) time integral was used for arterial input function (AIF) rescaling. Resulting cerebral blood flow (CBF) data for grey matter (GM) were compared with pseudo-continuous arterial spin labelling (ASL). During the main bolus CA passage, the apparent spatial shift (pixel shift) of the superior sagittal sinus (seen in single-shot echo-planar imaging (EPI)) was converted to CA concentration and compared with conventional ΔR2*-based data and with a predicted phase-based VOF from the pre-bolus experiment. RESULTS The phase-based pre-bolus VOF resulted in a reasonable inter-individual GM CBF variability (coefficient of variation 28 %). Comparison with ASL CBF values implied a tissue R2*-relaxivity of 32 mM-1 s-1. Pixel-shift data at low concentrations (data not available at peak concentrations) were in reasonable agreement with the predicted phase-based VOF. CONCLUSION Susceptibility-induced phase shifts and pixel shifts are potentially useful for large-vein CA quantification. Previous predictions of a higher R2*-relaxivity in tissue than in blood were supported.
Collapse
Affiliation(s)
- Ronnie Wirestam
- Department of Medical Radiation Physics, University Hospital, Lund University, SE-22185, Lund, Sweden.
| | - Emelie Lind
- Department of Medical Radiation Physics, University Hospital, Lund University, SE-22185, Lund, Sweden
| | - André Ahlgren
- Department of Medical Radiation Physics, University Hospital, Lund University, SE-22185, Lund, Sweden
| | - Freddy Ståhlberg
- Department of Medical Radiation Physics, University Hospital, Lund University, SE-22185, Lund, Sweden.,Department of Diagnostic Radiology, University Hospital, Lund University, SE-22185, Lund, Sweden
| | - Linda Knutsson
- Department of Medical Radiation Physics, University Hospital, Lund University, SE-22185, Lund, Sweden
| |
Collapse
|
9
|
Calamante F, Ahlgren A, van Osch MJP, Knutsson L. A novel approach to measure local cerebral haematocrit using MRI. J Cereb Blood Flow Metab 2016; 36:768-80. [PMID: 26661152 PMCID: PMC4821017 DOI: 10.1177/0271678x15606143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 08/14/2015] [Indexed: 01/04/2023]
Abstract
The percentage blood volume occupied by red blood cells is known as haematocrit. While it is straightforward to measure haematocrit in large arteries, it is very challenging to do it in microvasculature (cerebral haematocrit). Currently, this can only be done using invasive methods (e.g. PET), but their use is very limited. Local variations in cerebral haematocrit have been reported in various brain abnormalities (e.g. stroke, tumours). We propose a new approach to image cerebral haematocrit using MRI, which relies on combining data from two measurements: one that provideshaematocrit-weightedand other onehaematocrit-independentvalues of the same parameter, thus providing an easily obtainable measurement of this important physiological parameter. Four different implementations are described, with one illustrated as proof-of-concept using data from healthy subjects. Cerebral haematocrit measurements were found to be in general agreement with literature values from invasive techniques (e.g. cerebral/arterial ratios of 0.88 and 0.86 for sub-cortical and cortical regions), and showed good test-retest reproducibility (e.g. coefficient-of-variation: 15% and 13% for those regions). The method was also able to detect statistically significant haematocrit gender differences in cortical regions (p < 0.01). The proposed MRI technique should have important applications in various neurological diseases, such as in stroke and brain tumours.
Collapse
Affiliation(s)
- Fernando Calamante
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia The Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia Department of Medicine, Austin Health and Northern Health, University of Melbourne, Australia
| | - André Ahlgren
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Matthias J P van Osch
- C.J. Gorter Center for high field MRI, Department of Radiology, LUMC, Leiden, Netherlands
| | - Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Kellner E, Breyer T, Gall P, Müller K, Trippel M, Staszewski O, Stein F, Saborowski O, Dyakova O, Urbach H, Kiselev VG, Mader I. MR evaluation of vessel size imaging of human gliomas: Validation by histopathology. J Magn Reson Imaging 2015; 42:1117-25. [PMID: 25683112 DOI: 10.1002/jmri.24864] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 01/19/2015] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To compare the vessel size and the cerebral blood volume in human gliomas with histopathology. Vessel size imaging (VSI) is a dynamic susceptibility contrast method for the assessment of the vessel size in normal and pathological tissue. Previous publications in rodents showed a satisfactory conformity with the vessel size derived from histopathology. To assess the clinical value, further, the progression-free interval was determined and correlated. MATERIALS AND METHODS Twenty-five gliomas (WHO grade °II [n = 10], °III [n = 3], °IV [n = 12]) were prospectively included and received a stereotaxic biopsy after VSI. The vessel size and the cerebral blood volume (CBV) were calculated in regions of interest at the tumor edge and correlated with the vessel size measured by histopathology. RESULTS Both VSI and CBV showed a good correlation with the vessel size in histopathology (up to r = 0.84, P < 0.001, and r = 0.62, P < 0.001, respectively). Slope and offset of the linear regression (y = 0.77x + 0.36 μm) suggest that the size of normal capillaries is overestimated with VSI, while for grossly enlarged vessels an underestimation occurs. Both VSI and CBV were negatively correlated with the progression-free interval (r = -0.57, P = 0.008, and r = -0.50, P = 0.025, respectively). CONCLUSION The correlation between VSI and vessel size from histopathology is in good accordance with the animal studies. The overestimation of small capillary sizes is also known from the animal trials. Vessel size and CBV showed similar results, both for the correlation with the histopathological vessel size and the progression-free interval.
Collapse
Affiliation(s)
- Elias Kellner
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Germany
| | - Tobias Breyer
- Department of Neuroradiology, University Medical Center Freiburg, Germany
| | - Peter Gall
- Siemens AG, Healthcare Sector, Erlangen, Germany
| | - Klaus Müller
- Department of Neuropathology, University Medical Center Freiburg, Germany
| | - Michael Trippel
- Department of Stereotactic Neurosurgery, University Medical Center Freiburg, Germany
| | - Ori Staszewski
- Department of Neuropathology, University Medical Center Freiburg, Germany
| | - Florian Stein
- Department of Neuropathology, University Medical Center Freiburg, Germany
| | - Olaf Saborowski
- Department of Neuroradiology, University Medical Center Freiburg, Germany
| | - Olga Dyakova
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, University Medical Center Freiburg, Germany
| | - Valerij G Kiselev
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Germany
| | - Irina Mader
- Department of Neuroradiology, University Medical Center Freiburg, Germany
| |
Collapse
|
11
|
Kellner E, Gall P, Günther M, Reisert M, Mader I, Fleysher R, Kiselev VG. Blood tracer kinetics in the arterial tree. PLoS One 2014; 9:e109230. [PMID: 25299048 PMCID: PMC4192126 DOI: 10.1371/journal.pone.0109230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/16/2014] [Indexed: 11/29/2022] Open
Abstract
Evaluation of blood supply of different organs relies on labeling blood with a suitable tracer. The tracer kinetics is linear: Tracer concentration at an observation site is a linear response to an input somewhere upstream the arterial flow. The corresponding impulse response functions are currently treated empirically without incorporating the relation to the vascular morphology of an organ. In this work we address this relation for the first time. We demonstrate that the form of the response function in the entire arterial tree is reduced to that of individual vessel segments under approximation of good blood mixing at vessel bifurcations. The resulting expression simplifies significantly when the geometric scaling of the vascular tree is taken into account. This suggests a new way to access the vascular morphology in vivo using experimentally determined response functions. However, it is an ill-posed inverse problem as demonstrated by an example using measured arterial spin labeling in large brain arteries. We further analyze transport in individual vessel segments and demonstrate that experimentally accessible tracer concentration in vessel segments depends on the measurement principle. Explicit expressions for the response functions are obtained for the major middle part of the arterial tree in which the blood flow in individual vessel segments can be treated as laminar. When applied to the analysis of regional cerebral blood flow measurements for which the necessary arterial input is evaluated in the carotid arteries, present theory predicts about 20% underestimation, which is in agreement with recent experimental data.
Collapse
Affiliation(s)
- Elias Kellner
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany
- * E-mail:
| | - Peter Gall
- Siemens AG, Healthcare Sector, Erlangen, Germany
| | - Matthias Günther
- Fraunhofer MEVIS, Institute for Medical Image Computing, Bremen, Germany
| | - Marco Reisert
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany
| | - Irina Mader
- Department of Neuroradiology, University Medical Center Freiburg, Freiburg, Germany
| | - Roman Fleysher
- Gruss Magnetic Resonance Research Center, Department of Radiology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Valerij G. Kiselev
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Emblem KE, Farrar CT, Gerstner ER, Batchelor TT, Borra RJH, Rosen BR, Sorensen AG, Jain RK. Vessel caliber--a potential MRI biomarker of tumour response in clinical trials. Nat Rev Clin Oncol 2014; 11:566-84. [PMID: 25113840 PMCID: PMC4445139 DOI: 10.1038/nrclinonc.2014.126] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Our understanding of the importance of blood vessels and angiogenesis in cancer has increased considerably over the past decades, and the assessment of tumour vessel calibre and structure has become increasingly important for in vivo monitoring of therapeutic response. The preferred method for in vivo imaging of most solid cancers is MRI, and the concept of vessel-calibre MRI has evolved since its initial inception in the early 1990s. Almost a quarter of a century later, unlike traditional contrast-enhanced MRI techniques, vessel-calibre MRI remains widely inaccessible to the general clinical community. The narrow availability of the technique is, in part, attributable to limited awareness and a lack of imaging standardization. Thus, the role of vessel-calibre MRI in early phase clinical trials remains to be determined. By contrast, regulatory approvals of antiangiogenic agents that are not directly cytotoxic have created an urgent need for clinical trials incorporating advanced imaging analyses, going beyond traditional assessments of tumour volume. To this end, we review the field of vessel-calibre MRI and summarize the emerging evidence supporting the use of this technique to monitor response to anticancer therapy. We also discuss the potential use of this biomarker assessment in clinical imaging trials and highlight relevant avenues for future research.
Collapse
Affiliation(s)
- Kyrre E Emblem
- The Intervention Centre, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Christian T Farrar
- Department of Radiology and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Elizabeth R Gerstner
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, MA 02114, USA
| | - Tracy T Batchelor
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, MA 02114, USA
| | - Ronald J H Borra
- Department of Radiology and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Bruce R Rosen
- Department of Radiology and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - A Gregory Sorensen
- Siemens Healthcare Health Services, 51 Valley Stream Parkway, Malvern, PA 19355, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratory of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, MA 02114, USA
| |
Collapse
|
13
|
Yin J, Yang J, Guo Q. Evaluating the feasibility of an agglomerative hierarchy clustering algorithm for the automatic detection of the arterial input function using DSC-MRI. PLoS One 2014; 9:e100308. [PMID: 24932638 PMCID: PMC4059756 DOI: 10.1371/journal.pone.0100308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/26/2014] [Indexed: 12/02/2022] Open
Abstract
During dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI), it has been demonstrated that the arterial input function (AIF) can be obtained using fuzzy c-means (FCM) and k-means clustering methods. However, due to the dependence on the initial centers of clusters, both clustering methods have poor reproducibility between the calculation and recalculation steps. To address this problem, the present study developed an alternative clustering technique based on the agglomerative hierarchy (AH) method for AIF determination. The performance of AH method was evaluated using simulated data and clinical data based on comparisons with the two previously demonstrated clustering-based methods in terms of the detection accuracy, calculation reproducibility, and computational complexity. The statistical analysis demonstrated that, at the cost of a significantly longer execution time, AH method obtained AIFs more in line with the expected AIF, and it was perfectly reproducible at different time points. In our opinion, the disadvantage of AH method in terms of the execution time can be alleviated by introducing a professional high-performance workstation. The findings of this study support the feasibility of using AH clustering method for detecting the AIF automatically.
Collapse
Affiliation(s)
- Jiandong Yin
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiawen Yang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- * E-mail:
| |
Collapse
|
14
|
Yin J, Sun H, Yang J, Guo Q. Automated detection of the arterial input function using normalized cut clustering to determine cerebral perfusion by dynamic susceptibility contrast‐magnetic resonance imaging. J Magn Reson Imaging 2014; 41:1071-8. [PMID: 24753102 DOI: 10.1002/jmri.24642] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/07/2014] [Indexed: 11/07/2022] Open
Affiliation(s)
- Jiandong Yin
- Sino‐Dutch Biomedical and Information Engineering School of Northeastern UniversityShenyang Liaoning China
- Department of RadiologyShengjing Hospital of China Medical UniversityShenyang Liaoning China
| | - Hongzan Sun
- Department of RadiologyShengjing Hospital of China Medical UniversityShenyang Liaoning China
| | - Jiawen Yang
- Department of RadiologyShengjing Hospital of China Medical UniversityShenyang Liaoning China
| | - Qiyong Guo
- Department of RadiologyShengjing Hospital of China Medical UniversityShenyang Liaoning China
| |
Collapse
|
15
|
Knutsson L, Lindgren E, Ahlgren A, van Osch MJP, Markenroth Bloch K, Surova Y, Ståhlberg F, van Westen D, Wirestam R. Reduction of arterial partial volume effects for improved absolute quantification of DSC-MRI perfusion estimates: comparison between tail scaling and prebolus administration. J Magn Reson Imaging 2014; 41:903-8. [PMID: 24664642 DOI: 10.1002/jmri.24621] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/24/2014] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To evaluate and mutually compare the tail-scaling approach and the prebolus administration concept for reduction of arterial partial volume effects (PVEs), because reproducible absolute quantification of cerebral blood flow (CBF) by dynamic susceptibility contrast magnetic resonance imaging (MRI) is often hampered by PVEs in the arterial input function (AIF) registration. MATERIALS AND METHODS Twenty healthy volunteers were scanned in a test-retest study with 7-20 days between investigations to examine the quantitative values and the repeatability of CBF estimates obtained from the tail-scaling and the prebolus administration approaches. RESULTS Average grey matter CBF was 80 ± 18 mL/100 g/min (mean ± SD) using tail-scaling and 56 ± 18 mL/100 g/min using prebolus administration. The intraclass correlation coefficient was 0.52 for the tail-scaling approach and 0.86 for the prebolus administration concept. CONCLUSION Both correction methods resulted in considerably reduced arterial PVEs, leading to quantitative estimates of perfusion approaching those typically obtained by other perfusion modalities. The CBF estimates obtained using the prebolus administration concept showed superior repeatability. Potential sources of uncertainty in the tail-scaling approach include the use of venous concentration curves influenced by PVEs or by geometric distortions (ie, vessel pixel shifts) in the steady-state period.
Collapse
Affiliation(s)
- Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yin J, Sun H, Yang J, Guo Q. Comparison of K-means and fuzzy c-means algorithm performance for automated determination of the arterial input function. PLoS One 2014; 9:e85884. [PMID: 24503700 PMCID: PMC3913570 DOI: 10.1371/journal.pone.0085884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/07/2013] [Indexed: 11/19/2022] Open
Abstract
The arterial input function (AIF) plays a crucial role in the quantification of cerebral perfusion parameters. The traditional method for AIF detection is based on manual operation, which is time-consuming and subjective. Two automatic methods have been reported that are based on two frequently used clustering algorithms: fuzzy c-means (FCM) and K-means. However, it is still not clear which is better for AIF detection. Hence, we compared the performance of these two clustering methods using both simulated and clinical data. The results demonstrate that K-means analysis can yield more accurate and robust AIF results, although it takes longer to execute than the FCM method. We consider that this longer execution time is trivial relative to the total time required for image manipulation in a PACS setting, and is acceptable if an ideal AIF is obtained. Therefore, the K-means method is preferable to FCM in AIF detection.
Collapse
Affiliation(s)
- Jiandong Yin
- Sino-dutch Biomedical and Information Engineering School of Northeastern University, Shenyang, Liaoning, China
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hongzan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiawen Yang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- * E-mail:
| |
Collapse
|
17
|
Kellner E, Mix M, Reisert M, Förster K, Nguyen-Thanh T, Splitthoff DN, Gall P, Kiselev VG, Mader I. Quantitative cerebral blood flow with bolus tracking perfusion MRI: Measurements in porcine model and comparison with
H215O PET. Magn Reson Med 2013; 72:1723-34. [DOI: 10.1002/mrm.25073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/31/2013] [Accepted: 11/17/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Elias Kellner
- Department of Radiology - Medical Physics; Medical Center - University of Freiburg; Freiburg Germany
| | - Michael Mix
- Department of Nuclear Medicine; Medical Center - University of Freiburg; Freiburg Germany
| | - Marco Reisert
- Department of Radiology - Medical Physics; Medical Center - University of Freiburg; Freiburg Germany
| | - Katharina Förster
- Department of Cardiovascular Surgery, Heart Center; University of Freiburg; Freiburg Germany
| | - Thao Nguyen-Thanh
- Department of Neuroradiology; Medical Center - University of Freiburg; Freiburg Germany
| | - Daniel Nico Splitthoff
- Department of Radiology - Medical Physics; Medical Center - University of Freiburg; Freiburg Germany
| | - Peter Gall
- Department of Radiology - Medical Physics; Medical Center - University of Freiburg; Freiburg Germany
| | - Valerij G. Kiselev
- Department of Radiology - Medical Physics; Medical Center - University of Freiburg; Freiburg Germany
| | - Irina Mader
- Department of Neuroradiology; Medical Center - University of Freiburg; Freiburg Germany
| |
Collapse
|
18
|
Calamante F. Arterial input function in perfusion MRI: a comprehensive review. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 74:1-32. [PMID: 24083460 DOI: 10.1016/j.pnmrs.2013.04.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/18/2013] [Accepted: 04/30/2013] [Indexed: 06/02/2023]
Abstract
Cerebral perfusion, also referred to as cerebral blood flow (CBF), is one of the most important parameters related to brain physiology and function. The technique of dynamic-susceptibility contrast (DSC) MRI is currently the most commonly used MRI method to measure perfusion. It relies on the intravenous injection of a contrast agent and the rapid measurement of the transient signal changes during the passage of the bolus through the brain. Central to quantification of CBF using this technique is the so-called arterial input function (AIF), which describes the contrast agent input to the tissue of interest. Due to its fundamental role, there has been a lot of progress in recent years regarding how and where to measure the AIF, how it influences DSC-MRI quantification, what artefacts one should avoid, and the design of automatic methods to measure the AIF. The AIF is also directly linked to most of the major sources of artefacts in CBF quantification, including partial volume effect, bolus delay and dispersion, peak truncation effects, contrast agent non-linearity, etc. While there have been a number of good review articles on DSC-MRI over the years, these are often comprehensive but, by necessity, with limited in-depth discussion of the various topics covered. This review article covers in greater depth the issues associated with the AIF and their implications for perfusion quantification using DSC-MRI.
Collapse
Affiliation(s)
- Fernando Calamante
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia; Department of Medicine, Austin Health and Northern Health, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|