1
|
Nissan N, Gluskin J, Arita Y, Ochoa-Albiztegui RE, Fruchtman-Brot H, Jochelson MS, Sung JS. Axillary Lymph Nodes T2 Signal Intensity Characterization in MRI of Patients With Mucinous Breast Cancer: A Pilot Study. JOURNAL OF BREAST IMAGING 2024:wbae078. [PMID: 39657258 DOI: 10.1093/jbi/wbae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVE To evaluate the T2 signal intensity (SI) of axillary lymph nodes as a potential functional imaging marker for metastasis in patients with mucinous breast cancer. METHODS A retrospective review of breast MRIs performed from April 2008 to March 2024 was conducted to identify patients with mucinous breast cancer and adenopathy. Two independent, masked readers qualitatively assessed the T2 SI of tumors and lymph nodes. The T2 SI ratio for adenopathy and contralateral normal lymph nodes was quantitatively measured using the ipsilateral pectoralis muscle as a reference. Comparisons between malignant and nonmalignant lymph nodes were made using the chi-square test for qualitative assessments and the Mann-Whitney U test for quantitative assessments. RESULTS Of 17 patients (all female; mean age, 48.4 ± 10.7 years; range: 29-80 years), 12 had malignant nodes, while 5 had benign nodes. Qualitative assessment revealed that the primary mucinous breast cancer was T2 hyperintense in most cases (88.2%-94.1%). No significant difference in qualitative T2 hyperintensity was observed between malignant and nonmalignant nodes (P = .51-.84). Quantitative T2 SI ratio parameters, including the ratio of mean and minimal node T2 SI to mean ipsilateral pectoralis muscle T2 SI, were higher in malignant nodes vs benign and contralateral normal nodes (P <.05). CONCLUSION Metastatic axillary lymph nodes exhibit high T2 SI, which could serve as a functional biomarker beyond traditional morphological assessment. Future studies should prioritize investigating more precise measurements, such as T2 mapping, and confirm these results in larger groups and across mucinous neoplasms in other organs.
Collapse
Affiliation(s)
- Noam Nissan
- Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY, USA
| | - Jill Gluskin
- Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY, USA
| | - Yuki Arita
- Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY, USA
| | | | - Hila Fruchtman-Brot
- Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY, USA
| | - Maxine S Jochelson
- Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY, USA
| | - Janice S Sung
- Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY, USA
| |
Collapse
|
2
|
Yang Y, Lu M, Yan X. Frequency-independent dual-tuned cable traps for multi-nuclear MRI and MRS. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 368:107786. [PMID: 39413717 DOI: 10.1016/j.jmr.2024.107786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) of non-proton nuclei (X-nuclei) typically require additional proton imaging for anatomical reference and B0 shimming. Therefore, two RF systems exist, necessitating cable traps to block the unwanted common-mode current at both Larmor frequencies of 1H and X-nuclei. This study introduces a frequency-independent dual-tuned cable trap that combines a standard solenoid cable trap with a float solenoid trap to independently tune high and low frequencies without compromising performance. The methods involved theoretical analysis, electromagnetic simulations, and bench tests. Two design approaches were evaluated: a float cable trap for 1H, a non-float cable trap for X-nuclei, and vice versa. Results showed that the design with the float trap for X-nuclei and non-float for 1H had superior performance, with high common-mode current suppression ability at both frequencies. Bench tests confirmed these findings, demonstrating effectiveness across various static fields and X-nuclei. The proposed frequency-independent dual-tuned cable trap provides a compact and efficient solution for multinuclear MRI and MRS, enhancing safety, image quality, and flexibility.
Collapse
Affiliation(s)
- Yijin Yang
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Ming Lu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xinqiang Yan
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
3
|
Yang Y, Zhang B, Lu M, Yan X. Dual-tuned floating solenoid balun for multi-nuclear MRI and MRS. Magn Reson Imaging 2024; 115:110268. [PMID: 39442656 DOI: 10.1016/j.mri.2024.110268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Common-mode currents can degrade the RF coil performance and introduce potential safety hazards in MRI. Baluns are the standard method to suppress these undesired common-mode currents. Specifically, floating baluns are preferred in many applications because they are removable, allow post-installation adjustment and avoid direct soldering on the cable. However, floating baluns are typically bulky to achieve excellent common-mode suppression, taking up valuable space in the MRI bore. This is particularly severe for multi-nuclear MRI/MRS applications, as two RF systems exist. In this work, we present a novel dual-tuned floating balun that is fully removable, does not require any physical connection to the coaxial cable, and has a significantly reduced footprint. The floating design employs an inductive coupling between the cable solenoid and a floating solenoid resonator rather than a direct physical connection. Unlike the previous floating solenoid balun, this balun employs a two-layer design further to improve the mutual coupling between the two solenoids. A pole-insertion method is used to suppress common-mode currents at two user-selectable frequencies simultaneously. Bench testing of the fabricated device at 7 T demonstrated high common-mode rejection ratios at Larmor frequencies of both 1H and 23Na, even with a compact dimension (diameter 18 mm and length 12 mm). This balun's removable, compact, and multi-resonant nature enables light-weighting, allows more coil elements, and improves cable management for advanced multi-nuclear MRI/MRS systems.
Collapse
Affiliation(s)
- Yijin Yang
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Boqiao Zhang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Ming Lu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xinqiang Yan
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
4
|
Zhu Y, Sappo CR, Grissom WA, Gore JC, Yan X. Dual-Tuned Lattice Balun for Multi-Nuclear MRI and MRS. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1420-1430. [PMID: 34990352 PMCID: PMC9812758 DOI: 10.1109/tmi.2022.3140717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Balun or trap circuits are critical components for suppressing common-mode currents flowing on the outer conductors of coaxial cables in RF coil systems for Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS). Common-mode currents affect coils' tuning and matching, induce losses, pick up extra noise from the surrounding environment, lead to undesired cross-talk, and cause safety concerns in animal and human imaging. First proposed for microwave antenna applications, the Lattice balun has been widely used in MRI coils. It has a small footprint and can be easily integrated with coil tuning/matching circuits. However, the Lattice balun is typically a single-tuned circuit and cannot be used for multi-nuclear MRI and MRS with two RF frequencies. This work describes a dual-tuned Lattice balun design that is suitable for multi-nuclear MRI/MRS. It was first analyzed theoretically to derive component values. RF circuit simulations were then performed to validate the theoretical analysis and provide guidance for practical construction. Based on the simulation results, a dual-tuned balun circuit was built for 7T 1H/23Na MRI and bench tested. The fabricated dual-tuned balun exhibits superior performance at the Larmor frequencies of both 1H and 23Na, with less than 0.15 dB insertion loss and better than 17 dB common-mode rejection ratio at both frequencies.
Collapse
|
5
|
Emerging Role for 7T MRI and Metabolic Imaging for Pancreatic and Liver Cancer. Metabolites 2022; 12:metabo12050409. [PMID: 35629913 PMCID: PMC9145477 DOI: 10.3390/metabo12050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Advances in magnet technologies have led to next generation 7T magnetic resonance scanners which can fit in the footprint and price point of conventional hospital scanners (1.5−3T). It is therefore worth asking if there is a role for 7T magnetic resonance imaging and spectroscopy for the treatment of solid tumor cancers. Herein, we survey the medical literature to evaluate the unmet clinical needs for patients with pancreatic and hepatic cancer, and the potential of ultra-high field proton imaging and phosphorus spectroscopy to fulfil those needs. We draw on clinical literature, preclinical data, nuclear magnetic resonance spectroscopic data of human derived samples, and the efforts to date with 7T imaging and phosphorus spectroscopy. At 7T, the imaging capabilities approach histological resolution. The spectral and spatial resolution enhancements at high field for phospholipid spectroscopy have the potential to reduce the number of exploratory surgeries due to tumor boundaries undefined at conventional field strengths. Phosphorus metabolic imaging at 7T magnetic field strength, is already a mainstay in preclinical models for molecular phenotyping, energetic status evaluation, dosimetry, and assessing treatment response for both pancreatic and liver cancers. Metabolic imaging of primary tumors and lymph nodes may provide powerful metrics to aid staging and treatment response. As tumor tissues contain extreme levels of phospholipid metabolites compared to the background signal, even spectroscopic volumes containing less than 50% tumor can be detected and/or monitored. Phosphorus spectroscopy allows non-invasive pH measurements, indicating hypoxia, as a predictor of patients likely to recur. We conclude that 7T multiparametric approaches that include metabolic imaging with phosphorus spectroscopy have the potential to meet the unmet needs of non-invasive location-specific treatment monitoring, lymph node staging, and the reduction in unnecessary surgeries for patients undergoing resections for pancreatic cancer. There is also potential for the use of 7T phosphorous spectra for the phenotyping of tumor subtypes and even early diagnosis (<2 mL). Whether or not 7T can be used for all patients within the next decade, the technology is likely to speed up the translation of new therapeutics.
Collapse
|
6
|
Rivera D, Kalleveen I, de Castro CA, van Laarhoven H, Klomp D, van der Kemp W, Stoker J, Nederveen A. Inherently decoupled 1 H antennas and 31 P loops for metabolic imaging of liver metastasis at 7 T. NMR IN BIOMEDICINE 2020; 33:e4221. [PMID: 31922319 DOI: 10.1002/nbm.4221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
High field 31 P spectroscopy has thus far been limited to diffuse liver disease. Unlike lower field-strength scanners, there is no body coil in the bore of the 7 T and despite inadequate penetration depth (<10 cm), surface coils are the current state-of-the-art for acquiring anatomical images to support multinuclear studies. We present a system of proton antennas and phosphorus loops for 31 P spectroscopy and provide the first ultrahigh-field phosphorus metabolic imaging of a tumor in the abdomen. Herein we characterize the degree to which antennas are isolated from underlying loops. Next, we evaluate the penetration depth of the two antennas available during multinuclear examinations. Finally, we combine phosphorus spectroscopy (two loops) with parallel transmit imaging (eight antennas) in a patient. The loops and antennas are inherently decoupled (no added circuitry, <0.1% power coupling). The penetration depth of two antennas gives twice that of conventional loops. The liver and full axial slice of the abdomen were imaged with eight transmit/receive antennas using parallel transmit B1-shimming to overcome image voids. Phosphorus spectroscopy from a liver metastasis resolved individual peaks for phosphocholine and phosphoethenalomine. Proton antennas are inherently decoupled from phosphorus loops. By using two proton antennas it is possible to perform region-of-interest image-based shimming in over 80% of the liver volume, thereby enabling phosphorus spectroscopy of localized disease. Shimming of the full extent of the abdominal cross-section is feasible using a parallel transmit array of eight antennas. A system architecture capable of supporting eight-channel parallel transmit and multinuclear spectroscopy is optimal for supporting multiparametric body imaging, including metabolic imaging, for monitoring the response of patients with liver metastases to cancer treatments and for patient risk stratification. In the meantime, the existing infrastructure using two antennas is sufficient for preliminary studies in metabolic imaging of tumors in the liver.
Collapse
Affiliation(s)
- Debra Rivera
- Department of Electrical Engineering, Technical University Eindhoven, Eindhoven, the Netherlands
- MR Coils, BV Zaltbommel, the Netherlands
| | | | | | | | - Dennis Klomp
- Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wybe van der Kemp
- Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jaap Stoker
- Radiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Aart Nederveen
- Radiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Ianniello C, Madelin G, Moy L, Brown R. A dual-tuned multichannel bilateral RF coil for 1 H/ 23 Na breast MRI at 7 T. Magn Reson Med 2019; 82:1566-1575. [PMID: 31148249 DOI: 10.1002/mrm.27829] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Sodium MRI has shown promise for monitoring neoadjuvant chemotherapy response in breast cancer. The purpose of this work was to build a dual-tuned bilateral proton/sodium breast coil for 7T MRI that provides sufficient SNR to enable sodium breast imaging in less than 10 minutes. METHODS The proton/sodium coil consists of 2 shielded unilateral units: 1 for each breast. Each unit consists of 3 nested layers: (1) a 3-loop solenoid for sodium excitation, (2) a 3-loop solenoid for proton excitation and signal reception, and (3) a 4-channel receive array for sodium signal reception. Benchmark measurements were performed in phantoms with and without the sodium receive array insert. In vivo images were acquired on a healthy volunteer. RESULTS The sodium receive array boosted 1.5 to 3 times the SNR compared with the solenoid. Proton SNR loss due to residual interaction with the sodium array was less than 10%. The coil enabled sodium imaging in vivo with 2.8-mm isotropic nominal resolution (~5-mm real resolution) in 9:36 minutes. CONCLUSION The coil design that we propose addresses challenges associated with sodium's low SNR from a hardware perspective and offers the opportunity to investigate noninvasively breast tumor metabolism as a function of sodium concentration in patients undergoing neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Carlotta Ianniello
- Center for Advanced Imaging Innovation and Research (CAI2R) and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,The Sackler Institute of Graduate Biomedical Science, New York University School of Medicine, New York, New York
| | - Guillaume Madelin
- Center for Advanced Imaging Innovation and Research (CAI2R) and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,The Sackler Institute of Graduate Biomedical Science, New York University School of Medicine, New York, New York
| | - Linda Moy
- Center for Advanced Imaging Innovation and Research (CAI2R) and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,The Sackler Institute of Graduate Biomedical Science, New York University School of Medicine, New York, New York
| | - Ryan Brown
- Center for Advanced Imaging Innovation and Research (CAI2R) and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,The Sackler Institute of Graduate Biomedical Science, New York University School of Medicine, New York, New York
| |
Collapse
|
8
|
Kraff O, Quick HH. 7T: Physics, safety, and potential clinical applications. J Magn Reson Imaging 2017; 46:1573-1589. [DOI: 10.1002/jmri.25723] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/17/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Oliver Kraff
- Erwin L. Hahn Institute for MR Imaging; University of Duisburg-Essen; Essen Germany
| | - Harald H. Quick
- Erwin L. Hahn Institute for MR Imaging; University of Duisburg-Essen; Essen Germany
- High Field and Hybrid MR Imaging; University Hospital Essen; Essen Germany
| |
Collapse
|
9
|
Raaijmakers AJE, Luijten PR, van den Berg CAT. Dipole antennas for ultrahigh-field body imaging: a comparison with loop coils. NMR IN BIOMEDICINE 2016; 29:1122-1130. [PMID: 26278544 DOI: 10.1002/nbm.3356] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/10/2015] [Accepted: 06/08/2015] [Indexed: 06/04/2023]
Abstract
Although the potential of dipole antennas for ultrahigh-field (UHF) MRI is largely recognized, they are still relatively unknown to the larger part of the MRI community. This article intends to provide electromagnetic insight into the general operating principles of dipole antennas by numerical simulations. The major part focuses on a comparison study of dipole antennas and loop coils at frequencies of 128, 298 and 400 MHz. This study shows that dipole antennas are only efficient radiofrequency (RF) coils in the presence of a dielectric and/or conducting load. In addition, the conservative electric fields (E-fields) at the ends of a dipole are negligible in comparison with the induced E-fields in the center. Like loop coils, long dipole antennas perform better than short dipoles for deeply located imaging targets and vice versa. When the optimal element is chosen for each depth, loop coils have higher B1 (+) efficiency for shallow depths, whereas dipole antennas have higher B1 (+) efficiency for large depths. The cross-over point depth decreases with increasing frequency: 11.6, 6.2 and 5.0 cm for 128, 298 and 400 MHz, respectively. For single elements, loop coils demonstrate a better B1 (+) /√SARmax ratio for any target depth and any frequency. However, one example study shows that, in an array setup with loop coil overlap for decoupling, this relationship is not straightforward. The overlapping loop coils may generate increased specific absorption rate (SAR) levels under the overlapping parts of the loops, depending on the drive phase settings. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - P R Luijten
- UMC Utrecht, Department of Radiology, Utrecht, the Netherlands
| | | |
Collapse
|
10
|
Multiparametric MRI With Dynamic Contrast Enhancement, Diffusion-Weighted Imaging, and 31-Phosphorus Spectroscopy at 7 T for Characterization of Breast Cancer. Invest Radiol 2015; 50:766-71. [DOI: 10.1097/rli.0000000000000183] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
|