Wang Q, Xiao H, Yu X, Lin H, Yang B, Zhang Y, Feng D, Yan F, Wang H. R1ρ at high spin-lock frequency could be a complementary imaging biomarker for liver iron overload quantification.
Magn Reson Imaging 2020;
75:141-148. [PMID:
33129937 DOI:
10.1016/j.mri.2020.10.014]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/16/2023]
Abstract
PURPOSE
To compare the correlations among the R1ρ, R2, and R2* relaxation rates with liver iron concentration (LIC) in the assessment of rat liver iron content and explore the application potential of R1ρ in assessing liver iron content.
METHODS
Iron dextran (dosage of 0, 25, 50, 100, and 200 mg/kg body weight) was injected into 35 male rats to increase the amount of iron storage in the liver. After one week, all rats were euthanized with isoflurane. A portion of the largest hepatic lobe was extracted to quantify the LIC by inductively coupled plasma, and the remaining liver tissue was stored in 4% buffered paraformaldehyde for 24 h before MRI. Spin-lock preparation with a RARE (rapid acquisition with relaxation enhancement) readout (9 different spin-lock times and 7 different spin-lock frequencies (FSLs)) and multi-echo UTE (ultrashort TE) pulses were developed to quantify R1ρ and R2 * on a Bruker 11.7 T MR system. For comparisons with R1ρ and R2*, R2 was acquired using the CPMG sequence.
RESULTS
Mean R1ρ values displayed dispersion, with decrease in R1ρ at higher FSLs. Spearman's correlation analysis (two-tailed) indicated that the R1ρ values were significantly associated with LIC at FSL = 2000, 2500, and 3000 Hz (r = 0.365 and P = 0.031, r = 0.608 and P < 0.001, and r = 0.764 and P < 0.001, respectively), and were not significantly associated with LIC at FSL = 500, 1000, 1250, and 1500 Hz (all P > 0.05). R2 and R2* showed significant linear correlations with LIC (r = 0.787 and P < 0.001, and r = 0.859 and P < 0.001, respectively). Correlation analysis across R1ρ, R2, and R* also suggested that the correlation strength between R1ρ and R2 and between R1ρ and R* showed an increasing trend with increase in FSL.
CONCLUSION
In this study, a strong association was observed between R1ρ and LIC at high FSLs further confirming previous findings. The results demonstrated that R1ρ at high FSL might serve as a complementary imaging biomarker for liver iron overload quantification.
Collapse