1
|
Morris S, Swift-LaPointe T, Yung A, Prevost V, George S, Bauman A, Kozlowski P, Samadi-Bahrami Z, Fournier C, Mattu PS, Parker L, Streijger F, Hirsch-Reinshagen V, Moore GRW, Kwon BK, Laule C. Advanced Magnetic Resonance Imaging Biomarkers of the Injured Spinal Cord: A Comparative Study of Imaging and Histology in Human Traumatic Spinal Cord Injury. J Neurotrauma 2024; 41:1223-1239. [PMID: 38318802 DOI: 10.1089/neu.2023.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
A significant problem in the diagnosis and management of traumatic spinal cord injury (tSCI) is the heterogeneity of secondary injury and the prediction of neurological outcome. Imaging biomarkers specific to myelin loss and inflammation after tSCI would enable detailed assessment of the pathophysiological processes underpinning secondary damage to the cord. Such biomarkers could be used to biologically stratify injury severity and better inform prognosis for neurological recovery. While much work has been done to establish magnetic resonance imaging (MRI) biomarkers for SCI in animal models, the relationship between imaging findings and the underlying pathology has been difficult to discern in human tSCI because of the paucity of human spinal cord tissue. We utilized post-mortem spinal cords from individuals who had a tSCI to examine this relationship by performing ex vivo MRI scans before histological analysis. We investigated the correlation between the histological distribution of myelin loss and inflammatory cells in the injured spinal cord and a number of myelin and inflammation-sensitive MRI measures: myelin water fraction (MWF), inhomogeneous magnetization transfer ratio (ihMTR), and diffusion tensor and diffusion kurtosis imaging-derived fractional anisotropy (FA) and axial, radial, and mean diffusivity (AD, RD, MD). The histological features were analyzed by staining with Luxol Fast Blue (LFB) for myelin lipids and Class II major histocompatibility complex (Class II MHC) and CD68 for microglia and macrophages. Both MWF and ihMTR were strongly correlated with LFB staining for myelin, supporting the use of both as biomarkers for myelin loss after SCI. A decrease in ihMTR was also correlated with the presence of Class II MHC positive immune cells. FA and RD correlated with both Class II MHC and CD68 and may therefore be useful biomarkers for inflammation after tSCI. Our work demonstrates the utility of advanced MRI techniques sensitive to biological tissue damage after tSCI, which is an important step toward using these MRI techniques in the clinic to aid in decision-making.
Collapse
Affiliation(s)
- Sarah Morris
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Physics and Astronomy, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Taylor Swift-LaPointe
- Physics and Astronomy, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Andrew Yung
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- UBC MRI Research Centre, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Valentin Prevost
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- UBC MRI Research Centre, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Shana George
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Andrew Bauman
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- UBC MRI Research Centre, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Piotr Kozlowski
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Physics and Astronomy, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- UBC MRI Research Centre, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Zahra Samadi-Bahrami
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Caron Fournier
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | | | - Lisa Parker
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Veronica Hirsch-Reinshagen
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - G R Wayne Moore
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Vancouver Spine Surgery Institute, Vancouver, British Columbia, Canada
- Orthopaedics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Cornelia Laule
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Physics and Astronomy, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Alsop DC, Ercan E, Girard OM, Mackay AL, Michal CA, Varma G, Vinogradov E, Duhamel G. Inhomogeneous magnetization transfer imaging: Concepts and directions for further development. NMR IN BIOMEDICINE 2023; 36:e4808. [PMID: 35916067 DOI: 10.1002/nbm.4808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 05/23/2023]
Abstract
Off-resonance radio frequency irradiation can induce the ordering of proton spins in the dipolar fields of their neighbors, in molecules with restricted mobility. This dipolar order decays with a characteristic relaxation time, T1D , that is very different from the T1 and T2 relaxation of the nuclear alignment with the main magnetic field. Inhomogeneous magnetization transfer (ihMT) imaging is a refinement of magnetization transfer (MT) imaging that isolates the MT signal dependence on dipolar order relaxation times within motion-constrained molecules. Because T1D relaxation is a unique contrast mechanism, ihMT may enable improved characterization of tissue. Initial work has stressed the high correlation between ihMT signal and myelin density. Dipolar order relaxation appears to be much longer in membrane lipids than other molecules. Recent work has shown, however, that ihMT acquisitions may also be adjusted to emphasize different ranges of T1D . These newer approaches may be sensitive to other microstructural components of tissue. Here, we review the concepts and history of ihMT and outline the requirements for further development to realize its full potential.
Collapse
Affiliation(s)
- David C Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Ece Ercan
- MR Clinical Science, Philips, Best, The Netherlands
| | | | - Alex L Mackay
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carl A Michal
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gopal Varma
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Elena Vinogradov
- Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
3
|
Soustelle L, Troalen T, Hertanu A, Ranjeva JP, Guye M, Varma G, Alsop DC, Duhamel G, Girard OM. Quantitative magnetization transfer MRI unbiased by on-resonance saturation and dipolar order contributions. Magn Reson Med 2023. [PMID: 37154400 DOI: 10.1002/mrm.29678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 04/01/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE To demonstrate the bias in quantitative MT (qMT) measures introduced by the presence of dipolar order and on-resonance saturation (ONRS) effects using magnetization transfer (MT) spoiled gradient-recalled (SPGR) acquisitions, and propose changes to the acquisition and analysis strategies to remove these biases. METHODS The proposed framework consists of SPGR sequences prepared with simultaneous dual-offset frequency-saturation pulses to cancel out dipolar order and associated relaxation (T1D ) effects in Z-spectrum acquisitions, and a matched quantitative MT (qMT) mathematical model that includes ONRS effects of readout pulses. Variable flip angle and MT data were fitted jointly to simultaneously estimate qMT parameters (macromolecular proton fraction [MPF], T2,f , T2,b , R, and free pool T1 ). This framework is compared with standard qMT and investigated in terms of reproducibility, and then further developed to follow a joint single-point qMT methodology for combined estimation of MPF and T1 . RESULTS Bland-Altman analyses demonstrated a systematic underestimation of MPF (-2.5% and -1.3%, on average, in white and gray matter, respectively) and overestimation of T1 (47.1 ms and 38.6 ms, on average, in white and gray matter, respectively) if both ONRS and dipolar order effects are ignored. Reproducibility of the proposed framework is excellent (ΔMPF = -0.03% and ΔT1 = -19.0 ms). The single-point methodology yielded consistent MPF and T1 values with respective maximum relative average bias of -0.15% and -3.5 ms found in white matter. CONCLUSION The influence of acquisition strategy and matched mathematical model with regard to ONRS and dipolar order effects in qMT-SPGR frameworks has been investigated. The proposed framework holds promise for improved accuracy with reproducibility.
Collapse
Affiliation(s)
- Lucas Soustelle
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | | | - Andreea Hertanu
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Gopal Varma
- Division of MR Research, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David C Alsop
- Division of MR Research, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Guillaume Duhamel
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Olivier M Girard
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| |
Collapse
|
4
|
Taso M, Munsch F, Girard OM, Duhamel G, Alsop DC, Varma G. Fast-spin-echo versus rapid gradient-echo for 3D magnetization-prepared acquisitions: Application to inhomogeneous magnetization transfer. Magn Reson Med 2023; 89:550-564. [PMID: 36306334 PMCID: PMC10848167 DOI: 10.1002/mrm.29461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE To evaluate the benefits of fast spin echo (FSE) imaging over rapid gradient-echo (RAGE) for magnetization-prepared inhomogeneous magnetization transfer (ihMT) imaging. METHODS A 3D FSE sequence was modified to include an ihMT preparation (ihMT-FSE) with an optional CSF suppression based on an inversion-recovery (ihMT-FLAIR). After numeric simulations assessing SNR benefits of FSE and the potential impact of an additional inversion-recovery, ihMT-RAGE, ihMT-FSE, and ihMT-FLAIR sequences were compared in a group of six healthy volunteers, evaluating image quality, thermal, and physiological noise as well as quantification using an ihMT saturation (ihMTsat) approach. A preliminary exploration in the cervical spinal cord was also conducted in a group of three healthy volunteers. RESULTS Several fold improvements in thermal SNR were observed with ihMT-FSE in agreement with numerical simulations. However, we observed significantly higher physiological noise in ihMT-FSE compared to ihMT-RAGE that was mitigated in ihMT-FLAIR, which provided the best total SNR (+74% and +49% compared to ihMT-RAGE in the white and gray matter, P ≤ 0.004). IhMTsat quantification was successful in all cases with strong correlation between all sequences (r2 > 0.75). Early experiments showed potential for spinal cord imaging. CONCLUSIONS FSE generally offers higher SNR compared to gradient-echo based acquisitions for magnetization-prepared contrasts as illustrated here in the case of ihMT. However, physiological noise has a significant effect, but an inversion-recovery-based CSF suppression was shown to be efficient in mitigating effects of CSF motion.
Collapse
Affiliation(s)
- Manuel Taso
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Fanny Munsch
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | | | | | - David C. Alsop
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Gopal Varma
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Combes AJE, Clarke MA, O'Grady KP, Schilling KG, Smith SA. Advanced spinal cord MRI in multiple sclerosis: Current techniques and future directions. Neuroimage Clin 2022; 36:103244. [PMID: 36306717 PMCID: PMC9668663 DOI: 10.1016/j.nicl.2022.103244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/02/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Spinal cord magnetic resonance imaging (MRI) has a central role in multiple sclerosis (MS) clinical practice for diagnosis and disease monitoring. Advanced MRI sequences capable of visualizing and quantifying tissue macro- and microstructure and reflecting different pathological disease processes have been used in MS research; however, the spinal cord remains under-explored, partly due to technical obstacles inherent to imaging this structure. We propose that the study of the spinal cord merits equal ambition in overcoming technical challenges, and that there is much information to be exploited to make valuable contributions to our understanding of MS. We present a narrative review on the latest progress in advanced spinal cord MRI in MS, covering in the first part structural, functional, metabolic and vascular imaging methods. We focus on recent studies of MS and those making significant technical steps, noting the challenges that remain to be addressed and what stands to be gained from such advances. Throughout we also refer to other works that presend more in-depth review on specific themes. In the second part, we present several topics that, in our view, hold particular potential. The need for better imaging of gray matter is discussed. We stress the importance of developing imaging beyond the cervical spinal cord, and explore the use of ultra-high field MRI. Finally, some recommendations are given for future research, from study design to newer developments in analysis, and the need for harmonization of sequences and methods within the field. This review is aimed at researchers and clinicians with an interest in gaining an overview of the current state of advanced MRI research in this field and what is primed to be the future of spinal cord imaging in MS research.
Collapse
Affiliation(s)
- Anna J E Combes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States.
| | - Margareta A Clarke
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States
| | - Kristin P O'Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, TN 37235-1826, United States
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, TN 37235-1826, United States
| |
Collapse
|
6
|
Hertanu A, Soustelle L, Le Troter A, Buron J, Le Priellec J, Carvalho VND, Cayre M, Durbec P, Varma G, Alsop DC, Girard OM, Duhamel G. T 1D -weighted ihMT imaging - Part I. Isolation of long- and short-T 1D components by T 1D -filtering. Magn Reson Med 2022; 87:2313-2328. [PMID: 35037302 DOI: 10.1002/mrm.29139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/29/2021] [Accepted: 12/12/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE To identify T1D -filtering methods, which can specifically isolate various ranges of T1D components as they may be sensitive to different microstructural properties. METHODS Modified Bloch-Provotorov equations describing a bi-T1D component biophysical model were used to simulate the inhomogeneous magnetization transfer (ihMT) signal from ihMTRAGE sequences at high RF power and low duty-cycle with different switching time values for the dual saturation experiment: Δt = 0.0, 0.8, 1.6, and 3.2 ms. Simulations were compared with experimental signals on the brain gray and white matter tissues of healthy mice at 7T. RESULTS The lengthening of Δt created ihMT high-pass T1D -filters, which efficiently eliminated the signal from T1D components shorter than 1 ms, while partially attenuating that of longer components (≥ 1 ms). Subtraction of ihMTR images obtained with Δt = 0.0 ms and Δt = 0.8 ms generated a new ihMT band-pass T1D -filter isolating short-T1D components in the 100-µs to 1-ms range. Simulated ihMTR values in central nervous system tissues were confirmed experimentally. CONCLUSION Long- and short-T1D components were successfully isolated with high RF power and low duty-cycle ihMT filters in the healthy mouse brain. Future studies should investigate the various T1D -range microstructural correlations in in vivo tissues.
Collapse
Affiliation(s)
- Andreea Hertanu
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Lucas Soustelle
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Arnaud Le Troter
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Julie Buron
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | | | - Victor N D Carvalho
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, ICR, Marseille, France
| | - Myriam Cayre
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | | | - Gopal Varma
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David C Alsop
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Olivier M Girard
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Guillaume Duhamel
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| |
Collapse
|
7
|
Hertanu A, Soustelle L, Buron J, Le Priellec J, Cayre M, Le Troter A, Varma G, Alsop DC, Durbec P, Girard OM, Duhamel G. T 1D -weighted ihMT imaging - Part II. Investigating the long- and short-T 1D components correlation with myelin content. Comparison with R 1 and the macromolecular proton fraction. Magn Reson Med 2022; 87:2329-2346. [PMID: 35001427 DOI: 10.1002/mrm.29140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/29/2021] [Accepted: 12/12/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE To investigate the long- and short-T1D components correlation with myelin content using inhomogeneous magnetization transfer (ihMT) high-pass and band-pass T1D -filters and to compare ihMT, R1 , and the macromolecular proton fraction (MPF) for myelin specific imaging. METHODS The 3D ihMT rapid gradient echo (ihMTRAGE) sequences with increasing switching times (Δt) were used to derive ihMT high-pass T1D -filters with increasing T1D cutoff values and an ihMT band-pass T1D -filter for components in the 100 µs to 1 ms range. 3D spoiled gradient echo quantitative MT (SPGR-qMT) protocols were used to derive R1 and MPF maps. The specificity of R1 , MPF, and ihMT T1D -filters was evaluated by comparison with two histological reference techniques for myelin imaging. RESULTS The higher contribution of long-T1D s as compared to the short components as Δt got longer led to an increase in the specificity to myelination. In contrast, focusing on the signal originating from a narrow range of short-T1D s (< 1 ms) as isolated by the band-pass T1D -filter led to lower specificity. In addition, the significantly lower r2 correlation coefficient of the band-pass T1D -filter suggests that the origin of short-T1D components is mostly associated with non-myelin protons. Also, the important contribution of short-T1D s to the estimated MPF, explains its low specificity to myelination as compared to the ihMT high-pass T1D -filters. CONCLUSION Long-T1D components imaging by means of ihMT high-pass T1D -filters is proposed as an MRI biomarker for myelin content. Future studies should enable the investigation of the sensitivity of ihMT T1D -filters for demyelinating processes.
Collapse
Affiliation(s)
- Andreea Hertanu
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Lucas Soustelle
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Julie Buron
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | | | - Myriam Cayre
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Arnaud Le Troter
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Gopal Varma
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David C Alsop
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Olivier M Girard
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Guillaume Duhamel
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| |
Collapse
|
8
|
Forodighasemabadi A, Baucher G, Soustelle L, Troalen T, Girard OM, Guye M, Grisoli JB, Ranjeva JP, Duhamel G, Callot V. Spinal cord and brain tissue impairments as long-term effects of rugby practice? An exploratory study based on T1 and ihMTsat measures. NEUROIMAGE: CLINICAL 2022; 35:103124. [PMID: 35905667 PMCID: PMC9421542 DOI: 10.1016/j.nicl.2022.103124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
Diffuse degeneration of spinal cord (higher T1) is observed in retired rugby players. Demyelination of brain WM tracts (higher T1 / lower ihMTsat values) is present in rugby players. Early aging in both brain and spinal cord tissues may be linked to the rugby practice. The aforementioned effects may suggest cumulative effects of long-term impacts on the tissues.
Rugby players are subject to multiple impacts to their head and neck that could have adverse neurological effects and put them at increased risk of neurodegeneration. Previous studies demonstrated altered default mode network and diffusion metrics on brain, as well as more foraminal stenosis, disc protrusion and neck pain among players of contact sports as compared to healthy controls. However, the long-term effects of practice and repetitive impacts on brain and cervical spinal cord (cSC) of the rugby players have never been systematically investigated. In this study, 15 retired professional and amateur rugby players (R) and 15 age-matched healthy controls (HC) (all males; mean age R: 46.8 ± 7.6; and HC: 48.6 ± 9.5) were recruited both to investigate cord impairments and further characterize brain structure damage. Medical questionnaires including modified Japanese Orthopedic Association scale (mJOA) and Neck Disability Index (NDI) were filled by all participants. A 3 T multi-parametric MR protocol including conventional qualitative techniques such as T1-, T2-, and T2*-weighted sequences, as well as state-of-the art quantitative techniques including MP2RAGE T1 mapping and 3D ihMTRAGE, was used on both brain and cSC. Normalized brain WM and GM volumes, spine Overall Stenosis Score, cord cross-sectional area and regional T1 and ihMT metrics were derived from these acquisitions. Rugby players showed significantly higher NDI scores, as well as a faster decline of normalized brain GM volume with age as compared to HC. Moreover, higher T1 values on cSC suggestive of structural degeneration, together with higher T1 and lower ihMTsat on brain WM suggestive of demyelination, were observed in retired rugby players as compared to age-matched controls, which may suggest cumulative effects of long-term impacts on the tissues. Metrics also suggest early aging and different aging processes on brain tissue in the players. These preliminary observations provide new insights in the domain, which should now be further investigated on larger cohorts and multicentric longitudinal studies, and further correlated to the likelihood of neurodegenerative diseases and risk factors.
Collapse
|
9
|
Soustelle L, Troalen T, Hertanu A, Mchinda S, Ranjeva JP, Guye M, Varma G, Alsop DC, Duhamel G, Girard OM. A strategy to reduce the sensitivity of inhomogeneous magnetization transfer (ihMT) imaging to radiofrequency transmit field variations at 3 T. Magn Reson Med 2021; 87:1346-1359. [PMID: 34779020 DOI: 10.1002/mrm.29055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/17/2021] [Accepted: 10/05/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE To minimize the sensitivity of inhomogeneous magnetization transfer gradient-echo (ihMT-GRE) imaging to radiofrequency (RF) transmit field ( B 1 + ) inhomogeneities at 3 T. METHODS The ihMT-GRE sequence was optimized by varying the concentration of the RF saturation energy over time, obtained by increasing the saturation pulse power while extending the sequence repetition time (TR). Different protocols were tested using numerical simulations and human in vivo experiments in the brain white matter (WM) of healthy subjects at 3 T. The sensitivity of the ihMT ratio (ihMTR) to B 1 + variations was investigated by comparing measurements obtained at nominal transmitter adjustments and following a 20% global B 1 + drop. The resulting relative variations (δihMTR ) were evaluated voxelwise as a function of the local B 1 + distribution. The reproducibility of the protocol providing minimal B 1 + bias was assessed in a test-retest experiment. RESULTS In line with simulations, ihMT-GRE experiments conducted at high concentration of the RF energy over time demonstrated strong reduction of the B 1 + inhomogeneity effects in the human WM. Under the optimal conditions of 350-ms TR and 3-µT root mean square (RMS) saturation power, 73% of all WM voxels presented δihMTR below 10%. Reproducibility analysis yielded a close-to-zero systematic bias (ΔihMTR = -0.081%) and a high correlation (ρ² = 0.977) between test and retest experiments. CONCLUSION Concentrating RF saturation energy in ihMT-GRE sequences mitigates the sensitivity of the ihMTR to B 1 + variations and allows for clinical-ready ihMT imaging at 3 T. This feature is of particular interest for high and ultra-high field applications.
Collapse
Affiliation(s)
- Lucas Soustelle
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | | | - Andreea Hertanu
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Samira Mchinda
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Gopal Varma
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David C Alsop
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Guillaume Duhamel
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Olivier M Girard
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| |
Collapse
|
10
|
Rasoanandrianina H, Demortière S, Trabelsi A, Ranjeva JP, Girard O, Duhamel G, Guye M, Pelletier J, Audoin B, Callot V. Sensitivity of the Inhomogeneous Magnetization Transfer Imaging Technique to Spinal Cord Damage in Multiple Sclerosis. AJNR Am J Neuroradiol 2020; 41:929-937. [PMID: 32414903 DOI: 10.3174/ajnr.a6554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE The inhomogeneous magnetization transfer technique has demonstrated high specificity for myelin, and has shown sensitivity to multiple sclerosis-related impairment in brain tissue. Our aim was to investigate its sensitivity to spinal cord impairment in MS relative to more established MR imaging techniques (volumetry, magnetization transfer, DTI). MATERIALS AND METHODS Anatomic images covering the cervical spinal cord from the C1 to C6 levels and DTI, magnetization transfer/inhomogeneous magnetization transfer images at the C2/C5 levels were acquired in 19 patients with MS and 19 paired healthy controls. Anatomic images were segmented in spinal cord GM and WM, both manually and using the AMU40 atlases. MS lesions were manually delineated. MR metrics were analyzed within normal-appearing and lesion regions in anterolateral and posterolateral WM and compared using Wilcoxon rank tests and z scores. Correlations between MR metrics and clinical scores in patients with MS were evaluated using the Spearman rank correlation. RESULTS AMU40-based C1-to-C6 GM/WM automatic segmentations in patients with MS were evaluated relative to manual delineation. Mean Dice coefficients were 0.75/0.89, respectively. All MR metrics (WM/GM cross-sectional areas, normal-appearing and lesion diffusivities, and magnetization transfer/inhomogeneous magnetization transfer ratios) were observed altered in patients compared with controls (P < .05). Additionally, the absolute inhomogeneous magnetization transfer ratio z scores were significantly higher than those of the other MR metrics (P < .0001), suggesting a higher inhomogeneous magnetization transfer sensitivity toward spinal cord impairment in MS. Significant correlations with the Expanded Disability Status Scale (ρ = -0.73/P = .02, ρ = -0.81/P = .004) and the total Medical Research Council scale (ρ = 0.80/P = .009, ρ = -0.74/P = .02) were observed for inhomogeneous magnetization transfer and magnetization transfer ratio z scores, respectively, in normal-appearing WM regions, while weaker and nonsignificant correlations were obtained for DTI metrics. CONCLUSIONS With inhomogeneous magnetization transfer being highly sensitive to spinal cord damage in MS compared with conventional magnetization transfer and DTI, it could generate great clinical interest for longitudinal follow-up and potential remyelinating clinical trials. In line with other advanced myelin techniques with which it could be compared, it opens perspectives for multicentric investigations.
Collapse
Affiliation(s)
- H Rasoanandrianina
- From the Center for Magnetic Resonance in Biology and Medicine (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Assistance Publique-Hopitaux de Marseille, Hôpital Universitaire Timone, Marseille, France.,Laboratoire de Biomécanique Appliquée, Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Reseaux, Aix-Marseille Université; iLab-Spine International Associated Laboratory (H.R., J.P.R., V.C.), Marseille-Montreal, France-Canada
| | - S Demortière
- From the Center for Magnetic Resonance in Biology and Medicine (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Assistance Publique-Hopitaux de Marseille, Hôpital Universitaire Timone, Marseille, France.,Department of Neurology (S.D., J.P., B.A.), Centre Hospitalier Universitaire Timone, Assistance Publique-Hopitaux de Marseille, Marseille, France
| | - A Trabelsi
- From the Center for Magnetic Resonance in Biology and Medicine (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Assistance Publique-Hopitaux de Marseille, Hôpital Universitaire Timone, Marseille, France
| | - J P Ranjeva
- From the Center for Magnetic Resonance in Biology and Medicine (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Assistance Publique-Hopitaux de Marseille, Hôpital Universitaire Timone, Marseille, France.,Laboratoire de Biomécanique Appliquée, Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Reseaux, Aix-Marseille Université; iLab-Spine International Associated Laboratory (H.R., J.P.R., V.C.), Marseille-Montreal, France-Canada
| | - O Girard
- From the Center for Magnetic Resonance in Biology and Medicine (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Assistance Publique-Hopitaux de Marseille, Hôpital Universitaire Timone, Marseille, France
| | - G Duhamel
- From the Center for Magnetic Resonance in Biology and Medicine (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Assistance Publique-Hopitaux de Marseille, Hôpital Universitaire Timone, Marseille, France
| | - M Guye
- From the Center for Magnetic Resonance in Biology and Medicine (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Assistance Publique-Hopitaux de Marseille, Hôpital Universitaire Timone, Marseille, France
| | - J Pelletier
- From the Center for Magnetic Resonance in Biology and Medicine (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Assistance Publique-Hopitaux de Marseille, Hôpital Universitaire Timone, Marseille, France.,Department of Neurology (S.D., J.P., B.A.), Centre Hospitalier Universitaire Timone, Assistance Publique-Hopitaux de Marseille, Marseille, France
| | - B Audoin
- From the Center for Magnetic Resonance in Biology and Medicine (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Assistance Publique-Hopitaux de Marseille, Hôpital Universitaire Timone, Marseille, France.,Department of Neurology (S.D., J.P., B.A.), Centre Hospitalier Universitaire Timone, Assistance Publique-Hopitaux de Marseille, Marseille, France
| | - V Callot
- From the Center for Magnetic Resonance in Biology and Medicine (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France .,Centre d'Exploration Métabolique par Résonance Magnétique (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Assistance Publique-Hopitaux de Marseille, Hôpital Universitaire Timone, Marseille, France.,Laboratoire de Biomécanique Appliquée, Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Reseaux, Aix-Marseille Université; iLab-Spine International Associated Laboratory (H.R., J.P.R., V.C.), Marseille-Montreal, France-Canada
| |
Collapse
|
11
|
Ercan E, Varma G, Dimitrov IE, Xi Y, Pinho MC, Yu FF, Zhang S, Wang X, Madhuranthakam AJ, Lenkinski RE, Alsop DC, Vinogradov E. Combining inhomogeneous magnetization transfer and multipoint Dixon acquisition: Potential utility and evaluation. Magn Reson Med 2020; 85:2136-2144. [PMID: 33107146 PMCID: PMC7821205 DOI: 10.1002/mrm.28571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/08/2020] [Accepted: 10/06/2020] [Indexed: 11/08/2022]
Abstract
PURPOSE The recently introduced inhomogeneous magnetization transfer (ihMT) method has predominantly been applied for imaging the central nervous system. Future applications of ihMT, such as in peripheral nerves and muscles, will involve imaging in the vicinity of adipose tissues. This work aims to systematically investigate the partial volume effect of fat on the ihMT signal and to propose an efficient fat-separation method that does not interfere with ihMT measurements. METHODS First, the influence of fat on ihMT signal was studied using simulations. Next, the ihMT sequence was combined with a multi-echo Dixon acquisition for fat separation. The sequence was tested in 9 healthy volunteers using a 3T human scanner. The ihMT ratio (ihMTR) values were calculated in regions of interest in the brain and the spinal cord using standard acquisition (no fat saturation), water-only, in-phase, and out-of-phase reconstructions. The values obtained were compared with a standard fat suppression method, spectral presaturation with inversion recovery. RESULTS Simulations showed variations in the ihMTR values in the presence of fat, depending on the TEs used. The IhMTR values in the brain and spinal cord derived from the water-only ihMT multi-echo Dixon images were in good agreement with values from the unsuppressed sequence. The ihMT-spectral presaturation with inversion recovery combination resulted in 24%-35% lower ihMTR values compared with the standard non-fat-suppressed acquisition. CONCLUSION The presence of fat within a voxel affects the ihMTR calculations. The IhMT multi-echo Dixon method does not compromise the observable ihMT effect and can potentially be used to remove fat influence in ihMT.
Collapse
Affiliation(s)
- Ece Ercan
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA.,C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gopal Varma
- Division of MR Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Radiology, Boston, MA, USA
| | - Ivan E Dimitrov
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA.,Philips Healthcare, Gainesville, FL, USA
| | - Yin Xi
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Marco C Pinho
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Fang F Yu
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Shu Zhang
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Xinzeng Wang
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA.,Global MR Application and Workflow, GE Healthcare, Houston, TX, USA
| | - Ananth J Madhuranthakam
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Robert E Lenkinski
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - David C Alsop
- Division of MR Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Radiology, Boston, MA, USA
| | - Elena Vinogradov
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
12
|
Wood TC, Damestani NL, Lawrence AJ, Ljungberg E, Barker GJ, Solana AB, Wiesinger F, Williams SCR. Silent myelin-weighted magnetic resonance imaging. Wellcome Open Res 2020; 5:74. [PMID: 32832700 PMCID: PMC7431975 DOI: 10.12688/wellcomeopenres.15845.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Inhomogeneous Magnetization Transfer (ihMT) is an emerging, uniquely myelin-specific magnetic resonance imaging (MRI) contrast. Current ihMT acquisitions utilise fast Gradient Echo sequences which are among the most acoustically noisy MRI sequences, reducing patient comfort during acquisition. We sought to address this by modifying a near silent MRI sequence to include ihMT contrast. Methods: A Magnetization Transfer preparation module was incorporated into a radial Zero Echo-Time sequence. Repeatability of the ihMT ratio and inverse ihMT ratio were assessed in a cohort of healthy subjects. We also investigated how head orientation affects ihMT across subjects, as a previous study in a single subject suggests this as a potential confound. Results: We demonstrated that ihMT ratios comparable to existing, acoustically loud, implementations could be obtained with the silent sequence. We observed a small but significant effect of head orientation on inverse ihMTR. Conclusions: Silent ihMT imaging is a comparable alternative to conventional, noisy, alternatives. For all future ihMT studies we recommend careful positioning of the subject within the scanner.
Collapse
Affiliation(s)
- Tobias C Wood
- Department of Neuroimaging, King's College London, London, UK
| | | | - Andrew J Lawrence
- Department of Psychological Medicine, King's College London, London, UK
| | - Emil Ljungberg
- Department of Neuroimaging, King's College London, London, UK
| | - Gareth J Barker
- Department of Neuroimaging, King's College London, London, UK
| | | | - Florian Wiesinger
- Department of Neuroimaging, King's College London, London, UK.,ASL Europe, GE Healthcare, Munich, Germany
| | | |
Collapse
|
13
|
Wood TC, Damestani NL, Lawrence AJ, Ljungberg E, Barker GJ, Solana AB, Wiesinger F, Williams SCR. Silent myelin-weighted magnetic resonance imaging. Wellcome Open Res 2020; 5:74. [PMID: 32832700 DOI: 10.12688/wellcomeopenres.15845.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2020] [Indexed: 02/03/2023] Open
Abstract
Background: Inhomogeneous Magnetization Transfer (ihMT) is an emerging, uniquely myelin-specific magnetic resonance imaging (MRI) contrast. Current ihMT acquisitions utilise fast Gradient Echo sequences which are among the most acoustically noisy MRI sequences, reducing patient comfort during acquisition. We sought to address this by modifying a near silent MRI sequence to include ihMT contrast. Methods: A Magnetization Transfer preparation module was incorporated into a radial Zero Echo-Time sequence. Repeatability of the ihMT ratio and inverse ihMT ratio were assessed in a cohort of healthy subjects. We also investigated how head orientation affects ihMT across subjects, as a previous study in a single subject suggests this as a potential confound. Results: We demonstrated that ihMT ratios comparable to existing, acoustically loud, implementations could be obtained with the silent sequence. We observed a small but significant effect of head orientation on inverse ihMTR. Conclusions: Silent ihMT imaging is a comparable alternative to conventional, noisy, alternatives. For all future ihMT studies we recommend careful positioning of the subject within the scanner.
Collapse
Affiliation(s)
- Tobias C Wood
- Department of Neuroimaging, King's College London, London, UK
| | | | - Andrew J Lawrence
- Department of Psychological Medicine, King's College London, London, UK
| | - Emil Ljungberg
- Department of Neuroimaging, King's College London, London, UK
| | - Gareth J Barker
- Department of Neuroimaging, King's College London, London, UK
| | | | - Florian Wiesinger
- Department of Neuroimaging, King's College London, London, UK.,ASL Europe, GE Healthcare, Munich, Germany
| | | |
Collapse
|
14
|
Zhang L, Wen B, Chen T, Tian H, Xue H, Ren H, Li L, Fan Q, Ren Z. A comparison study of inhomogeneous magnetization transfer (ihMT) and magnetization transfer (MT) in multiple sclerosis based on whole brain acquisition at 3.0 T. Magn Reson Imaging 2020; 70:43-49. [PMID: 32224092 DOI: 10.1016/j.mri.2020.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a central nervous system disorder that may eventually affect its function. The clinical standard for MS severity is based on a clinical scale, which lacks lesion specific information. Magnetic resonance imaging of MS faces the challenge of myelin specificity, and in this work a new method inhomogeneous magnetization transfer (ihMT) is investigated as new biomarker of demyelination in MS. METHODS Local ethics committee approved this study and written informed consents were obtained. Between Oct 2017 to May 2018, eighteen patients with relapsing-remitting MS (RRMS) (6 males, 12 females, mean age 31.2) and sixteen healthy volunteers (6 males, 10 females, mean age 30.4 years) were enrolled in this prospective study. All subjects underwent MRI exams including MT and ihMT imaging as well as the Expanded Disability Status Scale (EDSS) assessments. Independent sample t-test were used to compare the difference of ihMT parameters between healthy white matter (HWM) and normal appearing white matter (NAWM) and between HWM and MS lesions, respectively. Spearman correlation were used to analyze the correlation between ihMT parameters of MS lesions and EDSS score. RESULTS The ihMTR and qihMT demonstrate significant differences between WHM and NAWM groups, while no significant differences are observed for MTR and qMT. All parameters show significant differences between HWM and MS groups (p < 0.05). There was moderate negative correlation between MTR, qMT and EDSS score (-0.440 and -0.572), while there was a strong negative correlation between ihMTR and qihMT and EDSS score (-0.704 and -0.739). CONCLUSION Based on whole brain analysis at 3.0 T, ihMT showed better correlation with EDSS compared to magnetization transfer imaging, and may be a potentially valuable biomarker for demyelination in MS.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Radiology, Baoji Center Hospital, Baoji, Shaanxi, People's Republic of China
| | - Baohong Wen
- Department of Radiology, Zhengzhou Univerisity First Affilicated Hospital, Zhengzhou, Henan, People's Republic of China
| | - Tao Chen
- Department of Radiology, Baoji Center Hospital, Baoji, Shaanxi, People's Republic of China
| | - Hongzhe Tian
- Department of Radiology, Baoji Center Hospital, Baoji, Shaanxi, People's Republic of China
| | - Hongqiang Xue
- Department of Radiology, Baoji Center Hospital, Baoji, Shaanxi, People's Republic of China
| | - Huipeng Ren
- Department of Radiology, Baoji Center Hospital, Baoji, Shaanxi, People's Republic of China
| | - Li Li
- Department of Radiology, Baoji Center Hospital, Baoji, Shaanxi, People's Republic of China
| | - Qing Fan
- Department of Radiology, Baoji Center Hospital, Baoji, Shaanxi, People's Republic of China
| | - Zhuanqin Ren
- Department of Radiology, Baoji Center Hospital, Baoji, Shaanxi, People's Republic of China; Department of Medical Techniques, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shannxi, People's Republic of China.
| |
Collapse
|
15
|
Carvalho VND, Hertanu A, Grélard A, Mchinda S, Soustelle L, Loquet A, Dufourc EJ, Varma G, Alsop DC, Thureau P, Girard OM, Duhamel G. MRI assessment of multiple dipolar relaxation time (T 1D) components in biological tissues interpreted with a generalized inhomogeneous magnetization transfer (ihMT) model. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 311:106668. [PMID: 31887555 DOI: 10.1016/j.jmr.2019.106668] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/19/2019] [Accepted: 12/10/2019] [Indexed: 05/24/2023]
Abstract
T1D, the relaxation time of dipolar order, is sensitive to slow motional processes. Thus T1D is a probe for membrane dynamics and organization that could be used to characterize myelin, the lipid-rich membrane of axonal fibers. A mono-component T1D model associated with a modified ihMT sequence was previously proposed for in vivo evaluation of T1D with MRI. However, experiments have suggested that myelinated tissues exhibit multiple T1D components probably due to a heterogeneous molecular mobility. A bi-component T1D model is proposed and implemented. ihMT images of ex-vivo, fixed rat spinal cord were acquired with multiple frequency alternation rate. Fits to data yielded two T1Ds of about 500 μs and 10 ms. The proposed model seems to further explore the complexity of myelin organization compared to the previously reported mono-component T1D model.
Collapse
Affiliation(s)
- Victor N D Carvalho
- Aix Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France; Aix Marseille Univ, CNRS, ICR UMR 7273, Marseille, France
| | | | - Axelle Grélard
- CBMN UMR 5248, CNRS University of Bordeaux, Bordeaux INP, Pessac, France
| | - Samira Mchinda
- Aix Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France
| | | | - Antoine Loquet
- CBMN UMR 5248, CNRS University of Bordeaux, Bordeaux INP, Pessac, France
| | - Erick J Dufourc
- CBMN UMR 5248, CNRS University of Bordeaux, Bordeaux INP, Pessac, France
| | - Gopal Varma
- Department of Radiology, Division of MR Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - David C Alsop
- Department of Radiology, Division of MR Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Pierre Thureau
- CBMN UMR 5248, CNRS University of Bordeaux, Bordeaux INP, Pessac, France
| | | | | |
Collapse
|
16
|
Duhamel G, Prevost VH, Cayre M, Hertanu A, Mchinda S, Carvalho VN, Varma G, Durbec P, Alsop DC, Girard OM. Validating the sensitivity of inhomogeneous magnetization transfer (ihMT) MRI to myelin with fluorescence microscopy. Neuroimage 2019; 199:289-303. [PMID: 31141736 DOI: 10.1016/j.neuroimage.2019.05.061] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 11/30/2022] Open
Abstract
Inhomogeneous Magnetization Transfer (ihMT) is a development from the MT MRI technique. IhMT can be considered as a dipolar order relaxation time (T1D) weighted imaging modality whose signal has shown an enhanced selectivity for myelin-rich structures. However, a formal validation of the ihMT sensitivity relative to a gold standard myelin density measurement has not yet been reported. To address this need, we compared ihMT MRI with green fluorescence protein (GFP) microscopy, in a study performed on genetically-modified plp-GFP mice, considered as a reference technique for myelin-content assessment. Various ihMT protocols consisting of variable T1D-filtering and radiofrequency power temporal distributions, were used for comparison with fluorescence microscopy. Strong and significant linear relationships (r2 (0.87-0.96), p < 0.0001) were found between GFP and ihMT ratio signals across brain regions for all tested protocol variants. Conventional MT ratios showed weaker correlations (r2 (0.24-0.78), p ≤ 0.02) and a much larger signal fraction unrelated to myelin, hence corresponding to a much lower specificity for myelin. T1D-filtering reduced the ihMT signal fraction not attributed to myelin by almost twofold relative to zero filtering suggesting that at least half of the unrelated signal has a substantially shorter T1D than myelin. Overall, these results strongly support the sensitivity of ihMT to myelin content.
Collapse
Affiliation(s)
- G Duhamel
- Aix Marseille Univ, CNRS, CRMBM - UMR 7339, Marseille, France.
| | - V H Prevost
- Aix Marseille Univ, CNRS, CRMBM - UMR 7339, Marseille, France
| | - M Cayre
- Aix Marseille Univ, CNRS, IBDM - UMR 7288, Marseille, France
| | - A Hertanu
- Aix Marseille Univ, CNRS, CRMBM - UMR 7339, Marseille, France
| | - S Mchinda
- Aix Marseille Univ, CNRS, CRMBM - UMR 7339, Marseille, France
| | - V N Carvalho
- Aix Marseille Univ, CNRS, CRMBM - UMR 7339, Marseille, France
| | - G Varma
- Department of Radiology, Division of MR Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - P Durbec
- Aix Marseille Univ, CNRS, IBDM - UMR 7288, Marseille, France
| | - D C Alsop
- Department of Radiology, Division of MR Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - O M Girard
- Aix Marseille Univ, CNRS, CRMBM - UMR 7339, Marseille, France
| |
Collapse
|
17
|
El Mendili MM, Querin G, Bede P, Pradat PF. Spinal Cord Imaging in Amyotrophic Lateral Sclerosis: Historical Concepts-Novel Techniques. Front Neurol 2019; 10:350. [PMID: 31031688 PMCID: PMC6474186 DOI: 10.3389/fneur.2019.00350] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/21/2019] [Indexed: 01/13/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult onset motor neuron disease with no effective disease modifying therapies at present. Spinal cord degeneration is a hallmark feature of ALS, highlighted in the earliest descriptions of the disease by Lockhart Clarke and Jean-Martin Charcot. The anterior horns and corticospinal tracts are invariably affected in ALS, but up to recently it has been notoriously challenging to detect and characterize spinal pathology in vivo. With recent technological advances, spinal imaging now offers unique opportunities to appraise lower motor neuron degeneration, sensory involvement, metabolic alterations, and interneuron pathology in ALS. Quantitative spinal imaging in ALS has now been used in cross-sectional and longitudinal study designs, applied to presymptomatic mutation carriers, and utilized in machine learning applications. Despite its enormous clinical and academic potential, a number of physiological, technological, and methodological challenges limit the routine use of computational spinal imaging in ALS. In this review, we provide a comprehensive overview of emerging spinal cord imaging methods and discuss their advantages, drawbacks, and biomarker potential in clinical applications, clinical trial settings, monitoring, and prognostic roles.
Collapse
Affiliation(s)
- Mohamed Mounir El Mendili
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Biomedical Imaging Laboratory (LIB), Sorbonne University, CNRS, INSERM, Paris, France
| | - Giorgia Querin
- Biomedical Imaging Laboratory (LIB), Sorbonne University, CNRS, INSERM, Paris, France.,Department of Neurology, Pitié-Salpêtrière University Hospital (APHP), Paris, France
| | - Peter Bede
- Biomedical Imaging Laboratory (LIB), Sorbonne University, CNRS, INSERM, Paris, France.,Department of Neurology, Pitié-Salpêtrière University Hospital (APHP), Paris, France.,Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Pierre-François Pradat
- Biomedical Imaging Laboratory (LIB), Sorbonne University, CNRS, INSERM, Paris, France.,Department of Neurology, Pitié-Salpêtrière University Hospital (APHP), Paris, France
| |
Collapse
|
18
|
Zhang L, Chen T, Tian H, Xue H, Ren H, Li L, Fan Q, Wen B, Ren Z. Reproducibility of inhomogeneous magnetization transfer (ihMT): A test-retest, multi-site study. Magn Reson Imaging 2019; 57:243-249. [DOI: 10.1016/j.mri.2018.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/29/2018] [Accepted: 11/17/2018] [Indexed: 10/27/2022]
|
19
|
Cohen-Adad J. Microstructural imaging in the spinal cord and validation strategies. Neuroimage 2018; 182:169-183. [PMID: 29635029 DOI: 10.1016/j.neuroimage.2018.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/02/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
In vivo histology using magnetic resonance imaging (MRI) is a newly emerging research field that aims to non-invasively characterize tissue microstructure. The implications of in vivo histology are many, from discovering novel biomarkers to studying human development, to providing tools for disease diagnosis and monitoring the effects of novel treatments on tissue. This review focuses on quantitative MRI (qMRI) techniques that are used to map spinal cord microstructure. Opening with a rationale for non-invasive imaging of the spinal cord, this article continues with a brief overview of the existing MRI techniques for axon and myelin imaging, followed by the specific challenges and potential solutions for acquiring and processing such data. The final part of this review focuses on histological validation, with suggested tissue preparation, acquisition and processing protocols for large-scale microscopy.
Collapse
Affiliation(s)
- J Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
20
|
Van Obberghen E, Mchinda S, le Troter A, Prevost VH, Viout P, Guye M, Varma G, Alsop DC, Ranjeva JP, Pelletier J, Girard O, Duhamel G. Evaluation of the Sensitivity of Inhomogeneous Magnetization Transfer (ihMT) MRI for Multiple Sclerosis. AJNR Am J Neuroradiol 2018; 39:634-641. [PMID: 29472299 DOI: 10.3174/ajnr.a5563] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/22/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Inhomogeneous magnetization transfer is a new endogenous MR imaging contrast mechanism that has demonstrated high specificity for myelin. Here, we tested the hypothesis that inhomogeneous magnetization transfer is sensitive to pathology in a population of patients with relapsing-remitting MS in a way that both differs from and complements conventional magnetization transfer. MATERIALS AND METHODS Twenty-five patients with relapsing-remitting MS and 20 healthy volunteers were enrolled in a prospective MR imaging research study, whose protocol included anatomic imaging, standard magnetization transfer, and inhomogeneous magnetization transfer imaging. Magnetization transfer and inhomogeneous magnetization transfer ratios measured in normal-appearing brain tissue and in MS lesions of patients were compared with values measured in control subjects. The potential association of inhomogeneous magnetization transfer ratio variations with the clinical scores (Expanded Disability Status Scale) of patients was further evaluated. RESULTS The magnetization transfer ratio and inhomogeneous magnetization transfer ratio measured in the thalami and frontal, occipital, and temporal WM of patients with MS were lower compared with those of controls (P < .05). The mean inhomogeneous magnetization transfer ratio measured in lesions was lower than that in normal-appearing WM (P < .05). Significant (P < .05) negative correlations were found between the clinical scores and inhomogeneous magnetization transfer ratio measured in normal-appearing WM structures. Weaker nonsignificant correlation trends were found for the magnetization transfer ratio. CONCLUSIONS The sensitivity of the inhomogeneous magnetization transfer technique for MS was highlighted by the reduction in the inhomogeneous magnetization transfer ratio in MS lesions and in normal-appearing WM of patients compared with controls. Stronger correlations with the Expanded Disability Status Scale score were obtained with the inhomogeneous magnetization transfer ratio compared with the standard magnetization transfer ratio, which may be explained by the higher specificity of inhomogeneous magnetization transfer for myelin.
Collapse
Affiliation(s)
- E Van Obberghen
- From Aix-Marseille Université (E.V.O., S.M., A.l.T., V.H.P., P.V., M.G., J.-P.R., J.P., O.G., G.D.), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339 Centre National de Recherche Scientifique (CNRS), Marseille, France
| | - S Mchinda
- From Aix-Marseille Université (E.V.O., S.M., A.l.T., V.H.P., P.V., M.G., J.-P.R., J.P., O.G., G.D.), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339 Centre National de Recherche Scientifique (CNRS), Marseille, France
| | - A le Troter
- From Aix-Marseille Université (E.V.O., S.M., A.l.T., V.H.P., P.V., M.G., J.-P.R., J.P., O.G., G.D.), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339 Centre National de Recherche Scientifique (CNRS), Marseille, France
| | - V H Prevost
- From Aix-Marseille Université (E.V.O., S.M., A.l.T., V.H.P., P.V., M.G., J.-P.R., J.P., O.G., G.D.), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339 Centre National de Recherche Scientifique (CNRS), Marseille, France
| | - P Viout
- From Aix-Marseille Université (E.V.O., S.M., A.l.T., V.H.P., P.V., M.G., J.-P.R., J.P., O.G., G.D.), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339 Centre National de Recherche Scientifique (CNRS), Marseille, France
| | - M Guye
- From Aix-Marseille Université (E.V.O., S.M., A.l.T., V.H.P., P.V., M.G., J.-P.R., J.P., O.G., G.D.), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339 Centre National de Recherche Scientifique (CNRS), Marseille, France
| | - G Varma
- Department of Radiology (G.V., D.C.A.), Division of MR Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - D C Alsop
- Department of Radiology (G.V., D.C.A.), Division of MR Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - J-P Ranjeva
- From Aix-Marseille Université (E.V.O., S.M., A.l.T., V.H.P., P.V., M.G., J.-P.R., J.P., O.G., G.D.), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339 Centre National de Recherche Scientifique (CNRS), Marseille, France
| | - J Pelletier
- From Aix-Marseille Université (E.V.O., S.M., A.l.T., V.H.P., P.V., M.G., J.-P.R., J.P., O.G., G.D.), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339 Centre National de Recherche Scientifique (CNRS), Marseille, France
- Aix-Marseille University (J.P.), Assistance Publique des Hôpitaux de Marseille (APHM), Hôpital de La Timone, Pôle de Neurosciences Cliniques, Service de Neurologie, Marseille, France
| | - O Girard
- From Aix-Marseille Université (E.V.O., S.M., A.l.T., V.H.P., P.V., M.G., J.-P.R., J.P., O.G., G.D.), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339 Centre National de Recherche Scientifique (CNRS), Marseille, France
| | - G Duhamel
- From Aix-Marseille Université (E.V.O., S.M., A.l.T., V.H.P., P.V., M.G., J.-P.R., J.P., O.G., G.D.), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339 Centre National de Recherche Scientifique (CNRS), Marseille, France
| |
Collapse
|
21
|
Rasoanandrianina H, Grapperon AM, Taso M, Girard OM, Duhamel G, Guye M, Ranjeva JP, Attarian S, Verschueren A, Callot V. Region-specific impairment of the cervical spinal cord (SC) in amyotrophic lateral sclerosis: A preliminary study using SC templates and quantitative MRI (diffusion tensor imaging/inhomogeneous magnetization transfer). NMR IN BIOMEDICINE 2017; 30:e3801. [PMID: 28926131 DOI: 10.1002/nbm.3801] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/24/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
In this preliminary study, our objective was to investigate the potential of high-resolution anatomical imaging, diffusion tensor imaging (DTI) and conventional/inhomogeneous magnetization transfer imaging [magnetization transfer (MT)/inhomogeneous magnetization transfer (ihMT)] at 3 T, analyzed with template-extracted regions of interest, to measure the atrophy and structural changes of white (WM) and gray (GM) matter spinal cord (SC) occurring in patients with amyotrophic lateral sclerosis (ALS). Ten patients with ALS and 20 age-matched healthy controls were recruited. SC GM and WM areas were automatically segmented using dedicated templates. Atrophy indices were evaluated from T2 *-weighted images at each vertebral level from cervical C1 to C6. DTI and ihMT metrics were quantified within the corticospinal tract (CST), posterior sensory tract (PST) and anterior GM (aGM) horns at the C2 and C5 levels. Clinical disabilities of patients with ALS were evaluated using the Revised ALS Functional Rating Scale, upper motor neuron (UMN) and Medical Research Council scorings, and correlated with MR metrics. Compared with healthy controls, GM and WM atrophy was observed in patients with ALS, especially at lower cervical levels, where a strong correlation was also observed between GM atrophy and the UMN score (R = -0.75, p = 0.05 at C6). Interestingly, a significant decrease in ihMT ratio was found in all regions of interest (p < 0.0008), fractional anisotropy (FA) and MT ratios decreased significantly in CST, especially at C5 (p < 0.005), and λ// (axial diffusivity) decreased significantly in CST (p = 0.0004) and PST (p = 0.003) at C2. Strong correlations between MRI metrics and clinical scores were also found (0.47 < |R| < 0.87, p < 0.05). Altogether, these preliminary results suggest that high-resolution anatomical imaging and ihMT imaging, in addition to DTI, are valuable for the characterization of SC tissue impairment in ALS. In this study, in addition to an important SC WM demyelination, we also observed, for the first time in ALS, impairments of cervical aGM.
Collapse
Affiliation(s)
- Henitsoa Rasoanandrianina
- Aix-Marseille Université, CNRS, APHM, CRMBM, Hôpital de la Timone, CEMEREM, Marseille, France
- iLab-Spine International Associated Laboratory, Marseille-Montreal, France-Canada
- Aix-Marseille Université, IFSTTAR, LBA UMR T 24, Marseille, France
| | - Aude-Marie Grapperon
- Centre de Référence des Maladies neuro-musculaires et de la SLA, Hopital de La Timone, Marseille, France
| | - Manuel Taso
- Aix-Marseille Université, CNRS, APHM, CRMBM, Hôpital de la Timone, CEMEREM, Marseille, France
- iLab-Spine International Associated Laboratory, Marseille-Montreal, France-Canada
- Aix-Marseille Université, IFSTTAR, LBA UMR T 24, Marseille, France
| | - Olivier M Girard
- Aix-Marseille Université, CNRS, APHM, CRMBM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Guillaume Duhamel
- Aix-Marseille Université, CNRS, APHM, CRMBM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Maxime Guye
- Aix-Marseille Université, CNRS, APHM, CRMBM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix-Marseille Université, CNRS, APHM, CRMBM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Shahram Attarian
- Centre de Référence des Maladies neuro-musculaires et de la SLA, Hopital de La Timone, Marseille, France
- Aix Marseille Université, INSERM, GMGF, Marseille, France
| | - Annie Verschueren
- Centre de Référence des Maladies neuro-musculaires et de la SLA, Hopital de La Timone, Marseille, France
| | - Virginie Callot
- Aix-Marseille Université, CNRS, APHM, CRMBM, Hôpital de la Timone, CEMEREM, Marseille, France
- iLab-Spine International Associated Laboratory, Marseille-Montreal, France-Canada
| |
Collapse
|
22
|
Mchinda S, Varma G, Prevost VH, Le Troter A, Rapacchi S, Guye M, Pelletier J, Ranjeva J, Alsop DC, Duhamel G, Girard OM. Whole brain inhomogeneous magnetization transfer (ihMT) imaging: Sensitivity enhancement within a steady‐state gradient echo sequence. Magn Reson Med 2017; 79:2607-2619. [DOI: 10.1002/mrm.26907] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/18/2017] [Accepted: 08/17/2017] [Indexed: 02/05/2023]
Affiliation(s)
| | - Gopal Varma
- Radiology, Division of MR Research, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMassachusettsUSA
| | | | | | | | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM UMR 7339MarseilleFrance
- Aix Marseille Univ, APHM, Hôpital de La Timone, Pôle d'Imagerie Médicale, CEMEREMMarseilleFrance
| | - Jean Pelletier
- Aix Marseille Univ, CNRS, CRMBM UMR 7339MarseilleFrance
- Aix Marseille Univ, APHM, Hôpital de La Timone, Pôle de Neurosciences Cliniques, Service de NeurologieMarseilleFrance
| | | | - David C. Alsop
- Radiology, Division of MR Research, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMassachusettsUSA
| | | | | |
Collapse
|
23
|
Prevost VH, Girard OM, Mchinda S, Varma G, Alsop DC, Duhamel G. Optimization of inhomogeneous magnetization transfer (ihMT) MRI contrast for preclinical studies using dipolar relaxation time (T 1D ) filtering. NMR IN BIOMEDICINE 2017; 30:e3706. [PMID: 28195663 DOI: 10.1002/nbm.3706] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
A pulsed inhomogeneous magnetization transfer (ihMT)-prepared fast imaging sequence was implemented at 11.75 T for preclinical studies on mouse central nervous system. A strategy based on filtering the ihMT signal originating from short dipolar relaxation time (T1D ) components is proposed. It involves increasing the repetition time of consecutive radiofrequency (RF) pulses of the dual saturation and allows improved signal specificity for long T1D myelinated structures. Furthermore, frequency offset, power and timing saturation parameters were adjusted to optimize the ihMT sensitivity. The optimization of the ihMT sensitivity, whilst preserving the strong specificity for the long T1D component of myelinated tissues, allowed measurements of ihMT ratios on the order of 4-5% in white matter (WM), 2.5% in gray matter (GM) and 1-1.3% in muscle. This led to high relative ihMT contrasts between myelinated tissues and others (~3-4 between WM and muscle, and ≥2 between GM and muscle). Conversely, higher ihMT ratios (~6-7% in WM) could be obtained using minimal T1D filtering achieved with short saturation pulse repetition time or cosine-modulated pulses for the dual-frequency saturation. This study represents a first stage in the process of validating ihMT as a myelin biomarker by providing optimized ihMT preclinical sequences, directly transposable and applicable to other preclinical magnetic fields and scanners. Finally, ihMT ratios measured in various central nervous system areas are provided for future reference.
Collapse
Affiliation(s)
- V H Prevost
- Aix Marseille Université, CNRS, Marseille, France
| | - O M Girard
- Aix Marseille Université, CNRS, Marseille, France
| | - S Mchinda
- Aix Marseille Université, CNRS, Marseille, France
| | - G Varma
- Department of Radiology, Division of MR Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - D C Alsop
- Department of Radiology, Division of MR Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - G Duhamel
- Aix Marseille Université, CNRS, Marseille, France
| |
Collapse
|
24
|
Varma G, Girard OM, Prevost VH, Grant AK, Duhamel G, Alsop DC. In vivo measurement of a new source of contrast, the dipolar relaxation time, T 1D , using a modified inhomogeneous magnetization transfer (ihMT) sequence. Magn Reson Med 2016; 78:1362-1372. [PMID: 27859618 DOI: 10.1002/mrm.26523] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/27/2016] [Accepted: 10/01/2016] [Indexed: 02/04/2023]
Abstract
PURPOSE This paper describes a technique that can be used in vivo to measure the dipolar relaxation time, T1D , of macromolecular protons contributing to magnetization transfer (MT) in tissues and to produce quantitative T1D maps. THEORY AND METHODS The technique builds upon the inhomogeneous MT (ihMT) technique that is particularly sensitive to tissue components with long T1D . A standard ihMT experiment was altered to introduce a variable time for switching between positive and negative offset frequencies for RF saturation. A model for the dependence of ihMT was developed and used to fit data acquired in vivo. RESULTS Application of the method to images from brains of healthy volunteers produced values of T1D = (5.9 ± 1.2) ms in gray matter and T1D = (6.2 ± 0.4) ms in white matter regions and provided maps of the T1D parameter. CONCLUSION The model and experiments described provide access to a new relaxation characteristic of tissue with potentially unique diagnostic information. Magn Reson Med 78:1362-1372, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Gopal Varma
- Department of Radiology, Division of MR Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Olivier M Girard
- Aix Marseille Université, CNRS, CRMBM-CEMEREM, UMR 7339, Marseille, France
| | - Valentin H Prevost
- Aix Marseille Université, CNRS, CRMBM-CEMEREM, UMR 7339, Marseille, France
| | - Aaron K Grant
- Department of Radiology, Division of MR Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Guillaume Duhamel
- Aix Marseille Université, CNRS, CRMBM-CEMEREM, UMR 7339, Marseille, France
| | - David C Alsop
- Department of Radiology, Division of MR Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Taso M, Girard OM, Duhamel G, Le Troter A, Feiweier T, Guye M, Ranjeva JP, Callot V. Tract-specific and age-related variations of the spinal cord microstructure: a multi-parametric MRI study using diffusion tensor imaging (DTI) and inhomogeneous magnetization transfer (ihMT). NMR IN BIOMEDICINE 2016; 29:817-832. [PMID: 27100385 DOI: 10.1002/nbm.3530] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/17/2016] [Accepted: 03/09/2016] [Indexed: 06/05/2023]
Abstract
Being able to finely characterize the spinal cord (SC) microstructure and its alterations is a key point when investigating neural damage mechanisms encountered in different central nervous system (CNS) pathologies, such as multiple sclerosis, amyotrophic lateral sclerosis or myelopathy. Based on novel methods, including inhomogeneous magnetization transfer (ihMT) and dedicated SC probabilistic atlas post-processing, the present study focuses on the in vivo characterization of the healthy SC tissue in terms of regional microstructure differences between (i) upper and lower cervical vertebral levels and (ii) sensory and motor tracts, as well as differences attributed to normal aging. Forty-eight healthy volunteers aged from 20 to 70 years old were included in the study and scanned at 3 T using axial high-resolution T2 *-w imaging, diffusion tensor imaging (DTI) and ihMT, at two vertebral levels (C2 and C5). A processing pipeline with minimal user intervention, SC segmentation and spatial normalization into a reference space was implemented in order to assess quantitative morphological and structural parameters (cross-sectional areas, scalar DTI and MT/ihMT metrics) in specific white and gray matter regions of interest. The multi-parametric MRI metrics collected allowed upper and lower cervical levels to be distinguished, with higher ihMT ratio (ihMTR), higher axial diffusivity (λ∥ ) and lower radial diffusivity (λ⊥ ) at C2 compared with C5. Significant differences were also observed between white matter fascicles, with higher ihMTR and lower λ∥ in motor tracts compared with posterior sensory tracts. Finally, aging was found to be associated with significant metric alterations (decreased ihMTR and λ∥ ). The methodology proposed here, which can be easily transferred to the clinic, provides new insights for SC characterization. It bears great potential to study focal and diffuse SC damage in neurodegenerative and demyelinating diseases. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Manuel Taso
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
- Aix-Marseille Université, IFSTTAR, Laboratoire de Biomécanique Appliquée (LBA), UMR T 24, Marseille, France
- Laboratoire International Associé iLab-Spine - Imagerie et Biomécanique du Rachis, Marseille, France/Montréal, Canada
| | - Olivier M Girard
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
| | - Guillaume Duhamel
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
| | - Arnaud Le Troter
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
| | | | - Maxime Guye
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
| | - Jean-Philippe Ranjeva
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
- Laboratoire International Associé iLab-Spine - Imagerie et Biomécanique du Rachis, Marseille, France/Montréal, Canada
| | - Virginie Callot
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, France
- AP-HM, Hôpital de la Timone, Pôle d'imagerie médicale, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Marseille, France
- Laboratoire International Associé iLab-Spine - Imagerie et Biomécanique du Rachis, Marseille, France/Montréal, Canada
| |
Collapse
|