1
|
Zhang Z, Epel B, Chen B, Xia D, Sidky EY, Halpern H, Pan X. Accurate reconstruction of 4D spectral-spatial images from sparse-view data in continuous-wave EPRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 361:107654. [PMID: 38492546 DOI: 10.1016/j.jmr.2024.107654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
In continuous-wave electron paramagnetic resonance imaging (CW EPRI), data are collected generally at densely sampled views sufficient for achieving accurate reconstruction of a four dimensional spectral-spatial (4DSS) image by use of the conventional filtered-backprojection (FBP) algorithm. It is desirable to minimize the scan time by collection of data only at sparsely sampled views, referred to as sparse-view data. Interest thus remains in investigation of algorithms for accurate reconstruction of 4DSS images from sparse-view data collected for potentially enabling fast data acquisition in CW EPRI. In this study, we investigate and demonstrate optimization-based algorithms for accurate reconstruction of 4DSS images from sparse-view data. Numerical studies using simulated and real sparse-view data acquired in CW EPRI are conducted that reveal, in terms of image visualization and physical-parameter estimation, the potential of the algorithms developed for yielding accurate 4DSS images from sparse-view data in CW EPRI. The algorithms developed may be exploited for enabling sparse-view scans with minimized scan time in CW EPRI for yielding 4DSS images of quality comparable to, or better than, that of the FBP reconstruction from data collected at densely sampled views.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Boris Epel
- Department of Radiation & Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Buxin Chen
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Dan Xia
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Emil Y Sidky
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Howard Halpern
- Department of Radiation & Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Xiaochuan Pan
- Department of Radiology, The University of Chicago, Chicago, IL, USA; Department of Radiation & Cellular Oncology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Buyse C, Mignion L, Joudiou N, Melloul S, Driesschaert B, Gallez B. Sensitive simultaneous measurements of oxygenation and extracellular pH by EPR using a stable monophosphonated trityl radical and lithium phthalocyanine. Free Radic Biol Med 2024; 213:11-18. [PMID: 38218552 PMCID: PMC10923140 DOI: 10.1016/j.freeradbiomed.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
The monitoring of acidosis and hypoxia is crucial because both factors promote cancer progression and impact the efficacy of anti-cancer treatments. A phosphonated tetrathiatriarylmethyl (pTAM) has been previously described to monitor both parameters simultaneously, but the sensitivity to tackle subtle changes in oxygenation was limited. Here, we describe an innovative approach combining the pTAM radical and lithium phthalocyanine (LiPc) crystals to provide sensitive simultaneous measurements of extracellular pH (pHe) and pO2. Both parameters can be measured simultaneously as both EPR spectra do not overlap, with a gain in sensitivity to pO2 variations by a factor of 10. This procedure was applied to characterize the impact of carbogen breathing in a breast cancer 4T1 model as a proof-of-concept. No significant change in pHe and pO2 was observed using pTAM alone, while LiPc detected a significant increase in tumor oxygenation. Interestingly, we observed that pTAM systematically overestimated the pO2 compared to LiPc. In addition, we analyzed the impact of an inhibitor (UK-5099) of the mitochondrial pyruvate carrier (MPC) on the tumor microenvironment. In vitro, the exposure of 4T1 cells to UK-5099 for 24 h induced a decrease in pHe and oxygen consumption rate (OCR). In vivo, a significant decrease in tumor pHe was observed in UK-5099-treated mice, while there was no change for mice treated with the vehicle. Despite the change observed in OCR, no significant change in tumor oxygenation was observed after the UK-5099 treatment. This approach is promising for assessing in vivo the effect of treatments targeting tumor metabolism.
Collapse
Affiliation(s)
- Chloe Buyse
- Biomedical Magnetic Resonance Research Group (REMA), Louvain Drug Research Institute (LDRI), UCLouvain, Brussels, Belgium
| | - Lionel Mignion
- Nuclear and Electron Spin Technologies Platform (NEST), Louvain Drug Research Institute (LDRI), UCLouvain, Brussels, Belgium
| | - Nicolas Joudiou
- Nuclear and Electron Spin Technologies Platform (NEST), Louvain Drug Research Institute (LDRI), UCLouvain, Brussels, Belgium
| | - Samia Melloul
- Biomedical Magnetic Resonance Research Group (REMA), Louvain Drug Research Institute (LDRI), UCLouvain, Brussels, Belgium
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy & In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV, USA
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group (REMA), Louvain Drug Research Institute (LDRI), UCLouvain, Brussels, Belgium.
| |
Collapse
|
3
|
Gluth TD, Poncelet M, Gencheva M, Hoblitzell EH, Khramtsov VV, Eubank TD, Driesschaert B. Biocompatible Monophosphonated Trityl Spin Probe, HOPE71, for In Vivo Measurement of pO 2, pH, and [P i] by Electron Paramagnetic Resonance Spectroscopy. Anal Chem 2023; 95:946-954. [PMID: 36537829 PMCID: PMC9852220 DOI: 10.1021/acs.analchem.2c03476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hypoxia, acidosis, and elevated inorganic phosphate concentration are characteristics of the tumor microenvironment in solid tumors. There are a number of methods for measuring each parameter individually in vivo, but the only method to date for noninvasive measurement of all three variables simultaneously in vivo is electron paramagnetic spectroscopy paired with a monophosphonated trityl radical, pTAM/HOPE. While HOPE has been successfully used for in vivo studies upon intratissue injection, it cannot be delivered intravenously due to systemic toxicity and albumin binding, which causes significant signal loss. Therefore, we present HOPE71, a monophosphonated trityl radical derived from the very biocompatible trityl probe, Ox071. Here, we describe a straightforward synthesis of HOPE71 starting with Ox071 and report its EPR sensitivities to pO2, pH, and [Pi] with X-band and L-band EPR spectroscopy. We also confirm that HOPE71 lacks albumin binding, shows low cytotoxicity, and has systemic tolerance. Finally, we demonstrate its ability to profile the tumor microenvironment in vivo in a mouse model of breast cancer.
Collapse
Affiliation(s)
- Teresa D. Gluth
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| | - Martin Poncelet
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| | - Marieta Gencheva
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Biochemistry and Molecular Medicine, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Emily H. Hoblitzell
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Valery V. Khramtsov
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Biochemistry and Molecular Medicine, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Timothy D. Eubank
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
4
|
Poncelet M, Ngendahimana T, Gluth TD, Hoblitzell EH, Eubank TD, Eaton GR, Eaton SS, Driesschaert B. Synthesis and characterization of a biocompatible 13C 1 isotopologue of trityl radical OX071 for in vivo EPR viscometry. Analyst 2022; 147:5643-5648. [PMID: 36373434 PMCID: PMC9729415 DOI: 10.1039/d2an01527g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
We describe the synthesis, characterization, and application of an isotopologue of the trityl radical OX071, labeled with 13C at the central carbon (13C1). This spin probe features large anisotropy of the hyperfine coupling with the 13C1 (I = 1/2), leading to an EPR spectrum highly sensitive to molecular tumbling. The high biocompatibility and lack of interaction with blood albumin allow for systemic delivery and in vivo measurement of tissue microviscosity by EPR.
Collapse
Affiliation(s)
- Martin Poncelet
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
| | - Thacien Ngendahimana
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Teresa D Gluth
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
| | - Emily H Hoblitzell
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
- Eugene Bennett Department of Chemistry, West Virginia University, WV, 26506, USA
| |
Collapse
|
5
|
|
6
|
Gluth TD, Poncelet M, DeVience S, Gencheva M, Hoblitzell EH, Khramtsov VV, Eubank TD, Driesschaert B. Large-scale synthesis of a monophosphonated tetrathiatriarylmethyl spin probe for concurrent in vivo measurement of pO 2, pH and inorganic phosphate by EPR. RSC Adv 2021; 11:25951-25954. [PMID: 34354828 PMCID: PMC8314523 DOI: 10.1039/d1ra04551b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
Low-field electron paramagnetic resonance spectroscopy paired with pTAM, a mono-phosphonated triarylmethyl radical, is an unmatched technique for concurrent and non-invasive measurement of oxygen concentration, pH, and inorganic phosphate concentration for in vivo investigations. However, the prior reported synthesis is limited by its low yield and poor scalability, making wide-spread application of pTAM unfeasible. Here, we report a new strategy for the synthesis of pTAM with significantly greater yields demonstrated on a large scale. We also present a standalone application with user-friendly interface for automatic spectrum fitting and extraction of pO2, pH, and [Pi] values. Finally, we confirm that pTAM remains in the extracellular space and has low cytotoxicity appropriate for local injection.
Collapse
Affiliation(s)
- Teresa D Gluth
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy Morgantown WV 26506 USA .,In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University Morgantown WV 26506 USA
| | - Martin Poncelet
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy Morgantown WV 26506 USA .,In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University Morgantown WV 26506 USA
| | - Stephen DeVience
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University Morgantown WV 26506 USA.,Department of Biochemistry, West Virginia University, School of Medicine Morgantown WV 26506 USA
| | - Marieta Gencheva
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University Morgantown WV 26506 USA.,Department of Biochemistry, West Virginia University, School of Medicine Morgantown WV 26506 USA
| | - Emily H Hoblitzell
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University Morgantown WV 26506 USA.,Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine Morgantown WV 26506 USA
| | - Valery V Khramtsov
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University Morgantown WV 26506 USA.,Department of Biochemistry, West Virginia University, School of Medicine Morgantown WV 26506 USA
| | - Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University Morgantown WV 26506 USA.,Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine Morgantown WV 26506 USA
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy Morgantown WV 26506 USA .,In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University Morgantown WV 26506 USA
| |
Collapse
|
7
|
Huffman JL, Poncelet M, Moore W, Eaton SS, Eaton GR, Driesschaert B. Perchlorinated Triarylmethyl Radical 99% Enriched 13C at the Central Carbon as EPR Spin Probe Highly Sensitive to Molecular Tumbling. J Phys Chem B 2021; 125:7380-7387. [PMID: 34213354 PMCID: PMC8378891 DOI: 10.1021/acs.jpcb.1c03778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Soluble stable radicals are used as spin probes and spin labels for in vitro and in vivo electron paramagnetic resonance (EPR) spectroscopy and imaging applications. We report the synthesis and characterization of a perchlorinated triarylmethyl radical enriched 99% at the central carbon, 13C1-PTMTC. The anisotropy of the hyperfine splitting with the 13C1 (Ax = 26, Ay = 25, Az = 199.5 MHz) and the g (gx = 2.0015, gy = 2.0015, gz = 2.0040) are responsible for a strong effect of the radical tumbling rate on the EPR spectrum. The rotational correlation time can be determined by spectral simulation or via the line width or the apparent Az after calibration, so the spin probe 13C1-PTMTC can be used to measure media microviscosity with high sensitivity.
Collapse
Affiliation(s)
- Justin L Huffman
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, West Virginia 26506, United States.,In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Martin Poncelet
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, West Virginia 26506, United States.,In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Whylder Moore
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, West Virginia 26506, United States.,In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
8
|
Chen L, Wu L, Tan X, Rockenbauer A, Song Y, Liu Y. Synthesis and Redox Properties of Water-Soluble Asymmetric Trityl Radicals. J Org Chem 2021; 86:8351-8364. [PMID: 34043350 DOI: 10.1021/acs.joc.1c00766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tetrathiatriarylmethyl (trityl) radicals have been recently shown to react with biological oxidoreductants including glutathione (GSH), ascorbic acid (Asc), and superoxide anion radical (O2•-). However, how the substituents affect the reactivity of trityl radicals is still unknown. In this work, five asymmetric trityl radicals were synthesized and their reactivities with GSH, Asc, and O2•- investigated. Under aerobic conditions, GSH induces fast decays for the thioether- (TSA) and N-methyleneglycine-substituted (TGA) derivatives and slow decay for the 4-carboxyphenyl-containing one (TPA). Under anaerobic conditions, the direct reduction of these radicals by GSH also occurs with rate constants (kGSH) from 1.8 × 10-4 M-1 s-1 for TPA to 1.0 × 10-2 M-1 s-1 for TGA. Moreover, these radicals can also react with O2•- with rate constants (kSO) from 1.2 × 103 M-1 s-1 for ET-01 to 1.6 × 104 M-1 s-1 for TGA. Surprisingly, these radicals are completely inert to Asc in both aerobic and anaerobic conditions. Additionally, the substituents exert an important effect on redox potentials of these trityl radicals. This work demonstrates that the redox properties of the trityl radicals strongly depend on their substituents, and TPA with high stability toward GSH shows great potential for intracellular applications.
Collapse
Affiliation(s)
- Li Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Medicinal Chemistry, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Lanlan Wu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Medicinal Chemistry, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Medicinal Chemistry, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary.,Department of Physics, Budapest University of Technology and Economics, Budafoki ut 8, 1111 Budapest, Hungary
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Medicinal Chemistry, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Medicinal Chemistry, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| |
Collapse
|
9
|
Poncelet M, Driesschaert B. A 13 C-Labeled Triarylmethyl Radical as an EPR Spin Probe Highly Sensitive to Molecular Tumbling. Angew Chem Int Ed Engl 2020; 59:16451-16454. [PMID: 32542924 PMCID: PMC7901239 DOI: 10.1002/anie.202006591] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 12/21/2022]
Abstract
A stable triarylmethyl spin probe whose electron paramagnetic resonance (EPR) spectrum is highly sensitive to molecular tumbling is reported. The strong anisotropy of the hyperfine coupling tensor with the central carbon of a 13 C1 -labeled triarylmethyl radical enables the measurement of the probe rotational correlation time with applications to measure microviscosity and molecular dynamics.
Collapse
Affiliation(s)
- Martin Poncelet
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
10
|
Sanzhaeva U, Poncelet M, Tseytlin O, Tseytlin M, Gencheva M, Eubank TD, Khramtsov VV, Driesschaert B. Synthesis, Characterization, and Application of a Highly Hydrophilic Triarylmethyl Radical for Biomedical EPR. J Org Chem 2020; 85:10388-10398. [PMID: 32698583 DOI: 10.1021/acs.joc.0c00557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stable tetrathiatriarylmethyl radicals have significantly contributed to the recent progress in biomedical electron paramagnetic resonance (EPR) due to their unmatched stability in biological media and long relaxation times. However, the lipophilic core of the most commonly used structure (Finland trityl) is responsible for its interaction with plasma biomacromolecules, such as albumin, and self-aggregation at high concentrations and/or low pH. While Finland trityl is generally considered inert toward many reactive radical species, we report that sulfite anion radical efficiently substitutes the three carboxyl moieties of Finland trityl with a high rate constant of 3.53 × 108 M-1 s-1, leading to a trisulfonated Finland trityl radical. This newly synthesized highly hydrophilic trityl radical shows an ultranarrow linewidth (ΔBpp = 24 mG), a lower affinity for albumin than Finland trityl, and a high aqueous solubility even at acidic pH. Therefore, this new tetrathiatriarylmethyl radical can be considered as a superior spin probe in comparison to the widely used Finland trityl. One of its potential applications was demonstrated by in vivo mapping oxygen in a mouse model of breast cancer. Moreover, we showed that one of the three sulfo groups can be easily substituted with S-, N-, and P-nucleophiles, opening access to various monofunctionalized sulfonated trityl radicals.
Collapse
Affiliation(s)
- Urikhan Sanzhaeva
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, West Virginia 26506, United States
| | - Martin Poncelet
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, West Virginia 26506, United States
| | - Oxana Tseytlin
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, West Virginia 26506, United States
| | - Mark Tseytlin
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, West Virginia 26506, United States
| | - Marieta Gencheva
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine, Morgantown, West Virginia 26506, United States
| | - Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine, Morgantown, West Virginia 26506, United States
| | - Valery V Khramtsov
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, West Virginia 26506, United States
| | - Benoit Driesschaert
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, West Virginia 26506, United States
| |
Collapse
|
11
|
Poncelet M, Driesschaert B. A
13
C‐Labeled Triarylmethyl Radical as an EPR Spin Probe Highly Sensitive to Molecular Tumbling. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Poncelet
- Department of Pharmaceutical SciencesSchool of PharmacyWest Virginia University Morgantown WV 26506 USA
- In Vivo Multifunctional Magnetic Resonance CenterRobert C. Byrd Health Sciences CenterWest Virginia University Morgantown WV 26506 USA
| | - Benoit Driesschaert
- Department of Pharmaceutical SciencesSchool of PharmacyWest Virginia University Morgantown WV 26506 USA
- In Vivo Multifunctional Magnetic Resonance CenterRobert C. Byrd Health Sciences CenterWest Virginia University Morgantown WV 26506 USA
| |
Collapse
|
12
|
Poncelet M, Huffman JL, Khramtsov VV, Dhimitruka I, Driesschaert B. Synthesis of hydroxyethyl tetrathiatriarylmethyl radicals OX063 and OX071. RSC Adv 2019; 9:35073-35076. [PMID: 32483485 PMCID: PMC7263632 DOI: 10.1039/c9ra08633a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We report the synthesis of hydroxyethyl tetrathiatriarylmethyl radical OX063 and its deuterated analogue OX071 for biomedical EPR applications. Synthesis of OX063 and OX063-d24 spin probes and DNP agents.![]()
Collapse
Affiliation(s)
- Martin Poncelet
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA.,In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| | - Justin L Huffman
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA.,In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| | - Valery V Khramtsov
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.,Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Ilirian Dhimitruka
- School of Health and Natural Sciences, Mercy College, Dobbs Ferry, NY 10522, USA
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA.,In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
13
|
Development of multifunctional Overhauser-enhanced magnetic resonance imaging for concurrent in vivo mapping of tumor interstitial oxygenation, acidosis and inorganic phosphate concentration. Sci Rep 2019; 9:12093. [PMID: 31431629 PMCID: PMC6702349 DOI: 10.1038/s41598-019-48524-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022] Open
Abstract
Tumor oxygenation (pO2), acidosis (pH) and interstitial inorganic phosphate concentration (Pi) are important parameters of the malignant behavior of cancer. A noninvasive procedure that enables visualization of these parameters may provide unique information about mechanisms of tumor pathophysiology and provide clues to new treatment targets. In this research, we present a multiparametric imaging method allowing for concurrent mapping of pH, spin probe concentration, pO2, and Pi using a single contrast agent and Overhauser-enhanced magnetic resonance imaging technique. The developed approach was applied to concurrent multifunctional imaging in phantom samples and in vivo in a mouse model of breast cancer. Tumor tissues showed higher heterogeneity of the distributions of the parameters compared with normal mammary gland and demonstrated the areas of significant acidosis, hypoxia, and elevated Pi content.
Collapse
|
14
|
Site Selective and Efficient Spin Labeling of Proteins with a Maleimide-Functionalized Trityl Radical for Pulsed Dipolar EPR Spectroscopy. Molecules 2019; 24:molecules24152735. [PMID: 31357628 PMCID: PMC6696014 DOI: 10.3390/molecules24152735] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 01/18/2023] Open
Abstract
Pulsed dipolar electron paramagnetic resonance spectroscopy (PDS) in combination with site-directed spin labeling (SDSL) of proteins and oligonucleotides is a powerful tool in structural biology. Instead of using the commonly employed gem-dimethyl-nitroxide labels, triarylmethyl (trityl) spin labels enable such studies at room temperature, within the cells and with single-frequency electron paramagnetic resonance (EPR) experiments. However, it has been repeatedly reported that labeling of proteins with trityl radicals led to low labeling efficiencies, unspecific labeling and label aggregation. Therefore, this work introduces the synthesis and characterization of a maleimide-functionalized trityl spin label and its corresponding labeling protocol for cysteine residues in proteins. The label is highly cysteine-selective, provides high labeling efficiencies and outperforms the previously employed methanethiosulfonate-functionalized trityl label. Finally, the new label is successfully tested in PDS measurements on a set of doubly labeled Yersinia outer protein O (YopO) mutants.
Collapse
|
15
|
Komarov DA, Ichikawa Y, Yamamoto K, Stewart NJ, Matsumoto S, Yasui H, Kirilyuk IA, Khramtsov VV, Inanami O, Hirata H. In Vivo Extracellular pH Mapping of Tumors Using Electron Paramagnetic Resonance. Anal Chem 2018; 90:13938-13945. [PMID: 30372035 DOI: 10.1021/acs.analchem.8b03328] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An electron paramagnetic resonance (EPR)-based method for noninvasive three-dimensional extracellular pH mapping was developed using a pH-sensitive nitroxyl radical as an exogenous paramagnetic probe. Fast projection scanning with a constant magnetic field sweep enabled the acquisition of four-dimensional (3D spatial +1D spectral) EPR images within 7.5 min. Three-dimensional maps of pH were reconstructed by processing the pH-dependent spectral information on the images. To demonstrate the proposed method of pH mapping, the progress of extracellular acidosis in tumor-bearing mouse legs was studied. Furthermore, extracellular pH mapping was used to visualize the spatial distribution of acidification in different tumor xenograft mouse models of human-derived pancreatic ductal adenocarcinoma cells. The proposed EPR-based pH mapping method enabled quantitative visualization of regional changes in extracellular pH associated with altered tumor metabolism.
Collapse
Affiliation(s)
- Denis A Komarov
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology , Hokkaido University , North 14, West 9 , Kita-ku, Sapporo , 060-0814 , Japan
| | - Yuki Ichikawa
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology , Hokkaido University , North 14, West 9 , Kita-ku, Sapporo , 060-0814 , Japan
| | - Kumiko Yamamoto
- Laboratory of Radiation Biology, Graduate School of Veterinary Medicine , Hokkaido University , North 18, West 9 , Kita-ku, Sapporo , 060-0818 , Japan
| | - Neil J Stewart
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology , Hokkaido University , North 14, West 9 , Kita-ku, Sapporo , 060-0814 , Japan
| | - Shingo Matsumoto
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology , Hokkaido University , North 14, West 9 , Kita-ku, Sapporo , 060-0814 , Japan
| | - Hironobu Yasui
- Central Institute of Isotope Science , Hokkaido University , North 15, West 7 , Kita-ku,Sapporo , 060-0815 , Japan
| | - Igor A Kirilyuk
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry , 9, Ac. Lavrentieva Ave. , Novosibirsk , 630090 , Russia
| | - Valery V Khramtsov
- Department of Biochemistry and In Vivo Multifunctional Magnetic Resonance Center , West Virginia University, Robert C. Byrd Health Sciences Center , 1 Medical Center Drive , Morgantown , West Virginia 26506 , United States
| | - Osamu Inanami
- Laboratory of Radiation Biology, Graduate School of Veterinary Medicine , Hokkaido University , North 18, West 9 , Kita-ku, Sapporo , 060-0818 , Japan
| | - Hiroshi Hirata
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology , Hokkaido University , North 14, West 9 , Kita-ku, Sapporo , 060-0814 , Japan
| |
Collapse
|
16
|
Tseytlin M, Stolin AV, Guggilapu P, Bobko AA, Khramtsov VV, Tseytlin O, Raylman RR. A combined positron emission tomography (PET)-electron paramagnetic resonance imaging (EPRI) system: initial evaluation of a prototype scanner. Phys Med Biol 2018; 63:105010. [PMID: 29676283 DOI: 10.1088/1361-6560/aabfa1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The advent of hybrid scanners, combining complementary modalities, has revolutionized the application of advanced imaging technology to clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring oxygenation and pH, for example. Therefore, a combined PET/EPRI scanner promises to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. To explore the simultaneous acquisition of PET and EPR images, a prototype system was created by combining two existing scanners. Specifically, a silicon photomultiplier (SiPM)-based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both a PET tracer and EPR spin probe. The resulting images demonstrated the ability to obtain contemporaneous PET and EPR images without cross-modality interference. Given the promising results from this initial investigation, the next step in this project is the construction of the next generation pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically-important parameters of tissue microenvironments.
Collapse
Affiliation(s)
- Mark Tseytlin
- Department of Biochemistry, West Virginia University, Morgantown, WV, United States of America. In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, United States of America
| | | | | | | | | | | | | |
Collapse
|
17
|
Petunin PV, Martynko EA, Trusova ME, Kazantsev MS, Rybalova TV, Valiev RR, Uvarov MN, Mostovich EA, Postnikov PS. Verdazyl Radical Building Blocks: Synthesis, Structure, and Sonogashira Cross-Coupling Reactions. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701783] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pavel V. Petunin
- Tomsk Polytechnic University; 634050 Tomsk Russia
- Novosibirsk State University; 630090 Novosibirsk Russia
| | | | | | - Maxim S. Kazantsev
- Novosibirsk State University; 630090 Novosibirsk Russia
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch; Russian Academy of Sciences; 630090 Novosibirsk Russia
| | - Tatyana V. Rybalova
- Novosibirsk State University; 630090 Novosibirsk Russia
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch; Russian Academy of Sciences; 630090 Novosibirsk Russia
| | - Rashid R. Valiev
- Tomsk Polytechnic University; 634050 Tomsk Russia
- Tomsk State University; 634050 Tomsk Russia
| | - Mikhail N. Uvarov
- V. V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch; Russian Academy of Sciences; 630090 Novosibirsk Russian Federation
| | - Evgeny. A. Mostovich
- Novosibirsk State University; 630090 Novosibirsk Russia
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch; Russian Academy of Sciences; 630090 Novosibirsk Russia
| | | |
Collapse
|
18
|
Valiev RR, Drozdova AK, Petunin PV, Postnikov PS, Trusova ME, Cherepanov VN, Sundholm D. The aromaticity of verdazyl radicals and their closed-shell charged species. NEW J CHEM 2018. [DOI: 10.1039/c8nj04341h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The aromaticity of fourteen 3-oxo-verdazyl (1–8) and Kuhn verdazyl (9–14) radicals with different substituents has been investigated computationally using the gauge-including magnetically induced current-density (GIMIC) method.
Collapse
Affiliation(s)
- Rashid R. Valiev
- Tomsk State University
- Tomsk
- Russian Federation
- Department of Chemistry
- University of Helsinki
| | | | - Pavel V. Petunin
- Tomsk Polytechnic University
- Tomsk 634050
- Russian Federation
- Siberian State Medical University
- Tomsk 634050
| | - Pavel S. Postnikov
- Tomsk Polytechnic University
- Tomsk 634050
- Russian Federation
- Department of Solid State Engineering, University of Chemistry and Technology
- Prague
| | | | | | - Dage Sundholm
- Department of Chemistry
- University of Helsinki
- Helsinki FIN-00014
- Finland
| |
Collapse
|
19
|
Khramtsov VV, Bobko AA, Tseytlin M, Driesschaert B. Exchange Phenomena in the Electron Paramagnetic Resonance Spectra of the Nitroxyl and Trityl Radicals: Multifunctional Spectroscopy and Imaging of Local Chemical Microenvironment. Anal Chem 2017; 89:4758-4771. [PMID: 28363027 PMCID: PMC5513151 DOI: 10.1021/acs.analchem.6b03796] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This Feature overviews the basic principles of using stable organic radicals involved in reversible exchange processes as functional paramagnetic probes. We demonstrate that these probes in combination with electron paramagnetic resonance (EPR)-based spectroscopy and imaging techniques provide analytical tools for quantitative mapping of critical parameters of local chemical microenvironment. The Feature is written to be understandable to people who are laymen to the EPR field in anticipation of future progress and broad application of these tools in biological systems, especially in vivo, over the next years.
Collapse
Affiliation(s)
- Valery V. Khramtsov
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia 26506, United States
| | - Andrey A. Bobko
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia 26506, United States
| | - Mark Tseytlin
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia 26506, United States
| | - Benoit Driesschaert
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia 26506, United States
| |
Collapse
|