1
|
Jaarsma-Coes MG, Klaassen L, Verbist BM, Vu TK, Klaver YL, Rodrigues MF, Nabarro C, Luyten GP, Rasch CR, van Herk M, Beenakker JWM. Inter-Observer Variability in MR-Based Target Volume Delineation of Uveal Melanoma. Adv Radiat Oncol 2022; 8:101149. [PMID: 36691449 PMCID: PMC9860418 DOI: 10.1016/j.adro.2022.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/14/2022] [Indexed: 12/26/2022] Open
Abstract
Purpose Several efforts are being undertaken toward MRI-based treatment planning for ocular proton therapy for uveal melanoma (UM). The interobserver variability of the gross target volume (GTV) on magnetic resonance imaging (MRI) is one of the important parameters to design safety margins for a reliable treatment. Therefore, this study assessed the interobserver variation in GTV delineation of UM on MRI. Methods and Materials Six observers delineated the GTV in 10 different patients using the Big Brother contouring software. Patients were scanned at 3T MRI with a surface coil, and tumors were delineated separately on contrast enhanced 3DT1 (T1gd) and 3DT2-weighted scans with an isotropic acquisition resolution of 0.8 mm. Volume difference and overall local variation (median standard deviation of the distance between the delineated contours and the median contour) were analyzed for each GTV. Additionally, the local variation was analyzed for 4 interfaces: sclera, vitreous, retinal detachment, and tumor-choroid interface. Results The average GTV was significantly larger on T1gd (0.57cm3) compared with T2 (0.51cm3, P = .01). A not significant higher interobserver variation was found on T1gd (0.41 mm) compared with T2 (0.35 mm). The largest variations were found at the tumor-choroid interface due to peritumoral enhancement (T1gd, 0.62 mm; T2, 0.52 mm). As a result, a larger part of this tumor-choroid interface appeared to be included on T1gd-based GTVs compared with T2, explaining the smaller volumes on T2. Conclusions The interobserver variation of 0.4 mm on MRI are low with respect to the voxel size of 0.8 mm, enabling small treatment margins. We recommend delineation based on the T1gd-weighted scans, as choroidal tumor extensions might be missed.
Collapse
Affiliation(s)
- Myriam G. Jaarsma-Coes
- Leiden University Medical Center, Ophthalmology, Leiden, Netherlands,Leiden University Medical Center, Radiology, Leiden, Netherlands
| | - Lisa Klaassen
- Leiden University Medical Center, Ophthalmology, Leiden, Netherlands,Leiden University Medical Center, Radiology, Leiden, Netherlands
| | - Berit M. Verbist
- Leiden University Medical Center, Radiology, Leiden, Netherlands
| | - T.H. Khanh Vu
- Leiden University Medical Center, Ophthalmology, Leiden, Netherlands
| | - Yvonne L.B. Klaver
- HollandPTC, Radiation oncology, Delft, Netherlands,Leiden University Medical Center, Radiation Oncology, Leiden, Netherlands
| | - Myra F. Rodrigues
- HollandPTC, Radiation oncology, Delft, Netherlands,Leiden University Medical Center, Radiation Oncology, Leiden, Netherlands
| | - Claire Nabarro
- Leiden University Medical Center, Radiology, Leiden, Netherlands
| | | | - Coen R.N. Rasch
- HollandPTC, Radiation oncology, Delft, Netherlands,Leiden University Medical Center, Radiation Oncology, Leiden, Netherlands
| | - Marcel van Herk
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Jan-Willem M. Beenakker
- Leiden University Medical Center, Ophthalmology, Leiden, Netherlands,Leiden University Medical Center, Radiology, Leiden, Netherlands,Leiden University Medical Center, Radiation Oncology, Leiden, Netherlands,Corresponding author: Jan-Willem M. Beenakker
| |
Collapse
|
2
|
Lecler A, Duron L, Charlson E, Kolseth C, Kossler AL, Wintermark M, Moulin K, Rutt B. Comparison between 7 Tesla and 3 Tesla MRI for characterizing orbital lesions. Diagn Interv Imaging 2022; 103:433-439. [PMID: 35410799 DOI: 10.1016/j.diii.2022.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Characterizing orbital lesions remains challenging with imaging. The purpose of this study was to compare 3 Tesla (T) to 7 T magnetic resonance imaging (MRI) for characterizing orbital lesions. MATERIALS AND METHODS This prospective single-center study enrolled participants presenting with orbital lesions from May to October 2019, who underwent both 7 T and 3 T MRI examinations. Two neuroradiologists, blinded to all data, read both datasets independently and randomly. They assessed general characteristics of each orbital lesion as well as image quality and presence of artifacts. Comparison between both datasets was made using Fisher exact test. RESULTS Seven patients (4 women, 3 men) with a median age of 52 years were enrolled. Orbital lesion conspicuity was better scored at 7 T compared to 3 T MRI, with 3/7 lesions (43%) scored as very conspicuous at 7 T compared to 0/7 lesion (0%) at 3 T, although the difference was not significant (P = 0.16). Delineation of lesion margins was better scored at 7 T compared to 3 T with 3/7 lesions (43%) scored as very well delineated on 7 T compared to 0/7 lesions (0%) at 3 T, although the difference was not significant (P = 0.34). Details of internal structure were better assessed at 7 T compared to 3 T, with 4/7 lesions (57%) displaying numerous internal details compared to 0/7 lesions (0%) at 3 T (P = 0.10). Internal microvessels were visible in 3/7 lesions (43%) at 7 T compared to 0/7 lesions (0%) at 3 T (P = 0.19). CONCLUSION Although no significant differences were found between 7 T and 3 T MRI, assumably due to a limited number of patients, our study suggests that 7 Tesla MRI might help improve the characterization of orbital lesions. However, further studies with more patients are needed.
Collapse
Affiliation(s)
- Augustin Lecler
- Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 75019 Paris, France; Université Paris Cité, Faculté de Médecine, 75006 Paris, France.
| | - Loïc Duron
- Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 75019 Paris, France
| | - Emily Charlson
- Department of Ophthalmology, Byers Eye Institute, Stanford Hospital, 94305 Stanford, CA, USA
| | - Clint Kolseth
- Department of Ophthalmology, Byers Eye Institute, Stanford Hospital, 94305 Stanford, CA, USA
| | - Andrea L Kossler
- Department of Ophthalmology, Byers Eye Institute, Stanford Hospital, 94305 Stanford, CA, USA
| | - Max Wintermark
- Department of Neuroradiology, Stanford Hospital, 94305 Stanford, CA, USA
| | - Kevin Moulin
- Lucas Center for Imaging, 94305 Stanford, CA, USA
| | - Brian Rutt
- Lucas Center for Imaging, 94305 Stanford, CA, USA
| |
Collapse
|
3
|
Glarin RK, Nguyen BN, Cleary JO, Kolbe SC, Ordidge RJ, Bui BV, McKendrick AM, Moffat BA. MR-EYE: High-Resolution MRI of the Human Eye and Orbit at Ultrahigh Field (7T). Magn Reson Imaging Clin N Am 2021; 29:103-116. [PMID: 33237011 DOI: 10.1016/j.mric.2020.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ultrahigh-field (7T) MRI provides improved contrast and a signal-to-noise gain compared with lower magnetic field strengths. Here, we demonstrate feasibility and optimization of anatomic imaging of the eye and orbit using a dedicated commercial multichannel transmit and receive eye coil. Optimization of participant setup techniques and MRI sequence parameters allowed for improvements in the image resolution and contrast, and the eye and orbit coverage with minimal susceptibility and motion artifacts in a clinically feasible protocol.
Collapse
Affiliation(s)
- Rebecca K Glarin
- The Melbourne Brain Centre Imaging Unit, Department of Medicine and Radiology, The University of Melbourne, Parkville, Victoria 3010, Australia; Department of Radiology, Royal Melbourne Hospital, Parkville, Victoria 3010, Australia.
| | - Bao N Nguyen
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jon O Cleary
- The Melbourne Brain Centre Imaging Unit, Department of Medicine and Radiology, The University of Melbourne, Parkville, Victoria 3010, Australia; Department of Radiology, Guy's and St. Thomas' NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Scott C Kolbe
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3181, Australia
| | - Roger J Ordidge
- The Melbourne Brain Centre Imaging Unit, Department of Medicine and Radiology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Allison M McKendrick
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bradford A Moffat
- The Melbourne Brain Centre Imaging Unit, Department of Medicine and Radiology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
4
|
Niendorf T, Beenakker JWM, Langner S, Erb-Eigner K, Bach Cuadra M, Beller E, Millward JM, Niendorf TM, Stachs O. Ophthalmic Magnetic Resonance Imaging: Where Are We (Heading To)? Curr Eye Res 2021; 46:1251-1270. [PMID: 33535828 DOI: 10.1080/02713683.2021.1874021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Magnetic resonance imaging of the eye and orbit (MReye) is a cross-domain research field, combining (bio)physics, (bio)engineering, physiology, data sciences and ophthalmology. A growing number of reports document technical innovations of MReye and promote their application in preclinical research and clinical science. Realizing the progress and promises, this review outlines current trends in MReye. Examples of MReye strategies and their clinical relevance are demonstrated. Frontier applications in ocular oncology, refractive surgery, ocular muscle disorders and orbital inflammation are presented and their implications for explorations into ophthalmic diseases are provided. Substantial progress in anatomically detailed, high-spatial resolution MReye of the eye, orbit and optic nerve is demonstrated. Recent developments in MReye of ocular tumors are explored, and its value for personalized eye models derived from machine learning in the treatment planning of uveal melanoma and evaluation of retinoblastoma is highlighted. The potential of MReye for monitoring drug distribution and for improving treatment management and the assessment of individual responses is discussed. To open a window into the eye and into (patho)physiological processes that in the past have been largely inaccessible, advances in MReye at ultrahigh magnetic field strengths are discussed. A concluding section ventures a glance beyond the horizon and explores future directions of MReye across multiple scales, including in vivo electrolyte mapping of sodium and other nuclei. This review underscores the need for the (bio)medical imaging and ophthalmic communities to expand efforts to find solutions to the remaining unsolved problems and technical obstacles of MReye, with the objective to transfer methodological advancements driven by MR physics into genuine clinical value.
Collapse
Affiliation(s)
- Thoralf Niendorf
- MRI.TOOLS GmbH, Berlin, Germany.,Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jan-Willem M Beenakker
- Department of Ophthalmology and Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sönke Langner
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Katharina Erb-Eigner
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Meritxell Bach Cuadra
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.,Department of Radiology, Lausanne University and University Hospital, Lausanne, Switzerland
| | - Ebba Beller
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Jason M Millward
- Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Oliver Stachs
- Department Life, Light & Matter, University Rostock, Rostock, Germany.,Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
5
|
Grech Fonk L, Ferreira TA, Webb AG, Luyten GPM, Beenakker JWM. The Economic Value of MR-Imaging for Uveal Melanoma. Clin Ophthalmol 2020; 14:1135-1143. [PMID: 32425499 PMCID: PMC7196205 DOI: 10.2147/opth.s238405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Objective Uveal melanoma (UM) is the most common primary intra-ocular tumour. Treatment is determined by tumour size and location. Generally, smaller tumours are eligible for brachytherapy unless they are located close to posterior pole. Larger tumours are enucleated or undergo proton beam therapy (PBT), which is more expensive than brachytherapy and less available. Accuracy of tumour size determination is critical for accurate planning and delivery of treatment, particularly to ensure tumour coverage, critical structure sparing, and for the choice of treatment modality. This is particularly the case for tumour dimensions that are close to the cut-off point for a specific type of treatment: in the case of the brachytherapy protocol at our institution, 6-8 mm. Ultrasound is conventionally used, but magnetic resonance imaging (MRI) has recently become an additional available tool. Although more expensive, it enables more accurate measurements and is particularly useful in combination with clinical fundus examination, fundus photography and ultrasound. Our aim in this paper was to determine the economic value of MRI for UM treatment. Methods We retrospectively analysed 60 patients' MRI scans acquired as part of a study or for clinical care. For each patient, we assessed whether the extra cost of an MRI generated economic benefit or change in optimal treatment. Results MRI indicated a smaller tumour prominence than US in 10% of patients with intermediate tumour size, resulting in a change from PBT to brachytherapy. The costs of MRI, €200-€1000, are significantly lower than the higher costs of PBT compared to brachytherapy, €24,000 difference. In addition, the annual total economic burden of severe vision impairment associated with eye removal is €10,000. Furthermore, for patients where ultrasound was impossible due to previous surgery, MRI enabled eye-preserving treatment. Conclusion An additional MRI for specific patients with UM improves economic value as it enables less expensive treatment in a sufficient percentage of patients to compensate for the MRI costs. Value is increased in terms of quality of care as it enables for some a treatment option which spares more vision.
Collapse
Affiliation(s)
- Lorna Grech Fonk
- Department of Ophthalmology, Leiden University Medical Centre, Leiden, the Netherlands.,Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Teresa A Ferreira
- Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Andrew G Webb
- Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands.,C.J. Gorter Centre for High Field Magnetic Resonance Imaging, Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gregorius P M Luyten
- Department of Ophthalmology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jan-Willem M Beenakker
- Department of Ophthalmology, Leiden University Medical Centre, Leiden, the Netherlands.,Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
6
|
Beenakker JWM, Wezel J, Groen J, Webb AG, Börnert P. Silent volumetric multi-contrast 7 Tesla MRI of ocular tumors using Zero Echo Time imaging. PLoS One 2019; 14:e0222573. [PMID: 31525248 PMCID: PMC6746372 DOI: 10.1371/journal.pone.0222573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 09/03/2019] [Indexed: 02/03/2023] Open
Abstract
Magnetic Resonance Imaging (MRI) has become a valuable imaging modality in ophthalmology, especially for the diagnosis and treatment planning of patients with uveal melanoma, the most common primary intra-ocular tumor. We aim to develop and evaluate the value of silent Zero Echo Time (ZTE) MRI to image patients with ocular tumors at 7Tesla. Therefore, ZTE and different types of magnetization-prepared ZTE (FLAIR, SPIR, T2 and Saturation recovery), have been developed. After an initial validation with 7 healthy subjects, nine patients with an eye tumor have been evaluated. The ZTE scans were compared to their Cartesian equivalent in terms of contrast, motion-sensitivity, diagnostic quality and patient comfort. All volunteers and especially the patients reported a more comfortable experience during the ZTE scans, which had at least a 10 dB lower sound pressure. The image contrast in the native ZTE was poor, but in the different magnetization-prepared ZTE, the eye lens, cornea and retina were clearly discriminated. Overall the T2-prepared scan yielded the best contrast, especially between tumor and healthy tissue, and proved to be robust against eye motion. Although the intrinsic 3D nature of the ZTE-technique provides an accurate analysis of the tumor morphology, the quality of the ZTE-images is lower than their Cartesian equivalent. In conclusion, the quality of magnetization-prepared ZTE images is sufficient to assess the 3D tumor morphology, but insufficient for more detailed evaluations. As such this technique can be an option for patients who cannot comply with the sound-levels of Cartesian scans, but for other patients the conventional Cartesian scans offer a better image quality.
Collapse
Affiliation(s)
- Jan-Willem M. Beenakker
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Joep Wezel
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan Groen
- Philips Healthcare, Best, the Netherlands
| | - Andrew G. Webb
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter Börnert
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Philips Research Laboratories, Hamburg, Germany
| |
Collapse
|
7
|
Koolstra K, Beenakker JM, Koken P, Webb A, Börnert P. Cartesian MR fingerprinting in the eye at 7T using compressed sensing and matrix completion-based reconstructions. Magn Reson Med 2019; 81:2551-2565. [PMID: 30421448 PMCID: PMC6519255 DOI: 10.1002/mrm.27594] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE To explore the feasibility of MR Fingerprinting (MRF) to rapidly quantify relaxation times in the human eye at 7T, and to provide a data acquisition and processing framework for future tissue characterization in eye tumor patients. METHODS In this single-element receive coil MRF approach with Cartesian sampling, undersampling is used to shorten scan time and, therefore, to reduce the degree of motion artifacts. For reconstruction, approaches based on compressed sensing (CS) and matrix completion (MC) were used, while their effects on the quality of the MRF parameter maps were studied in simulations and experiments. Average relaxation times in the eye were measured in 6 healthy volunteers. One uveal melanoma patient was included to show the feasibility of MRF in a clinical context. RESULTS Simulation results showed that an MC-based reconstruction enables large undersampling factors and also results in more accurate parameter maps compared with using CS. Experiments in 6 healthy volunteers used a reduction in scan time from 7:02 to 1:16 min, producing images without visible loss of detail in the parameter maps when using the MC-based reconstruction. Relaxation times from 6 healthy volunteers are in agreement with values obtained from fully sampled scans and values in literature, and parameter maps in a uveal melanoma patient show clear difference in relaxation times between tumor and healthy tissue. CONCLUSION Cartesian-based MRF is feasible in the eye at 7T. High undersampling factors can be achieved by means of MC, significantly shortening scan time and increasing patient comfort, while also mitigating the risk of motion artifacts.
Collapse
Affiliation(s)
- Kirsten Koolstra
- RadiologyC.J. Gorter Center for High‐Field MRI, Leiden University Medical CenterLeidenThe Netherlands
| | - Jan‐Willem Maria Beenakker
- RadiologyC.J. Gorter Center for High‐Field MRI, Leiden University Medical CenterLeidenThe Netherlands
- OphthalmologyLeiden University Medical CenterLeidenThe Netherlands
| | | | - Andrew Webb
- RadiologyC.J. Gorter Center for High‐Field MRI, Leiden University Medical CenterLeidenThe Netherlands
| | - Peter Börnert
- RadiologyC.J. Gorter Center for High‐Field MRI, Leiden University Medical CenterLeidenThe Netherlands
- Philips ResearchHamburgGermany
| |
Collapse
|
8
|
Lee JH, Kang T, Choi BK, Han IH, Kim BC, Ro JH. Application of Deep Learning System into the Development of Communication Device for Quadriplegic Patient. Korean J Neurotrauma 2019; 15:88-94. [PMID: 31720261 PMCID: PMC6826084 DOI: 10.13004/kjnt.2019.15.e17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/19/2019] [Accepted: 07/12/2019] [Indexed: 01/10/2023] Open
Abstract
Objective Methods Results Conclusion
Collapse
Affiliation(s)
- Jung Hwan Lee
- Department of Neurosurgery, Pusan National University Hospital, Busan, Korea
| | - Taewoo Kang
- Busan Cancer Center, Pusan National University Hospital, Busan, Korea
| | - Byung Kwan Choi
- Department of Neurosurgery, Pusan National University Hospital, Busan, Korea
| | - In Ho Han
- Department of Neurosurgery, Pusan National University Hospital, Busan, Korea
| | - Byung Chul Kim
- Department of Neurosurgery, Pusan National University Hospital, Busan, Korea
| | - Jung Hoon Ro
- Department of Biomedical Engineering, Pusan National University Hospital, Busan, Korea
| |
Collapse
|