1
|
Chen Z, Zhai X, Chen Z. Proof of linear MRI phase imaging from an internal fieldmap. NMR IN BIOMEDICINE 2022; 35:e4741. [PMID: 35411962 DOI: 10.1002/nbm.4741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/20/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
PURPOSE Brain MRI phase imaging assumes a linear spatial mapping of the internal fieldmap that continues to lack theoretical proof. We herein present one proof by replacing the arithmetic mean (in MRI signal formation from the intravoxel spin precession dephasing mechanism) with the geometric mean. METHODS By replacing the complex arithmetic mean of intravoxel dephasing isochromats with a complex geometric mean, we readily derive a linear spatial mapping of MRI phase imaging from an internal fieldmap without any restriction in phase angles. To justify the replacement of the complex arithmetic mean with the complex geometric mean for realistic brain MRI, we provide numerical T2*MRI simulations to observe the similarity and difference between arithmetic- and geometric-mean phase images in diverse settings with respect to spatial resolution and echo time, with or without proton density weighting. RESULTS Theoretically, the complex geometric mean model offers a theoretical proof of linear spatial mapping for MRI phase imaging. Numerical simulations of T2*MRI phase imaging show that the geometric mean conforms to the arithmetic mean at a high similarity in the small phase condition (e.g., corr > 0.90 in phase pre-wrapping status at TE < 10 ms) and the similarity falls at large phase angles (e.g., corr ≈ 0.80 in phase-wrapped status at TE = 30 ms). CONCLUSION By replacing the arithmetic mean of intravoxel spin precession dephasing with the geometric mean, we find a theoretical proof for linear MRI phase imaging beyond the small phase condition on spin precession angles.
Collapse
Affiliation(s)
- Zikuan Chen
- Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, USA
- Zinv LLC, Albuquerque, NM, USA
| | | | - Zeyuan Chen
- Department of Computer Sciences, University of California-Davis, Davis, CA, USA
| |
Collapse
|
2
|
Li Y, Buch S, He N, Zhang C, Zhang Y, Wang T, Li D, Haacke EM, Yan F. Imaging patients pre and post deep brain stimulation: Localization of the electrodes and their targets. Magn Reson Imaging 2020; 75:34-44. [PMID: 32961237 DOI: 10.1016/j.mri.2020.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/27/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE Deep brain stimulation (DBS) has become a widely performed surgical procedure for patients with medically refractory movement disorders and mental disorders. It is clinically important to set up a MRI protocol to map the brain targets and electrodes of the patients before and after DBS and to understand the imaging artifacts caused by the electrodes. METHODS Five patients with DBS electrodes implanted in the habenula (Hb), fourteen patients with globus pallidus internus (GPi) targeted DBS, three pre-DBS patients and seven healthy controls were included in the study. The MRI protocol consisted of magnetization prepared rapid acquisition gradient echo T1 (MPRAGE T1W), 3D multi-echo gradient recalled echo (ME-GRE) and 2D fast spin echo T2 (FSE T2W) sequences to map the brain targets and electrodes of the patients. Phantom experiments were also run to determine both the artifacts and the susceptibility of the electrodes. Signal to noise ratio (SNR) on T1W, T2W and GRE datasets were measured. The visibility of the brain structures was scored according to the Rose criterion. A detailed analysis of the characteristics of the electrodes in all three sequence types was performed to confirm the reliability of the postoperative MRI approach. In order to understand the signal behavior, we also simulated the corresponding magnitude data using the same imaging parameters as in the phantom sequences. RESULTS The mean ± inter-subject variability of the SNRs, across the subjects for T1W, T2W, and GRE datasets were 20.1 ± 8.1, 14.9 ± 3.2, and 43.0 ± 7.6, respectively. High resolution MPRAGE T1W and FSE T2W data both showed excellent contrast for the habenula and were complementary to each other. The mean visibility of the habenula in the 25 cases for the MPRAGE T1W data was 5.28 ± 1.11; and the mean visibility in the 20 cases for the FSE T2W data was 5.78 ± 1.30. Quantitative susceptibility mapping (QSM), reconstructed from the ME-GRE sequence, provided sufficient contrast to distinguish the substructures of the globus pallidus. The susceptibilities of the GPi and globus pallidus externa (GPe) were 0.087 ± 0.013 ppm and 0.115 ± 0.015 ppm, respectively. FSE T2W sequences provided the best image quality with smallest image blooming of stimulator leads compared to MPRAGE T1W images and GRE sequence images, the measured diameters of electrodes were 1.91 ± 0.22, 2.77 ± 0.22, and 2.72 ± 0.20 mm, respectively. High resolution, high bandwidth and short TE (TE = 2.6 ms) GRE helped constrain the artifacts to the area of the electrodes and the dipole effect seen in the GRE filtered phase data provided an effective mean to locate the end of the DBS lead. CONCLUSION The imaging protocol consisting of MPRAGE T1W, FSE T2W and ME-GRE sequences provided excellent pre- and post-operative visualization of the brain targets and electrodes for patients undergoing DBS treatment. Although the artifacts around the electrodes can be severe, sometimes these same artifacts can be useful in identifying their location.
Collapse
Affiliation(s)
- Yan Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sagar Buch
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingying Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ewart Mark Haacke
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Reichert A, Reiss S, Krafft AJ, Bock M. Passive needle guide tracking with radial acquisition and phase-only cross-correlation. Magn Reson Med 2020; 85:1039-1046. [PMID: 32767451 DOI: 10.1002/mrm.28448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Acceleration of a passive tracking sequence based on phase-only cross-correlation (POCC) using radial undersampling. METHODS The phase-only cross-correlation (POCC) algorithm allows passive tracking of interventional instruments in real-time. In a POCC sequence, two cross-sectional images of a needle guide with a positive MR contrast are continuously acquired from which the instrument trajectory is calculated. Conventional Cartesian imaging for tracking is very time consuming; here, a higher temporal resolution is achieved using a highly undersampled radial acquisition together with a modified POCC algorithm that incorporates the point-spread-function. Targeting and needle insertion is performed in two phantom experiments with 16 fiducial targets, each using 4 and 16 radial projections for passive tracking. Additionally, targeting of eight deep lying basivertebral veins in the lumbar spines is performed for in vivo proof-of-application with four radial projections for needle guide tracking. RESULTS The radially undersampled POCC sequence yielded in the phantom experiments a lateral targeting accuracy of 1.1 ± 0.4 mm and 1.0 ± 0.5 mm for 16 and 4 radial projections, respectively, without any statistically significant difference. In the in vivo application, a mean targeting duration of 62 ± 13 s was measured. CONCLUSION Radial undersampling can drastically reduce the acquisition time for passive tracking in a POCC sequences for MR-guided needle interventions without compromising the targeting accuracy.
Collapse
Affiliation(s)
- Andreas Reichert
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon Reiss
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Axel Joachim Krafft
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Bock
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Li X, Young AS, Raman SS, Lu DS, Lee YH, Tsao TC, Wu HH. Automatic needle tracking using Mask R-CNN for MRI-guided percutaneous interventions. Int J Comput Assist Radiol Surg 2020; 15:1673-1684. [PMID: 32676870 DOI: 10.1007/s11548-020-02226-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/03/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Accurate needle tracking provides essential information for MRI-guided percutaneous interventions. Passive needle tracking using MR images is challenged by variations of the needle-induced signal void feature in different situations. This work aimed to develop an automatic needle tracking algorithm for MRI-guided interventions based on the Mask Region Proposal-Based Convolutional Neural Network (R-CNN). METHODS Mask R-CNN was adapted and trained to segment the needle feature using 250 intra-procedural images from 85 MRI-guided prostate biopsy cases and 180 real-time images from MRI-guided needle insertion in ex vivo tissue. The segmentation masks were passed into the needle feature localization algorithm to extract the needle feature tip location and axis orientation. The proposed algorithm was tested using 208 intra-procedural images from 40 MRI-guided prostate biopsy cases, and 3 real-time MRI datasets in ex vivo tissue. The algorithm results were compared with human-annotated references. RESULTS In prostate datasets, the proposed algorithm achieved needle feature tip localization error with median Euclidean distance (dxy) of 0.71 mm and median difference in axis orientation angle (dθ) of 1.28°, respectively. In 3 real-time MRI datasets, the proposed algorithm achieved consistent dynamic needle feature tracking performance with processing time of 75 ms/image: (a) median dxy = 0.90 mm, median dθ = 1.53°; (b) median dxy = 1.31 mm, median dθ = 1.9°; (c) median dxy = 1.09 mm, median dθ = 0.91°. CONCLUSIONS The proposed algorithm using Mask R-CNN can accurately track the needle feature tip and axis on MR images from in vivo intra-procedural prostate biopsy cases and ex vivo real-time MRI experiments with a range of different conditions. The algorithm achieved pixel-level tracking accuracy in real time and has potential to assist MRI-guided percutaneous interventions.
Collapse
Affiliation(s)
- Xinzhou Li
- Department of Radiological Sciences, University of California Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Adam S Young
- Department of Radiological Sciences, University of California Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA, 90095, USA
| | - Steven S Raman
- Department of Radiological Sciences, University of California Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA, 90095, USA
| | - David S Lu
- Department of Radiological Sciences, University of California Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA, 90095, USA
| | - Yu-Hsiu Lee
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Tsu-Chin Tsao
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Holden H Wu
- Department of Radiological Sciences, University of California Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Shcherbakova Y, Bartels LW, Mandija S, Beld E, Seevinck PR, van der Voort van Zyp JRN, Kerkmeijer LGW, Moonen CTW, Lagendijk JJW, van den Berg CAT. Visualization of gold fiducial markers in the prostate using phase-cycled bSSFP imaging for MRI-only radiotherapy. ACTA ACUST UNITED AC 2019; 64:185001. [DOI: 10.1088/1361-6560/ab35c3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Zijlstra F, Viergever MA, Seevinck PR. SMART tracking: Simultaneous anatomical imaging and real-time passive device tracking for MR-guided interventions. Phys Med 2019; 64:252-260. [DOI: 10.1016/j.ejmp.2019.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/18/2019] [Accepted: 07/24/2019] [Indexed: 11/27/2022] Open
|
7
|
Beld E, Moerland MA, van der Voort van Zyp JRN, Viergever MA, Lagendijk JJW, Seevinck PR. MRI artifact simulation for clinically relevant MRI sequences for guidance of prostate HDR brachytherapy. Phys Med Biol 2019; 64:095006. [PMID: 30947159 DOI: 10.1088/1361-6560/ab15ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For the purpose of magnetic resonance imaging (MRI) guidance of prostate high-dose-rate (HDR) brachytherapy, this paper presents a study on the potential of clinically relevant MRI sequences to facilitate tracking or localization of brachytherapy devices (HDR source/titanium needle), and which could simultaneously be used to visualize the anatomy. The tracking or localization involves simulation of the MRI artifact in combination with a template matching algorithm. Simulations of the MRI artifacts induced by an HDR brachytherapy source and a titanium needle were implemented for four types of sequences: spoiled gradient echo, spin echo, balanced steady-state free precession (bSSFP) and bSSFP with spectral attenuated inversion recovery (SPAIR) fat suppression. A phantom study was conducted in which mentioned sequences (in 2D) as well as the volumetric MRI sequences of the current clinical scan protocol were applied to obtain the induced MRI artifacts for an HDR source and a titanium needle. Localization of the objects was performed by a phase correlation based template matching algorithm. The simulated images demonstrated high correspondences with the acquired MR images, and allowed localization of the objects. A comparison between the object positions obtained for all applied MRI sequences showed deviations (from the average position) of 0.2-0.3 mm, proving that all MRI sequences were suitable for localization of the objects, irrespective of their 2D or volumetric nature. This study demonstrated that the MRI artifact induced by an HDR source or a titanium needle could be simulated for the four investigated types of MRI sequences (spoiled gradient echo, spin echo, bSSFP and bSSFP-SPAIR), valuable for real-time object localization in clinical practice. This leads to more flexibility in the choice of MRI sequences for guidance of HDR brachytherapy, as they are suitable for both object localization and anatomy visualization.
Collapse
Affiliation(s)
- Ellis Beld
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands. Author to whom correspondence may be addressed
| | | | | | | | | | | |
Collapse
|
8
|
van Rijssel MJ, Zijlstra F, Seevinck PR, Luijten PR, Gilhuijs KGA, Klomp DWJ, Pluim JPW. Reducing distortions in echo-planar breast imaging at ultrahigh field with high-resolution off-resonance maps. Magn Reson Med 2019; 82:425-435. [PMID: 30825245 PMCID: PMC6593992 DOI: 10.1002/mrm.27701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/30/2019] [Indexed: 11/11/2022]
Abstract
PURPOSE DWI is a promising modality in breast MRI, but its clinical acceptance is slow. Analysis of DWI is hampered by geometric distortion artifacts, which are caused by off-resonant spins in combination with the low phase-encoding bandwidth of the EPI sequence used. Existing correction methods assume smooth off-resonance fields, which we show to be invalid in the human breast, where high discontinuities arise at tissue interfaces. METHODS We developed a distortion correction method that incorporates high-resolution off-resonance maps to better solve for severe distortions at tissue interfaces. The method was evaluated quantitatively both ex vivo in a porcine tissue phantom and in vivo in 5 healthy volunteers. The added value of high-resolution off-resonance maps was tested using a Wilcoxon signed rank test comparing the quantitative results obtained with a low-resolution off-resonance map with those obtained with a high-resolution map. RESULTS Distortion correction using low-resolution off-resonance maps corrected most of the distortions, as expected. Still, all quantitative comparison metrics showed increased conformity between the corrected EPI images and a high-bandwidth reference scan for both the ex vivo and in vivo experiments. All metrics showed a significant improvement when a high-resolution off-resonance map was used (P < 0.05), in particular at tissue boundaries. CONCLUSION The use of off-resonance maps of a resolution higher than EPI scans significantly improves upon existing distortion correction techniques, specifically by superior correction at glandular tissue boundaries.
Collapse
Affiliation(s)
| | - Frank Zijlstra
- Center for Image Sciences, UMC Utrecht, Utrecht, The Netherlands
| | - Peter R Seevinck
- Center for Image Sciences, UMC Utrecht, Utrecht, The Netherlands
| | - Peter R Luijten
- Center for Image Sciences, UMC Utrecht, Utrecht, The Netherlands
| | | | - Dennis W J Klomp
- Center for Image Sciences, UMC Utrecht, Utrecht, The Netherlands
| | - Josien P W Pluim
- Center for Image Sciences, UMC Utrecht, Utrecht, The Netherlands.,Department of Biomedical Engineering, Technische Universiteit Eindhoven, Eindhoven, The Netherlands
| |
Collapse
|
9
|
Simultaneous slice excitation for accelerated passive marker tracking via phase-only cross correlation (POCC) in MR-guided needle interventions. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 31:781-788. [DOI: 10.1007/s10334-018-0701-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/09/2018] [Accepted: 08/15/2018] [Indexed: 12/24/2022]
|
10
|
Beld E, Moerland MA, Zijlstra F, Viergever MA, Lagendijk JJW, Seevinck PR. MR-based source localization for MR-guided HDR brachytherapy. Phys Med Biol 2018. [PMID: 29516866 DOI: 10.1088/1361-6560/aab50b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
For the purpose of MR-guided high-dose-rate (HDR) brachytherapy, a method for real-time localization of an HDR brachytherapy source was developed, which requires high spatial and temporal resolutions. MR-based localization of an HDR source serves two main aims. First, it enables real-time treatment verification by determination of the HDR source positions during treatment. Second, when using a dummy source, MR-based source localization provides an automatic detection of the source dwell positions after catheter insertion, allowing elimination of the catheter reconstruction procedure. Localization of the HDR source was conducted by simulation of the MR artifacts, followed by a phase correlation localization algorithm applied to the MR images and the simulated images, to determine the position of the HDR source in the MR images. To increase the temporal resolution of the MR acquisition, the spatial resolution was decreased, and a subpixel localization operation was introduced. Furthermore, parallel imaging (sensitivity encoding) was applied to further decrease the MR scan time. The localization method was validated by a comparison with CT, and the accuracy and precision were investigated. The results demonstrated that the described method could be used to determine the HDR source position with a high accuracy (0.4-0.6 mm) and a high precision (⩽0.1 mm), at high temporal resolutions (0.15-1.2 s per slice). This would enable real-time treatment verification as well as an automatic detection of the source dwell positions.
Collapse
Affiliation(s)
- E Beld
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands
| | | | | | | | | | | |
Collapse
|
11
|
Lee SK, Hwang SH, Barg JS, Yeo SJ. Rapid, theoretically artifact-free calculation of static magnetic field induced by voxelated susceptibility distribution in an arbitrary volume of interest. Magn Reson Med 2018. [PMID: 29524238 DOI: 10.1002/mrm.27161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE To demonstrate a computationally efficient and theoretically artifact-free method to calculate static field (B0 ) inhomogeneity in a volume of interest induced by an arbitrary voxelated susceptibility distribution. METHODS Our method computes B0 by circular convolution between a zero-filled susceptibility matrix and a shifted, voxel-integrated dipolar field kernel on a grid of size NS +NT - 1 in each dimension, where NS and NT are the sizes of the susceptibility source and B0 target grids, respectively. The computational resource requirement is independent of source-target separation. The method, called generalized susceptibility voxel convolution, is demonstrated on three susceptibility models: an ellipsoid, MR-compatible screws, and a dynamic human heartbeat model. RESULTS B0 in an ellipsoid calculated by generalized susceptibility voxel convolution matched an analytical solution nearly exactly. The method also calculated screw-induced B0 in agreement with experimental data. Dynamic simulation demonstrated its computational efficiency for repeated B0 calculations on time-varying susceptibility. On the contrary, conventional and alias-subtracted k-space-discretized Fourier convolution methods showed nonnegligible aliasing and Gibbs ringing artifacts in the tested models. CONCLUSION Generalized susceptibility voxel convolution can be a fast and reliable way to compute susceptibility-induced B0 when the susceptibility source is not colocated with the B0 target volume of interest, as in modeling B0 variations from motion and foreign objects.
Collapse
Affiliation(s)
- Seung-Kyun Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Seon-Ha Hwang
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Ji-Seong Barg
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Seok-Jin Yeo
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
12
|
Zijlstra F, Moerland MA, van der Voort van Zyp JRN, Noteboom JL, Viergever MA, Seevinck PR. Challenges in MR-only seed localization for postimplant dosimetry in permanent prostate brachytherapy. Med Phys 2017; 44:5051-5060. [PMID: 28777451 DOI: 10.1002/mp.12505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/17/2017] [Accepted: 07/22/2017] [Indexed: 12/19/2022] Open
Abstract
PURPOSE An MR-only postimplant dosimetry workflow for low dose rate (LDR) brachytherapy could reduce patient burden, improve accuracy, and improve cost efficiency. However, localization of brachytherapy seeds on MRI scans remains a major challenge for this type of workflow. In this study, we propose and validate an MR-only seed localization method and identify remaining challenges. METHODS AND MATERIALS The localization method was based on template matching of simulations of complex-valued imaging artifacts around metal brachytherapy seeds. The method was applied to MRI scans of 25 prostate cancer patients who underwent LDR brachytherapy and for whom postimplant dosimetry was performed after 4 weeks. The seed locations found with the MR-only method were validated against the seed locations found on CT. The circumstances in which detection errors were made were classified to gain an insight in the nature of the errors. RESULTS A total of 1490 of 1557 (96%) seeds were correctly detected, while 67 false-positive errors were made. The correctly detected seed locations had a high spatial accuracy with an average error of 0.8 mm compared with CT. A majority of the false positives occurred near other seeds. Most false negatives were found in either stranded configurations without spacers or near other seeds. CONCLUSIONS The low detection error rate and high localization accuracy obtained by the complex-valued template matching approach are promising for future clinical application of MR-only dosimetry. The most important remaining challenge is robustness with regard to configurations of multiple seeds in close vicinity, such as in strands of seeds without spacers. This issue could potentially be resolved by simulating specific configurations of multiple seeds or by constraining the treatment planning to avoid these configurations, which could make the proposed method competitive with CT-based seed localization.
Collapse
Affiliation(s)
- Frank Zijlstra
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marinus A Moerland
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Juus L Noteboom
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Max A Viergever
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter R Seevinck
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|