1
|
Ramaekers MJFG, Te Kiefte BJC, Adriaans BP, Juffermans JF, van Assen HC, Winkens B, Wildberger JE, Lamb HJ, Schalla S, Westenberg JJM. Comprehensive sex-specific and age-dependent analysis of 4D-flow MRI assessed aortic blood flow-related parameters in normal subjects using single-vendor MR systems and single-vendor software. J Cardiovasc Magn Reson 2024:101083. [PMID: 39142568 DOI: 10.1016/j.jocmr.2024.101083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/14/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Aortic blood flow characterization by 4D flow MRI is increasingly performed in aneurysm research. A limited number of studies have established normal values that can aid the recognition of abnormal flow at an early stage. This study aims to establish additional sex-specific and age-dependent reference values for flow-related parameters in a large cohort of healthy adults. METHODS 212 volunteers were included, and 191 volunteers completed the full study protocol. All underwent 4D flow MRI of the entire aorta. Quantitative values for velocity, vorticity, helicity, as well as total, circumferential, and axial wall shear stress [WSS] were determined for the aortic root [AoR], ascending aorta [AAo], aortic arch [AoA], descending [DAo], suprarenal [SRA], and infrarenal aorta [IRA]. Vorticity and helicity were indexed for segment volume (mL). RESULTS The normal values were estimated per sex- and age-group, where significant differences between males (M) and females (F) were found only for specific age groups. More specifically, the following variables were significantly different after applying the false discovery rate correction for multiple testing: 1) velocity in the AAo and DAo in the 60-70 years age group (mean±SD: (M) 47.0 ± 8.2cm/s vs. (F) 38.4 ± 6.9cm/s, p=0.001 and, (M) 55.9 ± 9.9cm/s vs. (F) 46.5 ± 5.5cm/s, p=0.002), 2) normalized vorticity in AoR in the 50-59 years age group ((M) 27539 ± 5042s-1mL-1 vs. (F) 30849 ± 7285s-1mL-1, p=0.002), 3) axial WSS in the Aao in the 18-29 age group ((M) 1098 ± 203 mPa vs. (F) 921 ± 121 mPa, p=0.002). Good to strong negative correlations with age were seen for almost all variables, in different segments, and for both sexes. CONCLUSION This study describes reference values for aortic flow-related parameters as acquired by 4D flow MRI. We observed limited differences between males and females. A negative relationship with age was seen for almost all flow-related parameters and segments.
Collapse
Affiliation(s)
- Mitch J F G Ramaekers
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center + (MUMC+), Maastricht, the Netherlands; Department of Cardiology, Maastricht University Medical Center + (MUMC+), Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Radiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Department of Methodology and Statistics, Maastricht University, Maastricht, the Netherlands.
| | - Bastiaan J C Te Kiefte
- Department of Radiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Department of Methodology and Statistics, Maastricht University, Maastricht, the Netherlands
| | - Bouke P Adriaans
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center + (MUMC+), Maastricht, the Netherlands; Department of Cardiology, Maastricht University Medical Center + (MUMC+), Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Methodology and Statistics, Maastricht University, Maastricht, the Netherlands
| | - Joe F Juffermans
- Department of Radiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Department of Methodology and Statistics, Maastricht University, Maastricht, the Netherlands
| | - Hans C van Assen
- Department of Radiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Department of Methodology and Statistics, Maastricht University, Maastricht, the Netherlands
| | - Bjorn Winkens
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands; Department of Methodology and Statistics, Maastricht University, Maastricht, the Netherlands
| | - Joachim E Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center + (MUMC+), Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Methodology and Statistics, Maastricht University, Maastricht, the Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Department of Methodology and Statistics, Maastricht University, Maastricht, the Netherlands
| | - Simon Schalla
- Department of Cardiology, Maastricht University Medical Center + (MUMC+), Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Methodology and Statistics, Maastricht University, Maastricht, the Netherlands
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Department of Methodology and Statistics, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
2
|
Ramaekers MJFG, Westenberg JJM, Venner MFGHM, Juffermans JF, van Assen HC, Te Kiefte BJC, Adriaans BP, Lamb HJ, Wildberger JE, Schalla S. Evaluating a Phase-Specific Approach to Aortic Flow: A 4D Flow MRI Study. J Magn Reson Imaging 2024; 59:1056-1067. [PMID: 37309838 DOI: 10.1002/jmri.28852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Aortic flow parameters can be quantified using 4D flow MRI. However, data are sparse on how different methods of analysis influence these parameters and how these parameters evolve during systole. PURPOSE To assess multiphase segmentations and multiphase quantification of flow-related parameters in aortic 4D flow MRI. STUDY TYPE Prospective. POPULATION 40 healthy volunteers (50% male, 28.9 ± 5.0 years) and 10 patients with thoracic aortic aneurysm (80% male, 54 ± 8 years). FIELD STRENGTH/SEQUENCE 4D flow MRI with a velocity encoded turbo field echo sequence at 3 T. ASSESSMENT Phase-specific segmentations were obtained for the aortic root and the ascending aorta. The whole aorta was segmented in peak systole. In all aortic segments, time to peak (TTP; for flow velocity, vorticity, helicity, kinetic energy, and viscous energy loss) and peak and time-averaged values (for velocity and vorticity) were calculated. STATISTICAL TESTS Static vs. phase-specific models were assessed using Bland-Altman plots. Other analyses were performed using phase-specific segmentations for aortic root and ascending aorta. TTP for all parameters was compared to TTP of flow rate using paired t-tests. Time-averaged and peak values were assessed using Pearson correlation coefficient. P < 0.05 was considered statistically significant. RESULTS In the combined group, velocity in static vs. phase-specific segmentations differed by 0.8 cm/sec for the aortic root, and 0.1 cm/sec (P = 0.214) for the ascending aorta. Vorticity differed by 167 sec-1 mL-1 (P = 0.468) for the aortic root, and by 59 sec-1 mL-1 (P = 0.481) for the ascending aorta. Vorticity, helicity, and energy loss in the ascending aorta, aortic arch, and descending aorta peaked significantly later than flow rate. Time-averaged velocity and vorticity values correlated significantly in all segments. DATA CONCLUSION Static 4D flow MRI segmentation yields comparable results as multiphase segmentation for flow-related parameters, eliminating the need for time-consuming multiple segmentations. However, multiphase quantification is necessary for assessing peak values of aortic flow-related parameters. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Mitch J F G Ramaekers
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Center+, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Max F G H M Venner
- Department of Cardiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Joe F Juffermans
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans C van Assen
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Bouke P Adriaans
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joachim E Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Simon Schalla
- Department of Cardiology, Maastricht University Medical Center+, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| |
Collapse
|
3
|
Jonnagiri R, Sundström E, Gutmark E, Anderson S, Pednekar AS, Taylor MD, Tretter JT, Gutmark-Little I. Influence of aortic valve morphology on vortical structures and wall shear stress. Med Biol Eng Comput 2023; 61:1489-1506. [PMID: 36763231 DOI: 10.1007/s11517-023-02790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023]
Abstract
The aim of this paper is to assess the association between valve morphology and vortical structures quantitatively and to highlight the influence of valve morphology/orientation on aorta's susceptibility to shear stress, both proximal and distal. Four-dimensional phase-contrast magnetic resonance imaging (4D PCMRI) data of 6 subjects, 3 with tricuspid aortic valve (TAV) and 3 with functionally bicuspid aortic values (BAV) with right-left coronary leaflet fusion, were processed and analyzed for vorticity and wall shear stress trends. Computational fluid dynamics (CFD) has been used with moving TAV and BAV valve designs in patient-specific aortae to compare with in vivo shear stress data. Vorticity from 4D PCMRI data about the aortic centerline demonstrated that TAVs had a higher number of vortical flow structures than BAVs at peak systole. Coalescing of flow structures was shown to be possible in the arch region of all subjects. Wall shear stress (WSS) distribution from CFD results at the aortic root is predominantly symmetric for TAVs but highly asymmetric for BAVs with the region opposite the raphe (fusion location of underdeveloped leaflets) being subjected to higher WSS. Asymmetry in the size and number of leaflets in BAVs and TAVs significantly influence vortical structures and WSS in the proximal aorta for all valve types and distal aorta for certain valve orientations of BAV. Analysis of vortical structures using 4D PCMRI data (on the left side) and wall shear stress data using CFD (on the right side).
Collapse
Affiliation(s)
- Raghuvir Jonnagiri
- Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH, 45221, USA.
| | - Elias Sundström
- Department of Engineering Mechanics, Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Ephraim Gutmark
- Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Shae Anderson
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Amol S Pednekar
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Michael D Taylor
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Justin T Tretter
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Iris Gutmark-Little
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45267, USA.,Division of Endocrinology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| |
Collapse
|
4
|
Cherry M, Khatir Z, Khan A, Bissell M. The impact of 4D-Flow MRI spatial resolution on patient-specific CFD simulations of the thoracic aorta. Sci Rep 2022; 12:15128. [PMID: 36068322 PMCID: PMC9448751 DOI: 10.1038/s41598-022-19347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Magnetic Resonance Imaging (MRI) is considered the gold standard of medical imaging technologies as it allows for accurate imaging of blood vessels. 4-Dimensional Flow Magnetic Resonance Imaging (4D-Flow MRI) is built on conventional MRI, and provides flow data in the three vector directions and a time resolved magnitude data set. As such it can be used to retrospectively calculate haemodynamic parameters of interest, such as Wall Shear Stress (WSS). However, multiple studies have indicated that a significant limitation of the imaging technique is the spatiotemporal resolution that is currently available. Recent advances have proposed and successfully integrated 4D-Flow MRI imaging techniques with Computational Fluid Dynamics (CFD) to produce patient-specific simulations that have the potential to aid in treatments,surgical decision making, and risk stratification. However, the consequences of using insufficient 4D-Flow MRI spatial resolutions on any patient-specific CFD simulations is currently unclear, despite being a recognised limitation. The research presented in this study aims to quantify the inaccuracies in patient-specific 4D-Flow MRI based CFD simulations that can be attributed to insufficient spatial resolutions when acquiring 4D-Flow MRI data. For this research, a patient has undergone four 4D-Flow MRI scans acquired at various isotropic spatial resolutions and patient-specific CFD simulations have subsequently been run using geometry and velocity data produced from each scan. It was found that compared to CFD simulations based on a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1.5\,{\text {mm}} \times 1.5\,{\text {mm}} \times 1.5\,{\text {mm}}$$\end{document}1.5mm×1.5mm×1.5mm, using a spatial resolution of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$4\,{\text {mm}} \times 4\,{\text {mm}} \times 4\,{\text {mm}}$$\end{document}4mm×4mm×4mm substantially underestimated the maximum velocity magnitude at peak systole by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$110.55\%$$\end{document}110.55%. The impacts of 4D-Flow MRI spatial resolution on WSS calculated from CFD simulations have been investigated and it has been shown that WSS is underestimated in CFD simulations that are based on a coarse 4D-Flow MRI spatial resolution. The authors have concluded that a minimum 4D-Flow MRI spatial resolution of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1.5\,{\text {mm}} \times 1.5\,{\text {mm}} \times 1.5\,{\text {mm}}$$\end{document}1.5mm×1.5mm×1.5mm must be used when acquiring 4D-Flow MRI data to perform patient-specific CFD simulations. A coarser spatial resolution will produce substantial differences within the flow field and geometry.
Collapse
Affiliation(s)
- Molly Cherry
- CDT in Fluid Dynamics, School of Computing, University of Leeds, Leeds, LS2 9JT, UK.
| | - Zinedine Khatir
- School of Engineering and the Built Environment, Birmingham City University, Birmingham, B4 7XG, UK.,School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Amirul Khan
- School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | | |
Collapse
|
5
|
Sotelo J, Franco P, Guala A, Dux-Santoy L, Ruiz-Muñoz A, Evangelista A, Mella H, Mura J, Hurtado DE, Rodríguez-Palomares JF, Uribe S. Fully Three-Dimensional Hemodynamic Characterization of Altered Blood Flow in Bicuspid Aortic Valve Patients With Respect to Aortic Dilatation: A Finite Element Approach. Front Cardiovasc Med 2022; 9:885338. [PMID: 35665243 PMCID: PMC9157575 DOI: 10.3389/fcvm.2022.885338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background and PurposePrognostic models based on cardiovascular hemodynamic parameters may bring new information for an early assessment of patients with bicuspid aortic valve (BAV), playing a key role in reducing the long-term risk of cardiovascular events. This work quantifies several three-dimensional hemodynamic parameters in different patients with BAV and ranks their relationships with aortic diameter.Materials and MethodsUsing 4D-flow CMR data of 74 patients with BAV (49 right-left and 25 right-non-coronary) and 48 healthy volunteers, aortic 3D maps of seventeen 17 different hemodynamic parameters were quantified along the thoracic aorta. Patients with BAV were divided into two morphotype categories, BAV-Non-AAoD (where we include 18 non-dilated patients and 7 root-dilated patients) and BAV-AAoD (where we include the 49 patients with dilatation of the ascending aorta). Differences between volunteers and patients were evaluated using MANOVA with Pillai's trace statistic, Mann–Whitney U test, ROC curves, and minimum redundancy maximum relevance algorithm. Spearman's correlation was used to correlate the dilation with each hemodynamic parameter.ResultsThe flow eccentricity, backward velocity, velocity angle, regurgitation fraction, circumferential wall shear stress, axial vorticity, and axial circulation allowed to discriminate between volunteers and patients with BAV, even in the absence of dilation. In patients with BAV, the diameter presented a strong correlation (> |+/−0.7|) with the forward velocity and velocity angle, and a good correlation (> |+/−0.5|) with regurgitation fraction, wall shear stress, wall shear stress axial, and vorticity, also for morphotypes and phenotypes, some of them are correlated with the diameter. The velocity angle proved to be an excellent biomarker in the differentiation between volunteers and patients with BAV, BAV morphotypes, and BAV phenotypes, with an area under the curve bigger than 0.90, and higher predictor important scores.ConclusionsThrough the application of a novel 3D quantification method, hemodynamic parameters related to flow direction, such as flow eccentricity, velocity angle, and regurgitation fraction, presented the best relationships with a local diameter and effectively differentiated patients with BAV from healthy volunteers.
Collapse
Affiliation(s)
- Julio Sotelo
- School of Biomedical Engineering, Universidad de Valparaíso, Valparaíso, Chile
- Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Intelligent Healthcare Engineering, iHEALTH, Santiago, Chile
- Millennium Nucleus in Cardiovascular Magnetic Resonance, Cardio MR, Santiago, Chile
| | - Pamela Franco
- Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Intelligent Healthcare Engineering, iHEALTH, Santiago, Chile
- Millennium Nucleus in Cardiovascular Magnetic Resonance, Cardio MR, Santiago, Chile
- Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Guala
- Department of Cardiology, Hospital Universitari Vall d'Hebron, CIBER-CV, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Lydia Dux-Santoy
- Department of Cardiology, Hospital Universitari Vall d'Hebron, CIBER-CV, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Aroa Ruiz-Muñoz
- Department of Cardiology, Hospital Universitari Vall d'Hebron, CIBER-CV, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Arturo Evangelista
- Department of Cardiology, Hospital Universitari Vall d'Hebron, CIBER-CV, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Hernan Mella
- Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Nucleus in Cardiovascular Magnetic Resonance, Cardio MR, Santiago, Chile
- Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Joaquín Mura
- Millennium Nucleus in Cardiovascular Magnetic Resonance, Cardio MR, Santiago, Chile
- Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Santiago, Chile
| | - Daniel E. Hurtado
- Millennium Nucleus in Cardiovascular Magnetic Resonance, Cardio MR, Santiago, Chile
- Department of Structural and Geotechnical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José F. Rodríguez-Palomares
- Department of Cardiology, Hospital Universitari Vall d'Hebron, CIBER-CV, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Sergio Uribe
- Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Intelligent Healthcare Engineering, iHEALTH, Santiago, Chile
- Millennium Nucleus in Cardiovascular Magnetic Resonance, Cardio MR, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Radiology, Schools of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Sergio Uribe
| |
Collapse
|
6
|
Impact of Respiratory Gating on Hemodynamic Parameters from 4D Flow MRI. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The hemodynamic parameters from 4D flow datasets have shown promising diagnostic value in different cardiovascular pathologies. However, the behavior of these parameters can be affected when the 4D flow data are corrupted by respiratory motion. The purpose of this work was to perform a quantitative comparison between hemodynamic parameters computed from 4D flow cardiac MRI both with and without respiratory self-gating. We considered 4D flow MRI data from 15 healthy volunteers (10 men and 5 women, 30.40 ± 6.23 years of age) that were acquired at 3T. Using a semiautomatic segmentation process of the aorta, we obtained the hemodynamic parameters from the 4D flow MRI, with and without respiratory self-gating. A statistical analysis, using the Wilcoxon signed-rank test and Bland–Altman, was performed to compare the hemodynamic parameters from both acquisitions. We found that the calculations of the hemodynamic parameters from 4D flow data that were acquired without respiratory self-gating showed underestimated values in the aortic arch, and the descending and diaphragmatic aorta. We also found a significant variability of the hemodynamic parameters in the ascending aorta of healthy volunteers when comparing both methods. The 4D flow MRI requires respiratory compensation to provide reliable calculations of hemodynamic parameters.
Collapse
|
7
|
Mayoral I, Bevilacqua E, Gómez G, Hmadcha A, González-Loscertales I, Reina E, Sotelo J, Domínguez A, Pérez-Alcántara P, Smani Y, González-Puertas P, Mendez A, Uribe S, Smani T, Ordoñez A, Valverde I. Tissue engineered in-vitro vascular patch fabrication using hybrid 3D printing and electrospinning. Mater Today Bio 2022; 14:100252. [PMID: 35509864 PMCID: PMC9059085 DOI: 10.1016/j.mtbio.2022.100252] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/05/2022] Open
Abstract
Three-dimensional (3D) engineered cardiovascular tissues have shown great promise to replace damaged structures. Specifically, tissue engineering vascular grafts (TEVG) have the potential to replace biological and synthetic grafts. We aimed to design an in-vitro patient-specific patch based on a hybrid 3D print combined with vascular smooth muscle cells (VSMC) differentiation. Based on the medical images of a 2 months-old girl with aortic arch hypoplasia and using computational modelling, we evaluated the most hemodynamically efficient aortic patch surgical repair. Using the designed 3D patch geometry, the scaffold was printed using a hybrid fused deposition modelling (FDM) and electrospinning techniques. The scaffold was seeded with multipotent mesenchymal stem cells (MSC) for later maturation to derived VSMC (dVSMC). The graft showed adequate resistance to physiological aortic pressure (burst pressure 101 ± 15 mmHg) and a porosity gradient ranging from 80 to 10 μm allowing cells to infiltrate through the entire thickness of the patch. The bio-scaffolds showed good cell viability at days 4 and 12 and adequate functional vasoactive response to endothelin-1. In summary, we have shown that our method of generating patient-specific patch shows adequate hemodynamic profile, mechanical properties, dVSMC infiltration, viability and functionality. This innovative 3D biotechnology has the potential for broad application in regenerative medicine and potentially in heart disease prevention.
Collapse
Key Words
- 3D printing
- Electrospinning
- Endothelin Receptor A, ETA
- Endothelin Receptor B, ETB
- Mesenchymal stem cells
- Reverse Transcription, Rt
- Three-dimensional, 3D
- Tissue engineering
- Vascular graft
- anti-alpha-smooth muscle actin, α-SMA
- anti-cluster of differentiation 31, CD31
- anti-fibroblast specific protein 1, FSP1
- anti-smooth muscle protein 22, SM-22
- bone morphogenetic protein, BMP4
- computation fluid dynamic, CFD
- computed tomography, CT
- derived VSMC, dVSMC
- endothelin-1, ET-1
- extracellular matrix, ECM
- fused deposition modelling, FDM
- mesenchymal stem cells, MSC
- platelet-derived growth factor composed by two beta chains, PDGF-BB
- room temperature, RT
- tissue engineering vascular grafts, TEVG
- transforming growth factor beta 1, TGFβ-1
- vascular smooth muscle cells, VSMC
- wall shear stress, WSS
- western blotting, WB
Collapse
Affiliation(s)
- Isabel Mayoral
- Cardiovascular Pathophysiology Group, Institute of Biomedicine of Seville- IBiS, University of Seville /HUVR/CSIC, Seville, Spain
| | - Elisa Bevilacqua
- Cardiovascular Pathophysiology Group, Institute of Biomedicine of Seville- IBiS, University of Seville /HUVR/CSIC, Seville, Spain
| | - Gorka Gómez
- Cardiovascular Pathophysiology Group, Institute of Biomedicine of Seville- IBiS, University of Seville /HUVR/CSIC, Seville, Spain
| | - Abdelkrim Hmadcha
- Advanced Therapies and Regenerative Medicine Research Group.General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Ignacio González-Loscertales
- Department Mechanical, Thermal and Fluids Engineering, School of Engineering, University of Málaga, Málaga, Spain
| | - Esther Reina
- Department of Mechanical and Manufacturing Engineering, University of Seville, Seville, Spain
| | - Julio Sotelo
- School of Biomedical Engineering, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Institute for Intelligent Healthcare Engineering, iHEALTH, Millennium Nucleus in Cardiovascular Magnetic Resonance, Cardio MR, and Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Pedro Pérez-Alcántara
- Department of Mechanical and Manufacturing Engineering, University of Seville, Seville, Spain
| | - Younes Smani
- Department of Molecular Biology and Biochemical Engineering, Andalusian Center of Developmental Biology, CSIC, University of Pablo de Olavide, Seville, Spain
| | | | - Ana Mendez
- Pediatric Cardiology Unit, Hospital Virgen Del Rocio, Seville, Spain
| | - Sergio Uribe
- Millennium Institute for Intelligent Healthcare Engineering, iHEALTH, Millennium Nucleus in Cardiovascular Magnetic Resonance, Cardio MR, and Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
- Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tarik Smani
- Cardiovascular Pathophysiology Group, Institute of Biomedicine of Seville- IBiS, University of Seville /HUVR/CSIC, Seville, Spain
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Seville, Spain
| | - Antonio Ordoñez
- Cardiovascular Pathophysiology Group, Institute of Biomedicine of Seville- IBiS, University of Seville /HUVR/CSIC, Seville, Spain
| | - Israel Valverde
- Cardiovascular Pathophysiology Group, Institute of Biomedicine of Seville- IBiS, University of Seville /HUVR/CSIC, Seville, Spain
- Pediatric Cardiology Unit, Hospital Virgen Del Rocio, Seville, Spain
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Pharmacology, Pediatric and Radiology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
8
|
Itatani K, Sekine T, Yamagishi M, Maeda Y, Higashitani N, Miyazaki S, Matsuda J, Takehara Y. Hemodynamic Parameters for Cardiovascular System in 4D Flow MRI: Mathematical Definition and Clinical Applications. Magn Reson Med Sci 2022; 21:380-399. [PMID: 35173116 DOI: 10.2463/mrms.rev.2021-0097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Blood flow imaging becomes an emerging trend in cardiology with the recent progress in computer technology. It not only visualizes colorful flow velocity streamlines but also quantifies the mechanical stress on cardiovascular structures; thus, it can provide the detailed inspections of the pathophysiology of diseases and predict the prognosis of cardiovascular functions. Clinical applications include the comprehensive assessment of hemodynamics and cardiac functions in echocardiography vector flow mapping (VFM), 4D flow MRI, and surgical planning as a simulation medicine in computational fluid dynamics (CFD).For evaluation of the hemodynamics, novel mathematically derived parameters obtained using measured velocity distributions are essential. Among them, the traditional and typical parameters are wall shear stress (WSS) and its related parameters. These parameters indicate the mechanical damages to endothelial cells, resulting in degenerative intimal change in vascular diseases. Apart from WSS, there are abundant parameters that describe the strength of the vortical and/or helical flow patterns. For instance, vorticity, enstrophy, and circulation indicate the rotating flow strength or power of 2D vortical flows. In addition, helicity, which is defined as the cross-linking number of the vortex filaments, indicates the 3D helical flow strength and adequately describes the turbulent flow in the aortic root in cases with complicated anatomies. For the description of turbulence caused by the diseased flow, there exist two types of parameters based on completely different concepts, namely: energy loss (EL) and turbulent kinetic energy (TKE). EL is the dissipated energy with blood viscosity and evaluates the cardiac workload related to the prognosis of heart failure. TKE describes the fluctuation in kinetic energy during turbulence, which describes the severity of the diseases that cause jet flow. These parameters are based on intuitive and clear physiological concepts, and are suitable for in vivo flow measurements using inner velocity profiles.
Collapse
Affiliation(s)
- Keiichi Itatani
- Department of Cardiovascular Surgery, Osaka City University.,Cardio Flow Design Inc
| | - Tetsuro Sekine
- Department of Radiology, Nippon Medical School Musashi Kosugi Hospital
| | - Masaaki Yamagishi
- Department of Pediatric Cardiovascular Surgery, Kyoto Prefectural University of Medicine
| | - Yoshinobu Maeda
- Department of Pediatric Cardiovascular Surgery, Kyoto Prefectural University of Medicine
| | - Norika Higashitani
- Cardio Flow Design Inc.,Department of Cardiovascular Surgery, Kyoto Prefectural University of Medicine
| | | | - Junya Matsuda
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Yasuo Takehara
- Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging, Nagoya university Graduate School of Medicine
| |
Collapse
|
9
|
Sotelo J, Bissell MM, Jiang Y, Mella H, Mura J, Uribe S. Three-dimensional quantification of circulation using finite-element methods in four-dimensional flow MR data of the thoracic aorta. Magn Reson Med 2021; 87:1036-1045. [PMID: 34490922 DOI: 10.1002/mrm.29004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE Three-dimensional (3D) quantification of circulation using a Finite Elements methodology. METHODS We validate our 3D method using an in-silico arch model, for different mesh resolutions, image resolution and noise levels, and we compared this with a currently used 2D method. Finally, we evaluated the application of our methodology in 4D Flow MRI data of ascending aorta of six healthy volunteers, and six bicuspid aortic valve (BAV) patients, three with right and three with left handed flow, at peak systole. The in-vivo data was compared using a Mann-Whitney U-test between volunteers and patients (right and left handed flow). RESULTS The robustness of our method throughout different image resolutions and noise levels showed subestimation of circulation less than 45 cm2 /s in comparison with the 55cm2 /s generated by the current 2D method. The circulation (mean ± SD) of the healthy volunteer group was 13.83 ± 28.78 cm2 /s, in BAV patients with right-handed flow 724.37 ± 317.53 cm2 /s, and BAV patients with left-handed flow -480.99 ± 387.29 cm2 /s. There were significant differences between healthy volunteers and BAV patients groups (P-value < .01), and also between BAV patients with a right-handed or left-handed helical flow and healthy volunteers (P-value < .01). CONCLUSION We propose a novel 3D formulation to estimate the circulation in the thoracic aorta, which can be used to assess the differences between normal and diseased hemodynamic from 4D-Flow MRI data. This method also can correctly differentiate between the visually seen right- and left-handed helical flow, which suggests that this approach may have high clinical sensitivity, but requires confirmation in longitudinal studies with a large cohort.
Collapse
Affiliation(s)
- Julio Sotelo
- School of Biomedical Engineering, Universidad de Valparaíso, Valparaíso, Chile.,Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Nucleus in Cardiovascular Magnetic Resonance, CardioMR, Santiago, Chile
| | - Malenka M Bissell
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Yaxin Jiang
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Hernan Mella
- Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Nucleus in Cardiovascular Magnetic Resonance, CardioMR, Santiago, Chile.,Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Joaquín Mura
- Millennium Nucleus in Cardiovascular Magnetic Resonance, CardioMR, Santiago, Chile.,Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Santiago, Chile
| | - Sergio Uribe
- Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Nucleus in Cardiovascular Magnetic Resonance, CardioMR, Santiago, Chile.,Department of Radiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Nolte D, Urbina J, Sotelo J, Sok L, Montalba C, Valverde I, Osses A, Uribe S, Bertoglio C. Validation of 4D Flow based relative pressure maps in aortic flows. Med Image Anal 2021; 74:102195. [PMID: 34419837 DOI: 10.1016/j.media.2021.102195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 06/11/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022]
Abstract
While the clinical gold standard for pressure difference measurements is invasive catheterization, 4D Flow MRI is a promising tool for enabling a non-invasive quantification, by linking highly spatially resolved velocity measurements with pressure differences via the incompressible Navier-Stokes equations. In this work we provide a validation and comparison with phantom and clinical patient data of pressure difference maps estimators. We compare the classical Pressure Poisson Estimator (PPE) and the new Stokes Estimator (STE) against catheter pressure measurements under a variety of stenosis severities and flow intensities. Specifically, we use several 4D Flow data sets of realistic aortic phantoms with different anatomic and hemodynamic severities and two patients with aortic coarctation. The phantom data sets are enriched by subsampling to lower resolutions, modification of the segmentation and addition of synthetic noise, in order to study the sensitivity of the pressure difference estimators to these factors. Overall, the STE method yields more accurate results than the PPE method compared to catheterization data. The superiority of the STE becomes more evident at increasing Reynolds numbers with a better capacity of capturing pressure gradients in strongly convective flow regimes. The results indicate an improved robustness of the STE method with respect to variation in lumen segmentation. However, with heuristic removal of the wall-voxels, the PPE can reach a comparable accuracy for lower Reynolds' numbers.
Collapse
Affiliation(s)
- David Nolte
- Bernoulli Institute, University of Groningen, Groningen, 9747AG, The Netherlands; Center for Mathematical Modeling, Universidad de Chile, Santiago, 8370456, Chile
| | - Jesús Urbina
- Biomedical Imaging Center, Pontificia Universidad Catolica de Chile, Santiago, 7820436, Chile; Department of Radiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 833002, Chile; Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, 7820436, Chile
| | - Julio Sotelo
- Biomedical Imaging Center, Pontificia Universidad Catolica de Chile, Santiago, 7820436, Chile; Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, 7820436, Chile; School of Biomedical Engineering, Universidad de Valparaíso, Valparaíso, Chile; Department of Electrical Engineering, Pontificia Universidad Catolica de Chile, Santiago, 7820436, Chile
| | - Leo Sok
- Bernoulli Institute, University of Groningen, Groningen, 9747AG, The Netherlands
| | - Cristian Montalba
- Biomedical Imaging Center, Pontificia Universidad Catolica de Chile, Santiago, 7820436, Chile; Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, 7820436, Chile
| | - Israel Valverde
- Hospital Universitario Virgen del Rocío, Sevilla, 41013, Spain
| | - Axel Osses
- Center for Mathematical Modeling, Universidad de Chile, Santiago, 8370456, Chile; Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, 7820436, Chile
| | - Sergio Uribe
- Biomedical Imaging Center, Pontificia Universidad Catolica de Chile, Santiago, 7820436, Chile; Department of Radiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 833002, Chile; Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, 7820436, Chile
| | - Cristóbal Bertoglio
- Bernoulli Institute, University of Groningen, Groningen, 9747AG, The Netherlands; Center for Mathematical Modeling, Universidad de Chile, Santiago, 8370456, Chile.
| |
Collapse
|
11
|
Abstract
Aortic valve stenosis has become the most common valvular heart disease on account of aging population and increasing life expectancy. Echocardiography is the primary diagnosis tool for this, but it still has many flaws. Therefore, advanced cardiovascular multimodal imaging techniques are continuously being developed in order to overcome these limitations. Cardiac magnetic resonance imaging (CMR) allows a comprehensive morphological and functional evaluation of the aortic valve and provides important data for the diagnosis and risk stratification in patients with aortic stenosis. CMR can functionally assess the aortic flow using two-dimensional and time-resolved three-dimensional velocity-encoded phase-contrast techniques. Furthermore, by late gadolinium enhancement and T1-mapping, CMR can reveal the presence of both irreversible replacement and diffuse interstitial myocardial fibrosis. Moreover, its role in guiding aortic valve replacement procedures is beginning to take shape. Recent studies have rendered the importance of active and passive biomechanics in risk stratification and prognosis prediction in patients with aortic stenosis, but more work is required is just in its infancy, but data are promising. In addition, cardiac computed tomography is particularly useful for the diagnosis of aortic valve stenosis, and in preprocedural evaluation of the aorta, while positron emission tomography can be also used to assess valvular inflammation and active calcification. The purpose of this review is to provide a comprehensive overview of current available data regarding advanced cardiovascular multimodal imaging in aortic stenosis.
Collapse
|
12
|
Burris NS, Nordsletten DA, Sotelo JA, Grogan-Kaylor R, Houben IB, Figueroa CA, Uribe S, Patel HJ. False lumen ejection fraction predicts growth in type B aortic dissection: preliminary results. Eur J Cardiothorac Surg 2021; 57:896-903. [PMID: 31821480 DOI: 10.1093/ejcts/ezz343] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Current risk assessment strategies in type B aortic dissection are focused on anatomic parameters, although haemodynamic abnormalities that result in false lumen (FL) pressurization are thought to play a significant role in aortic growth. The objective of this study was to evaluate blood flow of the FL using 4D flow magnetic resonance imaging (MRI) and identify haemodynamic and anatomic factors that independently predict the rate of aortic growth. METHODS Patients with dissection of the descending thoraco-abdominal aorta (n = 18) were enrolled in a prospective observational study and underwent 4D flow MRI for haemodynamic assessment of the entry tear and FL. Anatomic parameters were obtained by magnetic resonance angiography and baseline computed tomography. False lumen ejection fraction (FL EF) was defined the ratio of retrograde flow rate at the dominant entry tear during diastole over the antegrade systolic flow rate. RESULTS The median aortic growth rate was 3.5 mm/year (interquartile range 0.5-8.1 mm/year). Entry tear peak velocity was lower in patients with enlarging aortic dimensions (95.5 ± 24.1 vs 128.1 ± 37.4 cm/s, P = 0.039). After adjusting for co-variates FL EF (β = 0.15, P = 0.004), baseline maximal aortic diameter (β = 0.37, P = 0.001) and the entry tear distance from the left subclavian artery (β = 0.07, P = 0.016) were significant predictors of aortic growth rate. CONCLUSIONS Beyond standard anatomic risk factors, FL EF is an independent predictor of aortic growth rate and may represent an intuitive, non-invasive method to estimate FL pressurization and improve patient-specific risk assessment in patients with type B aortic dissection.
Collapse
Affiliation(s)
| | - David A Nordsletten
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Julio A Sotelo
- Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile
| | | | - Ignas B Houben
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - C Alberto Figueroa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Sergio Uribe
- Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile.,Department of Radiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Himanshu J Patel
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Lagrangian-averaged vorticity deviation of spiraling blood flow in the heart during isovolumic contraction and ejection phases. Med Biol Eng Comput 2021; 59:1417-1430. [PMID: 34115272 DOI: 10.1007/s11517-021-02366-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
The formation of vortex rings in the left ventricular (LV) blood flow is a mechanism for optimized blood transport from the mitral valve inlet to aortic valve outlet, and the vorticity is an important measure of a well-functioning LV. However, due to lack of quantitative methods, the process of defining the boundary of a vortex in the LV and identifying the dominant vortex components has not been studied previously. The Lagrangian-averaged vorticity deviation (LAVD) can enable us to compute the trajectory integral of the normed difference of the vorticity from its spatial mean. Therefore, in this work, we have employed LAVD to identify the Lagrangian vortices and Eulerian vortices for measuring the vortex volume and vorticity in the LV blood flow. We found that during the LV ejection period, the positive (counterclockwise) and negative (clockwise) vorticity of patients are consistently stronger than those of the healthy groups, and the counterclockwise vortex volume of healthy groups (0.84+0.26 ml) is greater than that of patients (0.55+0.28 ml) during the pre-ejection period. Then, during the middle ejection phase, the counterclockwise vortex ring volume of patients (1.89+0.36 ml) exceeds that of healthy groups (1.38+0.43 ml). Finally, during the end-ejection period, the counterclockwise vortex ring volume of healthy subjects (0.61+0.17 ml) is the same as that of patients (0.60+0.19 ml). The results presented in this paper can provide new insights into the blood flow patterns within the LV. It can accurately indicate the role of vortices and vorticity values in intra-LV flow, and portray how cardiomyopathy (and its distorted contractile mechanism) can affect intra-LV flow patterns and mitigate adequate LV outflow.
Collapse
|
14
|
Gbinigie H, Coats L, Parikh JD, Hollingsworth KG, Gan L. A 4D flow cardiovascular magnetic resonance study of flow asymmetry and haemodynamic quantity correlations in the pulmonary artery. Physiol Meas 2021; 42:025005. [PMID: 33482652 DOI: 10.1088/1361-6579/abdf3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE In this paper we elucidate the asymmetric flow pattern and the haemodynamic quantity distributions and correlations in the pulmonary artery (PA) vasculature in healthy adults having structurally normal hearts, to provide reference on the flow characteristics in the PA and the right ventricle. APPROACH Velocity data are acquired non-invasively from 18 healthy volunteers by 4D flow magnetic resonance imaging, resolved to 20 phases with spatial resolution 3 × 3 × 3 mm3. Interpolation is applied to improve the accuracy in quantifying haemodynamic quantities including kinetic energy, rotational energy, helicity and energy dissipation rate. These quantities are volumetrically normalised to remove size dependency, representing densities or local intensity. MAIN RESULTS Flow asymmetry in the PA is quantified in terms of all the flow dynamic quantities and their correlations. The right PA has larger diameter and higher peak stroke velocity than the left PA. It also has the highest rotational energy intensity. Counter-rotating helical streams in the main PA appear to be associated with the unidirectional helical flow noticed in the left and the right PA near the peak systole. SIGNIFICANCE This study provides a fundamental basis of normal flow in the PA. It implies the validity to use these flow pattern-related quantitative measures to aid with the identification of abnormal PA flow non-invasively, specifically for detecting abnormalities in the pulmonary circulation and response to therapy, where haemodynamic flow is commonly characterised by increased vortical and helical formations.
Collapse
Affiliation(s)
- Henrike Gbinigie
- Department of Engineering, Durham University, Durham, DH1 3LE, United Kingdom
| | | | | | | | | |
Collapse
|
15
|
van Ooij P, Farag ES, Blanken CPS, Nederveen AJ, Groenink M, Planken RN, Boekholdt SM. Fully quantitative mapping of abnormal aortic velocity and wall shear stress direction in patients with bicuspid aortic valves and repaired coarctation using 4D flow cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2021; 23:9. [PMID: 33588887 PMCID: PMC7885343 DOI: 10.1186/s12968-020-00703-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 12/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Helices and vortices in thoracic aortic blood flow measured with 4D flow cardiovascular magnetic resonance (CMR) have been associated with aortic dilation and aneurysms. Current approaches are semi-quantitative or when fully quantitative based on 2D plane placement. In this study, we present a fully quantitative and three-dimensional approach to map and quantify abnormal velocity and wall shear stress (WSS) at peak systole in patients with a bicuspid aortic valve (BAV) of which 52% had a repaired coarctation. METHODS 4D flow CMR was performed in 48 patients with BAV and in 25 healthy subjects at a spatiotemporal resolution of 2.5 × 2.5 × 2.5mm3/ ~ 42 ms and TE/TR/FA of 2.1 ms/3.4 ms/8° with k-t Principal Component Analysis factor R = 8. A 3D average of velocity and WSS direction was created for the normal subjects. Comparing BAV patient data with the 3D average map and selecting voxels deviating between 60° and 120° and > 120° yielded 3D maps and volume (in cm3) and surface (in cm2) quantification of abnormally directed velocity and WSS, respectively. Linear regression with Bonferroni corrected significance of P < 0.0125 was used to compare abnormally directed velocity volume and WSS surface in the ascending aorta with qualitative helicity and vorticity scores, with local normalized helicity (LNH) and quantitative vorticity and with patient characteristics. RESULTS The velocity volumes > 120° correlated moderately with the vorticity scores (R ~ 0.50, P < 0.001 for both observers). For WSS surface these results were similar. The velocity volumes between 60° and 120° correlated moderately with LNH (R = 0.66) but the velocity volumes > 120° did not correlate with quantitative vorticity. For abnormal velocity and WSS deviating between 60° and 120°, moderate correlations were found with aortic diameters (R = 0.50-0.70). For abnormal velocity and WSS deviating > 120°, additional moderate correlations were found with age and with peak velocity (stenosis severity) and a weak correlation with gender. Ensemble maps showed that more than 60% of the patients had abnormally directed velocity and WSS. Additionally, abnormally directed velocity and WSS was higher in the proximal descending aorta in the patients with repaired coarctation than in the patients where coarctation was never present. CONCLUSION The possibility to reveal directional abnormalities of velocity and WSS in 3D provides a new tool for hemodynamic characterization in BAV disease.
Collapse
Affiliation(s)
- Pim van Ooij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Emile S. Farag
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | - Carmen P. S. Blanken
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Aart J. Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Maarten Groenink
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Cardiology, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | - R. Nils Planken
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - S. Matthijs Boekholdt
- Department of Cardiology, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Galarce F, Lombardi D, Mula O. Reconstructing haemodynamics quantities of interest from Doppler ultrasound imaging. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3416. [PMID: 33219632 DOI: 10.1002/cnm.3416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
The present contribution deals with the estimation of haemodynamics Quantities of Interest by exploiting Ultrasound Doppler measurements. A fast method is proposed, based on the Parameterized Background Data-Weak (PBDW) method. Several methodological contributions are described: a sub-manifold partitioning is introduced to improve the reduced-order approximation, two different ways to estimate the pressure drop are compared, and an error estimation is derived. A fully synthetic test-case on a realistic common carotid geometry is presented, showing that the proposed approach is promising in view of realistic applications.
Collapse
Affiliation(s)
- Felipe Galarce
- Centre de Recherche INRIA de Paris, Laboratoire Jacques-Louis Lions Faculté des Sciences de Sorbonne Université, INRIA, Paris, France
| | - Damiano Lombardi
- Centre de Recherche INRIA de Paris, Laboratoire Jacques-Louis Lions Faculté des Sciences de Sorbonne Université, INRIA, Paris, France
| | - Olga Mula
- Centre de Recherche INRIA de Paris, Laboratoire Jacques-Louis Lions Faculté des Sciences de Sorbonne Université, INRIA, Paris, France
- CEREMADE, Paris-Dauphine University, PSL Research University, CNRS, Paris, France
| |
Collapse
|
17
|
Sotelo J, Valverde I, Martins D, Bonnet D, Boddaert N, Pushparajan K, Uribe S, Raimondi F. Impact of aortic arch curvature in flow haemodynamics in patients with transposition of the great arteries after arterial switch operation. Eur Heart J Cardiovasc Imaging 2021; 23:402-411. [PMID: 33517430 DOI: 10.1093/ehjci/jeaa416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/20/2020] [Indexed: 11/13/2022] Open
Abstract
AIMS In this study, we will describe a comprehensive haemodynamic analysis and its relationship to the dilation of the aorta in transposition of the great artery (TGA) patients post-arterial switch operation (ASO) and controls using 4D-flow magnetic resonance imaging (MRI) data. METHODS AND RESULTS Using 4D-flow MRI data of 14 TGA young patients and 8 age-matched normal controls obtained with 1.5 T GE-MR scanner, we evaluate 3D maps of 15 different haemodynamics parameters in six regions; three of them in the aortic root and three of them in the ascending aorta (anterior-left, -right, and posterior for both cases) to find its relationship with the aortic arch curvature and root dilation. Differences between controls and patients were evaluated using Mann-Whitney U test, and the relationship with the curvature was accessed by unpaired t-test. For statistical significance, we consider a P-value of 0.05. The aortic arch curvature was significantly different between patients 46.238 ± 5.581 m-1 and controls 41.066 ± 5.323 m-1. Haemodynamic parameters as wall shear stress circumferential (WSS-C), and eccentricity (ECC), were significantly different between TGA patients and controls in both the root and ascending aorta regions. The distribution of forces along the ascending aorta is highly inhomogeneous in TGA patients. We found that the backward velocity (B-VEL), WSS-C, velocity angle (VEL-A), regurgitation fraction (RF), and ECC are highly correlated with the aortic arch curvature and root dilatation. CONCLUSION We have identified six potential biomarkers (B-VEL, WSS-C, VEL-A, RF, and ECC), which may be helpful for follow-up evaluation and early prediction of aortic root dilatation in this patient population.
Collapse
Affiliation(s)
- Julio Sotelo
- School of Biomedical Engineering, Universidad de Valparaíso, General Cruz 222, 236-2905 Valparaíso, Chile.,Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4869, Macul, Santiago 832-0000, Chile.,Department of Electrical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 832-0000, Chile.,Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile
| | - Israel Valverde
- School of Biomedical Engineering & Imaging Sciences, King's College London, Lambeth Wing St, Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK.,Paediatric Cardiology, Evelina London Children's Hospital, St. Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK.,Pediatric Cardiology Unit, Institute of Biomedicine of Seville (IBIS), CIBER-CV, Hospital Virgen de Rocio/CSIC/University of Seville, Av. Manuel Siurot, S/n, 41013 Seville, Spain
| | - Duarte Martins
- Unité médico-chirurgicale de cardiologie congénitale et pédiatrique, centre de référence des maladies cardiaques congénitales complexes-M3C, Hôpital universitaire Necker-Enfants Malades, 149 Rue de Sèvres, 75015 Paris, France.,Pediatric Cardiology Department, Hospital de Santa Cruz, Centro Hospitalar Lisboa Ocidental. Av. Prof. Dr. Reinaldo dos Santos, 2790-134 Carnaxide, Lisbon, Portugal
| | - Damien Bonnet
- Unité médico-chirurgicale de cardiologie congénitale et pédiatrique, centre de référence des maladies cardiaques congénitales complexes-M3C, Hôpital universitaire Necker-Enfants Malades, 149 Rue de Sèvres, 75015 Paris, France
| | - Nathalie Boddaert
- Pediatric Radiology Unit, Hôpital universitaire Necker-Enfants Malades, 149 Rue de Sèvres, 75015, Paris, France
| | - Kuberan Pushparajan
- School of Biomedical Engineering & Imaging Sciences, King's College London, Lambeth Wing St, Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK.,Paediatric Cardiology, Evelina London Children's Hospital, St. Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Sergio Uribe
- Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4869, Macul, Santiago 832-0000, Chile.,Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile.,Department of Radiology, School of Medicine, Pontificia Universidad Católica de Chile, Avda. Libertador Bernando O'Higgins 340, 833-1150 Santiago, Chile
| | - Francesca Raimondi
- Paediatric Cardiology, Evelina London Children's Hospital, St. Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK.,Unité médico-chirurgicale de cardiologie congénitale et pédiatrique, centre de référence des maladies cardiaques congénitales complexes-M3C, Hôpital universitaire Necker-Enfants Malades, 149 Rue de Sèvres, 75015 Paris, France.,Pediatric Radiology Unit, Hôpital universitaire Necker-Enfants Malades, 149 Rue de Sèvres, 75015, Paris, France
| |
Collapse
|
18
|
Abstract
Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiac and vascular diseases. Since its introduction in the late 1980s, quantitative flow imaging with MRI has become a routine part of standard-of-care cardiothoracic and vascular MRI for the assessment of pathological changes in blood flow in patients with cardiovascular disease. More recently, time-resolved flow imaging with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (4D flow MRI) has been developed and applied to enable comprehensive 3D visualization and quantification of hemodynamics throughout the human circulatory system. This article provides an overview of the use of 4D flow applications in different cardiac and vascular regions in the human circulatory system, with a focus on using 4D flow MRI in cardiothoracic and cerebrovascular diseases.
Collapse
Affiliation(s)
- Gilles Soulat
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Patrick McCarthy
- Division of Cardiac Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
19
|
Garcia J, Barker AJ, Markl M. The Role of Imaging of Flow Patterns by 4D Flow MRI in Aortic Stenosis. JACC Cardiovasc Imaging 2019; 12:252-266. [DOI: 10.1016/j.jcmg.2018.10.034] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 11/30/2022]
|
20
|
Craven BA, Aycock KI, Manning KB. Steady Flow in a Patient-Averaged Inferior Vena Cava—Part II: Computational Fluid Dynamics Verification and Validation. Cardiovasc Eng Technol 2018; 9:654-673. [DOI: 10.1007/s13239-018-00392-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/27/2018] [Indexed: 12/31/2022]
|
21
|
Montalba C, Urbina J, Sotelo J, Andia ME, Tejos C, Irarrazaval P, Hurtado DE, Valverde I, Uribe S. Variability of 4D flow parameters when subjected to changes in MRI acquisition parameters using a realistic thoracic aortic phantom. Magn Reson Med 2017; 79:1882-1892. [DOI: 10.1002/mrm.26834] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/02/2017] [Accepted: 06/19/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Cristian Montalba
- Biomedical Imaging CenterPontificia Universidad Católica de ChileSantiago Chile
| | - Jesus Urbina
- Biomedical Imaging CenterPontificia Universidad Católica de ChileSantiago Chile
- Department of RadiologySchool of Medicine, Pontificia Universidad Católica de ChileSantiago Chile
| | - Julio Sotelo
- Biomedical Imaging CenterPontificia Universidad Católica de ChileSantiago Chile
- Department of Electrical EngineeringPontificia Universidad Católica de ChileSantiago Chile
| | - Marcelo E. Andia
- Biomedical Imaging CenterPontificia Universidad Católica de ChileSantiago Chile
- Department of RadiologySchool of Medicine, Pontificia Universidad Católica de ChileSantiago Chile
| | - Cristian Tejos
- Biomedical Imaging CenterPontificia Universidad Católica de ChileSantiago Chile
- Department of Electrical EngineeringPontificia Universidad Católica de ChileSantiago Chile
| | - Pablo Irarrazaval
- Biomedical Imaging CenterPontificia Universidad Católica de ChileSantiago Chile
- Department of Electrical EngineeringPontificia Universidad Católica de ChileSantiago Chile
| | - Daniel E. Hurtado
- Department of Structural and Geotechnical EngineeringPontificia Universidad Católica de ChileSantiago Chile
- Institute for Biological and Medical EngineeringSchools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de ChileSantiago Chile
| | - Israel Valverde
- Hospital Virgen del RocioUniversidad de SevillaSeville Spain
- Institute of Biomedicine of SevilleUniversidad de SevillaSeville Spain
| | - Sergio Uribe
- Biomedical Imaging CenterPontificia Universidad Católica de ChileSantiago Chile
- Department of RadiologySchool of Medicine, Pontificia Universidad Católica de ChileSantiago Chile
| |
Collapse
|