1
|
Wilcox M, Ogier S, Cheshkov S, Dimitrov I, Malloy C, Wright S, McDougall M. A 16-Channel 13C Array Coil for Magnetic Resonance Spectroscopy of the Breast at 7T. IEEE Trans Biomed Eng 2021; 68:2036-2046. [PMID: 33651680 DOI: 10.1109/tbme.2021.3063061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Considering the reported elevation of ω-6/ω-3 fatty acid ratios in breast neoplasms, one particularly important application of 13C MRS could be in more fully understanding the breast lipidome's relationship to breast cancer incidence. However, the low natural abundance and gyromagnetic ratio of the 13C isotope lead to detection sensitivity challenges. Previous 13C MRS studies have relied on the use of small surface coils with limited field-of-view and shallow penetration depths to achieve adequate signal-to-noise ratio (SNR), and the use of receive array coils is still mostly unexplored. METHODS This work presents a unilateral breast 16-channel 13C array coil and interfacing hardware designed to retain the surface sensitivity of a single small loop coil while improving penetration depth and extending the field-of-view over the entire breast at 7T. The coil was characterized through bench measurements and phantom 13C spectroscopy experiments. RESULTS Bench measurements showed receive coil matching better than -17 dB and average preamplifier decoupling of 16.2 dB with no evident peak splitting. Phantom MRS studies show better than a three-fold increase in average SNR over the entirety of the breast region compared to volume coil reception alone as well as an ability for individual array elements to be used for coarse metabolite localization without the use of single-voxel or spectroscopic imaging methods. CONCLUSION Our current study has shown the benefits of the array. Future in vivo lipidomics studies can be pursued. SIGNIFICANCE Development of the 16-channel breast array coil opens possibilities of in vivo lipidomics studies to elucidate the link between breast cancer incidence and lipid metabolics.
Collapse
|
2
|
Lanz B, Abaei A, Braissant O, Choi IY, Cudalbu C, Henry PG, Gruetter R, Kara F, Kantarci K, Lee P, Lutz NW, Marjańska M, Mlynárik V, Rasche V, Xin L, Valette J. Magnetic resonance spectroscopy in the rodent brain: Experts' consensus recommendations. NMR IN BIOMEDICINE 2020; 34:e4325. [PMID: 33565219 PMCID: PMC9429976 DOI: 10.1002/nbm.4325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/11/2019] [Revised: 03/29/2020] [Accepted: 04/30/2020] [Indexed: 05/21/2023]
Abstract
In vivo MRS is a non-invasive measurement technique used not only in humans, but also in animal models using high-field magnets. MRS enables the measurement of metabolite concentrations as well as metabolic rates and their modifications in healthy animals and disease models. Such data open the way to a deeper understanding of the underlying biochemistry, related disturbances and mechanisms taking place during or prior to symptoms and tissue changes. In this work, we focus on the main preclinical 1H, 31P and 13C MRS approaches to study brain metabolism in rodent models, with the aim of providing general experts' consensus recommendations (animal models, anesthesia, data acquisition protocols). An overview of the main practical differences in preclinical compared with clinical MRS studies is presented, as well as the additional biochemical information that can be obtained in animal models in terms of metabolite concentrations and metabolic flux measurements. The properties of high-field preclinical MRS and the technical limitations are also described.
Collapse
Affiliation(s)
- Bernard Lanz
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Alireza Abaei
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
| | - Olivier Braissant
- Service of Clinical Chemistry, University of Lausanne and University Hospital of Lausanne, Lausanne, Switzerland
| | - In-Young Choi
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, US
| | - Cristina Cudalbu
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, US
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Firat Kara
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, US
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, US
| | - Phil Lee
- Department of Radiology, University of Kansas Medical Center, Kansas City, Kansas, US
| | - Norbert W Lutz
- CNRS, CRMBM, Aix-Marseille University, Marseille, France
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, US
| | - Vladimír Mlynárik
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Volker Rasche
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
| | - Lijing Xin
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julien Valette
- Commissariat à l'Energie Atomique et aux Energies Alternatives, MIRCen, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Fontenay-aux-Roses, France
| |
Collapse
|
3
|
Dehghani M, Zhang S, Kumaragamage C, Rosa‐Neto P, Near J. Dynamic
1
H‐MRS for detection of
13
C‐labeled glucose metabolism in the human brain at 3T. Magn Reson Med 2020; 84:1140-1151. [DOI: 10.1002/mrm.28188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Masoumeh Dehghani
- Centre d’Imagerie Cérébrale Douglas Mental Health University Institute Verdun Quebec Canada
- Department of Psychiatry McGill University Montreal Quebec Canada
| | - Steven Zhang
- Department of Neuroscience McGill University Montreal Quebec Canada
| | - Chathura Kumaragamage
- Department of Radiology and Biomedical Imaging Yale University New Haven Connecticut
| | - Pedro Rosa‐Neto
- Translational Neuroimaging Laboratory The McGill University Research Center for Studies in AgiNGAlzheimer’s Diseases Research UnitDouglas Research InstituteMcGill university Montreal Quebec Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics McGill University Montreal Quebec Canada
| | - Jamie Near
- Centre d’Imagerie Cérébrale Douglas Mental Health University Institute Verdun Quebec Canada
- Department of Psychiatry McGill University Montreal Quebec Canada
| |
Collapse
|
4
|
Abstract
Functional synapses in the central nervous system depend on a chemical signal exchange process that involves neurotransmitter delivery between neurons and receptor cells in the neuro system.
Collapse
Affiliation(s)
- Yi Su
- Zhejiang university
- Hangzhou, 310058
- China
- CENBRAIN Lab
- School of Engineering
| | - Sumin Bian
- CENBRAIN Lab
- School of Engineering
- Westlake University
- Hangzhou
- China
| | - Mohamad Sawan
- CENBRAIN Lab
- School of Engineering
- Westlake University
- Hangzhou
- China
| |
Collapse
|
5
|
Kumaragamage C, Madularu D, Mathieu AP, Lupinsky D, de Graaf RA, Near J. Minimum echo time PRESS-based proton observed carbon edited (POCE) MRS in rat brain using simultaneous editing and localization pulses. Magn Reson Med 2018; 80:1279-1288. [DOI: 10.1002/mrm.27119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/05/2017] [Revised: 12/22/2017] [Accepted: 01/14/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Chathura Kumaragamage
- Department of Biomedical Engineering; McGill University; Montreal Quebec Canada
- Brain Imaging Centre; Douglas Mental Health University Institute, McGill University; Montreal Quebec Canada
| | - Dan Madularu
- Department of Psychiatry, Faculty of Medicine; McGill University; Montreal Quebec Canada
- Brain Imaging Centre; Douglas Mental Health University Institute, McGill University; Montreal Quebec Canada
- Center for Translational NeuroImaging; Northeastern University; Boston Massachusetts USA
| | - Axel P. Mathieu
- Department of Psychiatry, Faculty of Medicine; McGill University; Montreal Quebec Canada
- Brain Imaging Centre; Douglas Mental Health University Institute, McGill University; Montreal Quebec Canada
| | - Derek Lupinsky
- Department of Psychiatry, Faculty of Medicine; McGill University; Montreal Quebec Canada
- Brain Imaging Centre; Douglas Mental Health University Institute, McGill University; Montreal Quebec Canada
| | - Robin A. de Graaf
- Radiology and Biomedical Imaging; Yale University; New Haven Connecticut USA
| | - Jamie Near
- Department of Biomedical Engineering; McGill University; Montreal Quebec Canada
- Department of Psychiatry, Faculty of Medicine; McGill University; Montreal Quebec Canada
- Brain Imaging Centre; Douglas Mental Health University Institute, McGill University; Montreal Quebec Canada
| |
Collapse
|