Wenz D, Dardano T. Multi-feed, loop-dipole combined dielectric resonator antenna arrays for human brain MRI at 7 T.
MAGMA (NEW YORK, N.Y.) 2023;
36:227-243. [PMID:
37017828 PMCID:
PMC10140138 DOI:
10.1007/s10334-023-01078-y]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 04/06/2023]
Abstract
OBJECTIVE
To determine whether a multi-feed, loop-dipole combined approach can be used to improve performance of rectangular dielectric resonator antenna (DRA) arrays human brain for MRI at 7 T.
MATERIALS AND METHODS
Electromagnetic field simulations in a spherical phantom and human voxel model "Duke" were conducted for different rectangular DRA geometries and dielectric constants εr. Three types of RF feed were investigated: loop-only, dipole-only and loop-dipole. Additionally, multi-channel array configurations up to 24-channels were simulated.
RESULTS
The loop-only coupling scheme provided the highest B1+ and SAR efficiency, while the loop-dipole showed the highest SNR in the center of a spherical phantom for both single- and multi-channel configurations. For Duke, 16-channel arrays outperformed an 8-channel bow-tie array with greater B1+ efficiency (1.48- to 1.54-fold), SAR efficiency (1.03- to 1.23-fold) and SNR (1.63- to 1.78). The multi-feed, loop-dipole combined approach enabled the number of channels increase to 24 with 3 channels per block.
DISCUSSION
This work provides novel insights into the rectangular DRA design for high field MRI and shows that the loop-only feed should be used instead of the dipole-only in transmit mode to achieve the highest B1+ and SAR efficiency, while the loop-dipole should be the best suited in receive mode to obtain the highest SNR in spherical samples of similar size and electrical properties as the human head.
Collapse