1
|
Jerban S, Moazamian D, Mohammadi HS, Ma Y, Jang H, Namiranian B, Shin SH, Alenezi S, Shah SB, Chung CB, Chang EY, Du J. More accurate trabecular bone imaging using UTE MRI at the resonance frequency of fat. Bone 2024; 184:117096. [PMID: 38631596 PMCID: PMC11357721 DOI: 10.1016/j.bone.2024.117096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
High-resolution magnetic resonance imaging (HR-MRI) has been increasingly used to assess the trabecular bone structure. High susceptibility at the marrow/bone interface may significantly reduce the marrow's apparent transverse relaxation time (T2*), overestimating trabecular bone thickness. Ultrashort echo time MRI (UTE-MRI) can minimize the signal loss caused by susceptibility-induced T2* shortening. However, UTE-MRI is sensitive to chemical shift artifacts, which manifest as spatial blurring and ringing artifacts partially due to non-Cartesian sampling. In this study, we proposed UTE-MRI at the resonance frequency of fat to minimize marrow-related chemical shift artifacts and the overestimation of trabecular thickness. Cubes of trabecular bone from six donors (75 ± 4 years old) were scanned using a 3 T clinical scanner at the resonance frequencies of fat and water, respectively, using 3D UTE sequences with five TEs (0.032, 1.1, 2.2, 3.3, and 4.4 ms) and a clinical 3D gradient echo (GRE) sequence at 0.2 × 0.2 × 0.4 mm3 voxel size. Trabecular bone thickness was measured in 30 regions of interest (ROIs) per sample. MRI results were compared with thicknesses obtained from micro-computed tomography (μCT) at 50 μm3 voxel size. Linear regression models were used to calculate the coefficient of determination between MRI- and μCT-based trabecular thickness. All MRI-based trabecular thicknesses showed significant correlations with μCT measurements. The correlations were higher (examined with paired Student's t-test, P < 0.01) for 3D UTE images performed at the fat frequency (R2 = 0.59-0.74, P < 0.01) than those at the water frequency (R2 = 0.18-0.52, P < 0.01) and clinical GRE images (R2 = 0.39-0.47, P < 0.01). Significantly reduced correlations were observed with longer TEs. This study highlighted the feasibility of UTE-MRI at the fat frequency for a more accurate assessment of trabecular bone thickness.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.
| | - Dina Moazamian
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | | | - Yajun Ma
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Behnam Namiranian
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Soo Hyun Shin
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Salem Alenezi
- Research and Laboratories Sector, Saudi Food and Drug Authority, Riyadh, Saudi Arabia
| | - Sameer B Shah
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA; Orthopaedic Research, University of California, San Diego, La Jolla, CA, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Casula V, Kajabi AW. Quantitative MRI methods for the assessment of structure, composition, and function of musculoskeletal tissues in basic research and preclinical applications. MAGMA (NEW YORK, N.Y.) 2024:10.1007/s10334-024-01174-7. [PMID: 38904746 DOI: 10.1007/s10334-024-01174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/04/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024]
Abstract
Osteoarthritis (OA) is a disabling chronic disease involving the gradual degradation of joint structures causing pain and dysfunction. Magnetic resonance imaging (MRI) has been widely used as a non-invasive tool for assessing OA-related changes. While anatomical MRI is limited to the morphological assessment of the joint structures, quantitative MRI (qMRI) allows for the measurement of biophysical properties of the tissues at the molecular level. Quantitative MRI techniques have been employed to characterize tissues' structural integrity, biochemical content, and mechanical properties. Their applications extend to studying degenerative alterations, early OA detection, and evaluating therapeutic intervention. This article is a review of qMRI techniques for musculoskeletal tissue evaluation, with a particular emphasis on articular cartilage. The goal is to describe the underlying mechanism and primary limitations of the qMRI parameters, their association with the tissue physiological properties and their potential in detecting tissue degeneration leading to the development of OA with a primary focus on basic and preclinical research studies. Additionally, the review highlights some clinical applications of qMRI, discussing the role of texture-based radiomics and machine learning in advancing OA research.
Collapse
Affiliation(s)
- Victor Casula
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| | - Abdul Wahed Kajabi
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Jerban S, Jang H, Chang EY, Bukata S, Du J, Chung CB. Bone Biomarkers Based on Magnetic Resonance Imaging. Semin Musculoskelet Radiol 2024; 28:62-77. [PMID: 38330971 DOI: 10.1055/s-0043-1776431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Magnetic resonance imaging (MRI) is increasingly used to evaluate the microstructural and compositional properties of bone. MRI-based biomarkers can characterize all major compartments of bone: organic, water, fat, and mineral components. However, with a short apparent spin-spin relaxation time (T2*), bone is invisible to conventional MRI sequences that use long echo times. To address this shortcoming, ultrashort echo time MRI sequences have been developed to provide direct imaging of bone and establish a set of MRI-based biomarkers sensitive to the structural and compositional changes of bone. This review article describes the MRI-based bone biomarkers representing total water, pore water, bound water, fat fraction, macromolecular fraction in the organic matrix, and surrogates for mineral density. MRI-based morphological bone imaging techniques are also briefly described.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, La Jolla, California
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Susan Bukata
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Jiang Du
- Department of Radiology, University of California, San Diego, La Jolla, California
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, La Jolla, California
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
4
|
Böhm C, Stelter JK, Weiss K, Meineke J, Komenda A, Borde T, Makowski MR, Fallenberg EM, Karampinos DC. Robust breast quantitative susceptibility mapping in the presence of silicone. Magn Reson Med 2023; 90:1209-1218. [PMID: 37125658 DOI: 10.1002/mrm.29694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
PURPOSE To (a) develop a preconditioned water-fat-silicone total field inversion (wfsTFI) algorithm that directly estimates the susceptibility map from complex multi-echo data in the breast in the presence of silicone and to (b) evaluate the performance of wfsTFI for breast quantitative susceptibility mapping (QSM) in silico and in vivo in comparison with formerly proposed methods. METHODS Numerical simulations and in vivo multi-echo gradient echo breast measurements were performed to compare wfsTFI to a previously proposed field map-based linear total field inversion algorithm (lTFI) with and without the consideration of the chemical shift of silicone in the field map estimation step. Specifically, a simulation based on an in vivo scan and data from five patients were included in the analysis. RESULTS In the simulation, wfsTFI is able to significantly decrease the normalized root mean square error from lTFI without (4.46) and with (1.77) the consideration of the chemical shift of silicone to 0.68. Both the in silico and in vivo wfsTFI susceptibility maps show reduced shadowing artifacts in local tissue adjacent to silicone, reduced streaking artifacts and no erroneous single voxels of diamagnetic susceptibility in proximity to silicone. CONCLUSION The proposed wfsTFI method can automatically distinguish between subjects with and without silicone. Furthermore wfsTFI accounts for the presence of silicone in the QSM dipole inversion and allows for the robust estimation of susceptibility in proximity to silicone breast implants and hence allows the visualization of structures that would otherwise be dominated by artifacts on susceptibility maps.
Collapse
Affiliation(s)
- Christof Böhm
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jonathan K Stelter
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | | | - Alexander Komenda
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tabea Borde
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marcus R Makowski
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Eva M Fallenberg
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
5
|
Marants R, Tattenberg S, Scholey J, Kaza E, Miao X, Benkert T, Magneson O, Fischer J, Vinas L, Niepel K, Bortfeld T, Landry G, Parodi K, Verburg J, Sudhyadhom A. Validation of an MR-based multimodal method for molecular composition and proton stopping power ratio determination using ex vivo animal tissues and tissue-mimicking phantoms. Phys Med Biol 2023; 68:10.1088/1361-6560/ace876. [PMID: 37463589 PMCID: PMC10645122 DOI: 10.1088/1361-6560/ace876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023]
Abstract
Objective. Range uncertainty in proton therapy is an important factor limiting clinical effectiveness. Magnetic resonance imaging (MRI) can measure voxel-wise molecular composition and, when combined with kilovoltage CT (kVCT), accurately determine mean ionization potential (Im), electron density, and stopping power ratio (SPR). We aimed to develop a novel MR-based multimodal method to accurately determine SPR and molecular compositions. This method was evaluated in tissue-mimicking andex vivoporcine phantoms, and in a brain radiotherapy patient.Approach. Four tissue-mimicking phantoms with known compositions, two porcine tissue phantoms, and a brain cancer patient were imaged with kVCT and MRI. Three imaging-based values were determined: SPRCM(CT-based Multimodal), SPRMM(MR-based Multimodal), and SPRstoich(stoichiometric calibration). MRI was used to determine two tissue-specific quantities of the Bethe Bloch equation (Im, electron density) to compute SPRCMand SPRMM. Imaging-based SPRs were compared to measurements for phantoms in a proton beam using a multilayer ionization chamber (SPRMLIC).Main results. Root mean square errors relative to SPRMLICwere 0.0104(0.86%), 0.0046(0.45%), and 0.0142(1.31%) for SPRCM, SPRMM, and SPRstoich, respectively. The largest errors were in bony phantoms, while soft tissue and porcine tissue phantoms had <1% errors across all SPR values. Relative to known physical molecular compositions, imaging-determined compositions differed by approximately ≤10%. In the brain case, the largest differences between SPRstoichand SPRMMwere in bone and high lipids/fat tissue. The magnitudes and trends of these differences matched phantom results.Significance. Our MR-based multimodal method determined molecular compositions and SPR in various tissue-mimicking phantoms with high accuracy, as confirmed with proton beam measurements. This method also revealed significant SPR differences compared to stoichiometric kVCT-only calculation in a clinical case, with the largest differences in bone. These findings support that including MRI in proton therapy treatment planning can improve the accuracy of calculated SPR values and reduce range uncertainties.
Collapse
Affiliation(s)
- Raanan Marants
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sebastian Tattenberg
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jessica Scholey
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California, United States of America
| | - Evangelia Kaza
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xin Miao
- Siemens Medical Solutions USA Inc., Boston, Massachusetts, United States of America
| | | | - Olivia Magneson
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jade Fischer
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Physics, University of Calgary, Calgary, Alberta, Canada
| | - Luciano Vinas
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Statistics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Katharina Niepel
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| | - Thomas Bortfeld
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Joost Verburg
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Atchar Sudhyadhom
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Boehm C, Schlaeger S, Meineke J, Weiss K, Makowski MR, Karampinos DC. On the water-fat in-phase assumption for quantitative susceptibility mapping. Magn Reson Med 2023; 89:1068-1082. [PMID: 36321543 DOI: 10.1002/mrm.29516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/06/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE To (a) define multi-peak fat model-based effective in-phase echo times for quantitative susceptibility mapping (QSM) in water-fat regions, (b) analyze the relationship between fat fraction, field map quantification bias and susceptibility bias, and (c) evaluate the susceptibility mapping performance of the proposed effective in-phase echoes in comparison to single-peak in-phase echoes and water-fat separation for regions where both water and fat are present. METHODS Effective multipeak in-phase echo times for a bone marrow and a liver fat spectral model were derived from a single voxel simulation. A Monte Carlo simulation was performed to assess the field map estimation error as a function of fat fraction for the different in-phase echoes. Additionally, a phantom scan and in vivo scans in the liver, spine, and breast were performed and evaluated with respect to quantification accuracy. RESULTS The use of single-peak in-phase echoes can introduce a worst-case susceptibility bias of 0.43 $$ 0.43 $$ ppm. The use of effective multipeak in-phase echoes shows a similar quantitative performance in the numerical simulation, the phantom and in all in vivo anatomies when compared to water-fat separation-based QSM. CONCLUSION QSM based on the proposed effective multipeak in-phase echoes can alleviate the quantification bias present in QSM based on single-peak in-phase echoes. When compared to water-fat separation-based QSM the proposed effective in-phase echo times achieve a similar quantitative performance while drastically reducing the computational expense for field map estimation.
Collapse
Affiliation(s)
- Christof Boehm
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sarah Schlaeger
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | | | - Marcus R Makowski
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
7
|
Sun C, Ghassaban K, Song J, Chen Y, Zhang C, Qu F, Zhu J, Wang G, Haacke EM. Quantifying calcium changes in the fetal spine using quantitative susceptibility mapping as extracted from STAGE imaging. Eur Radiol 2023; 33:606-614. [PMID: 36044065 PMCID: PMC10662431 DOI: 10.1007/s00330-022-09042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/11/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To evaluate calcium deposition in the fetal spine in vivo during the second and third trimesters using quantitative susceptibility mapping (QSM). METHODS Fifty-four pregnant women in their second and third trimesters underwent a 2D multi-echo STrategically Acquired Gradient Echo (STAGE) MR imaging protocol at 3T covering the fetal spine. The first echo data was used for QSM processing. A linear regression model was used to assess the correlation between magnetic susceptibility and gestational age (GA). A paired sample t-test was used to compare the consistency of QSM measurements from each sequence. RESULTS The magnetic susceptibility of the fetal spine decreased linearly with advancing GA, with a slope of -52.3 parts per billion (ppb)/week and a Pearson correlation coefficient (r) of 0.83 (p < 0.001). In 37 subjects for whom the STAGE local QSM data were available from both flip angles, the average magnetic susceptibility values were -1111 ± 278 ppb and -1081 ± 262 ppb for FA = 8° and FA = 40°, respectively. These means were not statistically different according to a paired sample t-test (p = 0.156). CONCLUSIONS QSM is a reliable technique for evaluating calcium deposition and bone mineral density of fetal vertebrae. Our results demonstrate an increase in fetal calcium levels as a function of GA. These measures might be able to provide reference values for calcium content in the fetal spine during the second and third trimesters. KEY POINTS • Calcium deposition and mineralization in the fetal spine, evaluated by vertebral magnetic susceptibility, increased with advancing gestational age. • Our results provide reference values for calcium content in the fetal spine during the second and third trimesters.
Collapse
Affiliation(s)
- Cong Sun
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Kiarash Ghassaban
- Department of Radiology, Wayne State University, Detroit, MI, USA
- SpinTech MRI Inc., Bingham Farms, MI, USA
| | - Jiaguang Song
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yufan Chen
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Chao Zhang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Feifei Qu
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, China
| | - Jinxia Zhu
- MR Collaboration, Siemens Healthineers Ltd., Beijing, China
| | - Guangbin Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324, Jingwu Road, Jinan, 250021, Shandong, China.
| | - E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, USA.
- SpinTech MRI Inc., Bingham Farms, MI, USA.
| |
Collapse
|
8
|
Ma Y, Jang H, Jerban S, Chang EY, Chung CB, Bydder GM, Du J. Making the invisible visible-ultrashort echo time magnetic resonance imaging: Technical developments and applications. APPLIED PHYSICS REVIEWS 2022; 9:041303. [PMID: 36467869 PMCID: PMC9677812 DOI: 10.1063/5.0086459] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/12/2022] [Indexed: 05/25/2023]
Abstract
Magnetic resonance imaging (MRI) uses a large magnetic field and radio waves to generate images of tissues in the body. Conventional MRI techniques have been developed to image and quantify tissues and fluids with long transverse relaxation times (T2s), such as muscle, cartilage, liver, white matter, gray matter, spinal cord, and cerebrospinal fluid. However, the body also contains many tissues and tissue components such as the osteochondral junction, menisci, ligaments, tendons, bone, lung parenchyma, and myelin, which have short or ultrashort T2s. After radio frequency excitation, their transverse magnetizations typically decay to zero or near zero before the receiving mode is enabled for spatial encoding with conventional MR imaging. As a result, these tissues appear dark, and their MR properties are inaccessible. However, when ultrashort echo times (UTEs) are used, signals can be detected from these tissues before they decay to zero. This review summarizes recent technical developments in UTE MRI of tissues with short and ultrashort T2 relaxation times. A series of UTE MRI techniques for high-resolution morphological and quantitative imaging of these short-T2 tissues are discussed. Applications of UTE imaging in the musculoskeletal, nervous, respiratory, gastrointestinal, and cardiovascular systems of the body are included.
Collapse
Affiliation(s)
- Yajun Ma
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, California 92037, USA
| | | | | | - Graeme M Bydder
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Jiang Du
- Author to whom correspondence should be addressed:. Tel.: (858) 246-2248, Fax: (858) 246-2221
| |
Collapse
|
9
|
Hanspach J, Bollmann S, Grigo J, Karius A, Uder M, Laun FB. Deep learning-based quantitative susceptibility mapping (QSM) in the presence of fat using synthetically generated multi-echo phase training data. Magn Reson Med 2022; 88:1548-1560. [PMID: 35713187 DOI: 10.1002/mrm.29265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 03/22/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE To enable a fast and automatic deep learning-based QSM reconstruction of tissues with diverse chemical shifts, relevant to most regions outside the brain. METHODS A UNET was trained to reconstruct susceptibility maps using synthetically generated, unwrapped, multi-echo phase data as input. The RMS error with respect to synthetic validation data was computed. The method was tested on two in vivo knee and two pelvis data sets. Comparisons were made to a conventional fat-water separation pipeline by applying a commonly used graph-cut algorithm, both without and with an extended mask for background field removal (FWS-CONV-QSM and FWS-MASK-CONV-QSM, respectively). Several regions of interest were segmented and compared. Furthermore, the approach was tested on a prostate cancer patient receiving low-dose-rate brachytherapy, to detect and localize the seeds by MRI. RESULTS The RMS error was 0.292 ppm with FWS-CONV-QSM and 0.123 ppm for the UNET approach. Susceptibility maps were reconstructed much faster (< 10 s) and completely automatically (no background masking needed) by the UNET compared with the other applied techniques (5 min 51 s and 22 min 44 s for CONV-QSM and FWS-MASK-CONV-QSM, respectively. Background artifacts, fat-water swaps, and hypointense artifacts between I-125 seeds of a patient receiving low-dose brachytherapy in the prostate were largely reduced in the UNET approach. CONCLUSIONS Deep learning-based QSM reconstruction, trained solely with synthetic data, is well-suited to rapidly reconstructing high-quality susceptibility maps in the presence of fat without needing masking for background field removal.
Collapse
Affiliation(s)
- Jannis Hanspach
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Steffen Bollmann
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia
| | - Johanna Grigo
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Andre Karius
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Frederik B Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
10
|
Kronthaler S, Diefenbach MN, Boehm C, Zamskiy M, Makowski MR, Baum T, Sollmann N, Karampinos DC. On quantification errors of R 2 * $$ {R}_2^{\ast } $$ and proton density fat fraction mapping in trabecularized bone marrow in the static dephasing regime. Magn Reson Med 2022; 88:1126-1139. [PMID: 35481686 DOI: 10.1002/mrm.29279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE To study the effect of field inhomogeneity distributions in trabecularized bone regions on the gradient echo (GRE) signal with short TEs and to characterize quantification errors on R 2 * $$ {R}_2^{\ast } $$ and proton density fat fraction (PDFF) maps when using a water-fat model with an exponential R 2 * $$ {R}_2^{\ast } $$ decay model at short TEs. METHODS Field distortions were simulated based on a trabecular bone micro CT dataset. Simulations were performed for different bone volume fractions (BV/TV) and for different bone-fat composition values. A multi-TE UTE acquisition was developed to acquire multiple UTEs with random order to minimize eddy currents. The acquisition was validated in phantoms and applied in vivo in a volunteer's ankle and knee. Chemical shift encoded MRI (CSE-MRI) based on a Cartesian multi-TE GRE scan was acquired in the spine of patients with metastatic bone disease. RESULTS Simulations showed that signal deviations from the exponential signal decay at short TEs were more prominent for a higher BV/TV. UTE multi-TE measurements reproduced in vivo the simulation-based predicted behavior. In regions with high BV/TV, the presence of field inhomogeneities induced an R 2 * $$ {R}_2^{\ast } $$ underestimation in trabecularized bone marrow when using CSE-MRI at 3T with a short TE. CONCLUSION R 2 * $$ {R}_2^{\ast } $$ can be underestimated when using short TEs (<2 ms at 3 T) and a water-fat model with an exponential R 2 * $$ {R}_2^{\ast } $$ decay model in multi-echo GRE acquisitions of trabecularized bone marrow.
Collapse
Affiliation(s)
- Sophia Kronthaler
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian N Diefenbach
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christof Boehm
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Mark Zamskiy
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marcus R Makowski
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
11
|
Bachrata B, Trattnig S, Robinson SD. Quantitative susceptibility mapping of the head-and-neck using SMURF fat-water imaging with chemical shift and relaxation rate corrections. Magn Reson Med 2022; 87:1461-1479. [PMID: 34850446 PMCID: PMC7612304 DOI: 10.1002/mrm.29069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/23/2021] [Accepted: 10/15/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE To address the challenges posed by fat-water chemical shift artifacts and relaxation rate discrepancies to quantitative susceptibility mapping (QSM) outside the brain, and to generate accurate susceptibility maps of the head-and-neck at 3 and 7 Tesla. METHODS Simultaneous Multiple Resonance Frequency (SMURF) imaging was extended to 7 Tesla and used to acquire head-and-neck gradient echo images at both 3 and 7 Tesla. Separated fat and water images were corrected for Type 1 (displacement) and Type 2 (phase discrepancy) chemical shift artefacts, and for the bias resulting from differences in T1 and T 2 ∗ relaxation rates, recombined and used as the basis for QSM. A novel phase signal-based masking approach was used to generate head-and-neck masks. RESULTS SMURF generated well-separated fat and water images of the head-and-neck. Corrections for chemical shift artefacts and relaxation rate differences removed overestimation of the susceptibility values, blurring in the susceptibility maps, and the disproportionate influence of fat in mixed voxels. The resulting susceptibility maps showed high correspondence between the paramagnetic areas and the locations of fatty tissues and the susceptibility estimates were similar to literature values. The proposed masking approach was shown to provide a simple means of generating head-and-neck masks. CONCLUSION Corrections for Type 1 and Type 2 chemical shift artefacts and for fat-water relaxation rate differences, mainly in T1 , were shown to be required for accurate susceptibility mapping of fatty-body regions. SMURF made it possible to apply these corrections and generate high-quality susceptibility maps of the entire head-and-neck at both 3 and 7 Tesla.
Collapse
Affiliation(s)
- Beata Bachrata
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner Institute for Clinical Molecular MR in Musculoskeletal Imaging, Vienna, Austria
| | - Siegfried Trattnig
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner Institute for Clinical Molecular MR in Musculoskeletal Imaging, Vienna, Austria
| | - Simon Daniel Robinson
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner Institute for Clinical Molecular MR in Musculoskeletal Imaging, Vienna, Austria
- Centre of Advanced Imaging, University of Queensland, Brisbane, Australia
- Department of Neurology, Medical University of Graz, Graz, Austria
| |
Collapse
|
12
|
Zhang M, Li Z, Wang H, Chen T, Lu Y, Yan F, Zhang Y, Wei H. Simultaneous Quantitative Susceptibility Mapping of Articular Cartilage and Cortical Bone of Human Knee Joint Using Ultrashort Echo Time Sequences. Front Endocrinol (Lausanne) 2022; 13:844351. [PMID: 35273576 PMCID: PMC8901574 DOI: 10.3389/fendo.2022.844351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND It is of great clinical importance to assess the microstructure of the articular cartilage and cortical bone of the human knee joint. While quantitative susceptibility mapping (QSM) is a promising tool for investigating the knee joint, however, previous QSM studies using conventional gradient recalled echo sequences or ultrashort echo time (UTE) sequences only focused on mapping the magnetic susceptibility of the articular cartilage or cortical bone, respectively. Simultaneously mapping the underlying susceptibilities of the articular cartilage and cortical bone of human in vivo has not been explored and reported. METHOD Three-dimensional multi-echo radial UTE sequences with the shortest TE of 0.07 msec and computed tomography (CT) were performed on the bilateral knee joints of five healthy volunteers for this prospective study. UTE-QSM was reconstructed from the local field map after water-fat separation and background field removal. Spearman's correlation analysis was used to explore the relationship between the magnetic susceptibility and CT values in 158 representative regions of interest of cortical bone. RESULT The susceptibility properties of the articular cartilage and cortical bone were successfully quantified by UTE-QSM. The laminar structure of articular cartilage was characterized by the difference of susceptibility value in each layer. Susceptibility was mostly diamagnetic in cortical bone. A significant negative correlation (r=-0.43, p<0.001) between the susceptibility value and CT value in cortical bone was observed. CONCLUSION UTE-QSM enables simultaneous susceptibility mapping of the articular cartilage and cortical bone of human in vivo. Good association between susceptibility and CT values in cortical bone suggests the potential of UTE-QSM for bone mapping for further clinical application.
Collapse
Affiliation(s)
- Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihui Li
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hanqi Wang
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tongtong Chen
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Lu
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuyao Zhang
- School of Information and Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Hongjiang Wei,
| |
Collapse
|
13
|
Boehm C, Sollmann N, Meineke J, Ruschke S, Dieckmeyer M, Weiss K, Zimmer C, Makowski MR, Baum T, Karampinos DC. Preconditioned water-fat total field inversion: Application to spine quantitative susceptibility mapping. Magn Reson Med 2021; 87:417-430. [PMID: 34255370 DOI: 10.1002/mrm.28903] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/14/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE To (a) develop a preconditioned water-fat total field inversion (wfTFI) algorithm that directly estimates the susceptibility map from complex multi-echo gradient echo data for water-fat regions and to (b) evaluate the performance of the proposed wfTFI quantitative susceptibility mapping (QSM) method in comparison with a local field inversion (LFI) method and a linear total field inversion (TFI) method in the spine. METHODS Numerical simulations and in vivo spine multi-echo gradient echo measurements were performed to compare wfTFI to an algorithm based on disjoint background field removal (BFR) and LFI and to a formerly proposed TFI algorithm. The data from 1 healthy volunteer and 10 patients with metastatic bone disease were included in the analysis. Clinical routine computed tomography (CT) images were used as a reference standard to distinguish osteoblastic from osteolytic changes. The ability of the QSM methods to distinguish osteoblastic from osteolytic changes was evaluated. RESULTS The proposed wfTFI method was able to decrease the normalized root mean square error compared to the LFI and TFI methods in the simulation. The in vivo wfTFI susceptibility maps showed reduced BFR artifacts, noise amplification, and streaking artifacts compared to the LFI and TFI maps. wfTFI provided a significantly higher diagnostic confidence in differentiating osteolytic and osteoblastic lesions in the spine compared to the LFI method (p = .012). CONCLUSION The proposed wfTFI method can minimize BFR artifacts, noise amplification, and streaking artifacts in water-fat regions and can thus better differentiate between osteoblastic and osteolytic changes in patients with metastatic disease compared to LFI and the original TFI method.
Collapse
Affiliation(s)
- Christof Boehm
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | | | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marcus R Makowski
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
14
|
Fortier V, Fortin MA, Pater P, Souhami L, Levesque IR. A role for magnetic susceptibility in synthetic computed tomography. Phys Med 2021; 85:137-146. [PMID: 34004446 DOI: 10.1016/j.ejmp.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Radiotherapy treatment planning based on magnetic resonance imaging (MRI) benefits from increased soft-tissue contrast and functional imaging. MRI-only planning is attractive but limited by the lack of electron density information required for dose calculation, and the difficulty to differentiate air and bone. MRI can map magnetic susceptibility to separate bone from air. A method is introduced to produce synthetic CT (sCT) through automatic voxel-wise assignment of CT numbers from an MRI dataset processed that includes magnetic susceptibility mapping. METHODS Volumetric multi-echo gradient echo datasets were acquired in the heads of five healthy volunteers and fourteen patients with cancer using a 3 T MRI system. An algorithm for CT synthesis was designed using the volunteer data, based on fuzzy c-means clustering and adaptive thresholding of the MR data (magnitude, fat, water, and magnetic susceptibility). Susceptibility mapping was performed using a modified version of the iterative phase replacement algorithm. On patient data, the algorithm was assessed by direct comparison to X-ray computed tomography (CT) scans. RESULTS The skull, spine, teeth, and major sinuses were clearly distinguished in all sCT, from healthy volunteers and patients. The mean absolute CT number error between X-ray CT and sCT in patients ranged from 78 and 134 HU. CONCLUSION Susceptibility mapping using MRI can differentiate air and bone for CT synthesis. The proposed method is automated, fast, and based on a commercially available MRI pulse sequence. The method avoids registration errors and does not rely on a priori information, making it suitable for nonstandard anatomy.
Collapse
Affiliation(s)
- Véronique Fortier
- Medical Physics Unit, McGill University, Montréal, QC, Canada; Biomedical Engineering, McGill University, Montréal, QC, Canada.
| | | | - Piotr Pater
- Medical Physics Unit, McGill University, Montréal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada
| | - Luis Souhami
- Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada; Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Ives R Levesque
- Medical Physics Unit, McGill University, Montréal, QC, Canada; Biomedical Engineering, McGill University, Montréal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada; Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
15
|
Soldati E, Rossi F, Vicente J, Guenoun D, Pithioux M, Iotti S, Malucelli E, Bendahan D. Survey of MRI Usefulness for the Clinical Assessment of Bone Microstructure. Int J Mol Sci 2021; 22:2509. [PMID: 33801539 PMCID: PMC7958958 DOI: 10.3390/ijms22052509] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Bone microarchitecture has been shown to provide useful information regarding the evaluation of skeleton quality with an added value to areal bone mineral density, which can be used for the diagnosis of several bone diseases. Bone mineral density estimated from dual-energy X-ray absorptiometry (DXA) has shown to be a limited tool to identify patients' risk stratification and therapy delivery. Magnetic resonance imaging (MRI) has been proposed as another technique to assess bone quality and fracture risk by evaluating the bone structure and microarchitecture. To date, MRI is the only completely non-invasive and non-ionizing imaging modality that can assess both cortical and trabecular bone in vivo. In this review article, we reported a survey regarding the clinically relevant information MRI could provide for the assessment of the inner trabecular morphology of different bone segments. The last section will be devoted to the upcoming MRI applications (MR spectroscopy and chemical shift encoding MRI, solid state MRI and quantitative susceptibility mapping), which could provide additional biomarkers for the assessment of bone microarchitecture.
Collapse
Affiliation(s)
- Enrico Soldati
- CRMBM, CNRS, Aix Marseille University, 13385 Marseille, France;
- IUSTI, CNRS, Aix Marseille University, 13013 Marseille, France;
- ISM, CNRS, Aix Marseille University, 13288 Marseille, France; (D.G.); (M.P.)
| | - Francesca Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.R.); (S.I.); (E.M.)
| | - Jerome Vicente
- IUSTI, CNRS, Aix Marseille University, 13013 Marseille, France;
| | - Daphne Guenoun
- ISM, CNRS, Aix Marseille University, 13288 Marseille, France; (D.G.); (M.P.)
- Department of Radiology, Institute for Locomotion, Saint-Marguerite Hospital, ISM, CNRS, APHM, Aix Marseille University, 13274 Marseille, France
| | - Martine Pithioux
- ISM, CNRS, Aix Marseille University, 13288 Marseille, France; (D.G.); (M.P.)
- Department of Orthopedics and Traumatology, Institute for Locomotion, Saint-Marguerite Hospital, ISM, CNRS, APHM, Aix Marseille University, 13274 Marseille, France
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.R.); (S.I.); (E.M.)
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.R.); (S.I.); (E.M.)
| | - David Bendahan
- CRMBM, CNRS, Aix Marseille University, 13385 Marseille, France;
| |
Collapse
|
16
|
Boehm C, Diefenbach MN, Makowski MR, Karampinos DC. Improved body quantitative susceptibility mapping by using a variable-layer single-min-cut graph-cut for field-mapping. Magn Reson Med 2020; 85:1697-1712. [PMID: 33151604 DOI: 10.1002/mrm.28515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE To develop a robust algorithm for field-mapping in the presence of water-fat components, large B 0 field inhomogeneities and MR signal voids and to apply the developed method in body applications of quantitative susceptibility mapping (QSM). METHODS A framework solving the cost-function of the water-fat separation problem in a single-min-cut graph-cut based on the variable-layer graph construction concept was developed. The developed framework was applied to a numerical phantom enclosing an MR signal void, an air bubble experimental phantom, 14 large field of view (FOV) head/neck region in vivo scans and to 6 lumbar spine in vivo scans. Field-mapping and subsequent QSM results using the proposed algorithm were compared to results using an iterative graph-cut algorithm and a formerly proposed single-min-cut graph-cut. RESULTS The proposed method was shown to yield accurate field-map and susceptibility values in all simulation and in vivo datasets when compared to reference values (simulation) or literature values (in vivo). The proposed method showed improved field-map and susceptibility results compared to iterative graph-cut field-mapping especially in regions with low SNR, strong field-map variations and high R 2 ∗ values. CONCLUSIONS A single-min-cut graph-cut field-mapping method with a variable-layer construction was developed for field-mapping in body water-fat regions, improving quantitative susceptibility mapping particularly in areas close to MR signal voids.
Collapse
Affiliation(s)
- Christof Boehm
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Maximilian N Diefenbach
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany.,Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Marcus R Makowski
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| |
Collapse
|
17
|
Jerban S, Ma Y, Wei Z, Jang H, Chang EY, Du J. Quantitative Magnetic Resonance Imaging of Cortical and Trabecular Bone. Semin Musculoskelet Radiol 2020; 24:386-401. [PMID: 32992367 DOI: 10.1055/s-0040-1710355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone is a composite material consisting of mineral, organic matrix, and water. Water in bone can be categorized as bound water (BW), which is bound to bone mineral and organic matrix, or as pore water (PW), which resides in Haversian canals as well as in lacunae and canaliculi. Bone is generally classified into two types: cortical bone and trabecular bone. Cortical bone is much denser than trabecular bone that is surrounded by marrow and fat. Magnetic resonance (MR) imaging has been increasingly used for noninvasive assessment of both cortical bone and trabecular bone. Bone typically appears as a signal void with conventional MR sequences because of its short T2*. Ultrashort echo time (UTE) sequences with echo times 100 to 1,000 times shorter than those of conventional sequences allow direct imaging of BW and PW in bone. This article summarizes several quantitative MR techniques recently developed for bone evaluation. Specifically, we discuss the use of UTE and adiabatic inversion recovery prepared UTE sequences to quantify BW and PW, UTE magnetization transfer sequences to quantify collagen backbone protons, UTE quantitative susceptibility mapping sequences to assess bone mineral, and conventional sequences for high-resolution imaging of PW as well as the evaluation of trabecular bone architecture.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, California
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, California
| | - Zhao Wei
- Department of Radiology, University of California, San Diego, California
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, California.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Jiang Du
- Department of Radiology, University of California, San Diego, California
| |
Collapse
|
18
|
Sollmann N, Löffler MT, Kronthaler S, Böhm C, Dieckmeyer M, Ruschke S, Kirschke JS, Carballido-Gamio J, Karampinos DC, Krug R, Baum T. MRI-Based Quantitative Osteoporosis Imaging at the Spine and Femur. J Magn Reson Imaging 2020; 54:12-35. [PMID: 32584496 DOI: 10.1002/jmri.27260] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
Osteoporosis is a systemic skeletal disease with a high prevalence worldwide, characterized by low bone mass and microarchitectural deterioration, predisposing an individual to fragility fractures. Dual-energy X-ray absorptiometry (DXA) has been the clinical reference standard for diagnosing osteoporosis and for assessing fracture risk for decades. However, other imaging modalities are of increasing importance to investigate the etiology, treatment, and fracture risk. The purpose of this work is to review the available literature on quantitative magnetic resonance imaging (MRI) methods and related findings in osteoporosis at the spine and proximal femur as the clinically most important fracture sites. Trabecular bone microstructure analysis at the proximal femur based on high-resolution MRI allows for a better prediction of osteoporotic fracture risk than DXA-based bone mineral density (BMD) alone. In the 1990s, T2 * mapping was shown to correlate with the density and orientation of the trabecular bone. Recently, quantitative susceptibility mapping (QSM), which overcomes some of the limitations of T2 * mapping, has been applied for trabecular bone quantifications at the spine, whereas ultrashort echo time (UTE) imaging provides valuable surrogate markers of cortical bone quantity and quality. Magnetic resonance spectroscopy (MRS) and chemical shift encoding-based water-fat MRI (CSE-MRI) enable the quantitative assessment of the nonmineralized bone compartment through extraction of the bone marrow fat fraction (BMFF). Furthermore, CSE-MRI allows for the differentiation of osteoporotic vs. pathologic fractures, which is of high clinical relevance. Lastly, advanced postprocessing and image analysis tools, particularly considering statistical parametric mapping and region-specific BMFF distributions, have high potential to further improve MRI-based fracture risk assessments at the spine and hip. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Maximilian T Löffler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sophia Kronthaler
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christof Böhm
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Julio Carballido-Gamio
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Roland Krug
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
19
|
Guo Y, Liu Z, Wen Y, Spincemaille P, Zhang H, Jafari R, Zhang S, Eskreis-Winkler S, Gillen KM, Yi P, Feng Q, Feng Y, Wang Y. Quantitative susceptibility mapping of the spine using in-phase echoes to initialize inhomogeneous field and R2* for the nonconvex optimization problem of fat-water separation. NMR IN BIOMEDICINE 2019; 32:e4156. [PMID: 31424131 DOI: 10.1002/nbm.4156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
Quantitative susceptibility mapping (QSM) of human spinal vertebrae from a multi-echo gradient-echo (GRE) sequence is challenging, because comparable amounts of fat and water in the vertebrae make it difficult to solve the nonconvex optimization problem of fat-water separation (R2*-IDEAL) for estimating the magnetic field induced by tissue susceptibility. We present an in-phase (IP) echo initialization of R2*-IDEAL for QSM in the spinal vertebrae. Ten healthy human subjects were recruited for spine MRI. A 3D multi-echo GRE sequence was implemented to acquire out-phase and IP echoes. For the IP method, the R2* and field maps estimated by separately fitting the magnitude and phase of IP echoes were used to initialize gradient search R2*-IDEAL to obtain final R2*, field, water, and fat maps, and the final field map was used to generate QSM. The IP method was compared with the existing Zero method (initializing the field to zero), VARPRO-GC (variable projection using graphcuts but still initializing the field to zero), and SPURS (simultaneous phase unwrapping and removal of chemical shift using graphcuts for initialization) on both simulation and in vivo data. The single peak fat model was also compared with the multi-peak fat model. There was no substantial difference on QSM between the single peak and multi-peak fat models, but there were marked differences among different initialization methods. The simulations demonstrated that IP provided the lowest error in the field map. Compared to Zero, VARPRO-GC and SPURS, the proposed IP method provided substantially improved spine QSM in all 10 subjects.
Collapse
Affiliation(s)
- Yihao Guo
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Department of Radiology, Weill Medical College of Cornell University, New York, New York
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Zhe Liu
- Department of Radiology, Weill Medical College of Cornell University, New York, New York
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Yan Wen
- Department of Radiology, Weill Medical College of Cornell University, New York, New York
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Pascal Spincemaille
- Department of Radiology, Weill Medical College of Cornell University, New York, New York
| | - Honglei Zhang
- Department of Radiology, Weill Medical College of Cornell University, New York, New York
| | - Ramin Jafari
- Department of Radiology, Weill Medical College of Cornell University, New York, New York
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Shun Zhang
- Department of Radiology, Weill Medical College of Cornell University, New York, New York
| | - Sarah Eskreis-Winkler
- Department of Radiology, Weill Medical College of Cornell University, New York, New York
| | - Kelly M Gillen
- Department of Radiology, Weill Medical College of Cornell University, New York, New York
| | - Peiwei Yi
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Yi Wang
- Department of Radiology, Weill Medical College of Cornell University, New York, New York
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| |
Collapse
|
20
|
Jerban S, Lu X, Jang H, Ma Y, Namiranian B, Le N, Li Y, Chang EY, Du J. Significant correlations between human cortical bone mineral density and quantitative susceptibility mapping (QSM) obtained with 3D Cones ultrashort echo time magnetic resonance imaging (UTE-MRI). Magn Reson Imaging 2019; 62:104-110. [PMID: 31247253 PMCID: PMC6689249 DOI: 10.1016/j.mri.2019.06.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/06/2019] [Accepted: 06/23/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Quantitative susceptibility mapping (QSM) MRI is a tool that can characterize changes in susceptibility, an intrinsic property which is associated with compositional changes in the tissue. Current QSM estimation of cortical bone is challenging because conventional clinical MRI cannot acquire signal in cortical bone. This study aimed to implement Cones 3D ultrashort echo time MRI (UTE-MRI) for ex vivo QSM measurements in human tibial cortical bone, investigating the correlations of QSM with volumetric intracortical bone mineral density (BMD). MATERIALS AND METHODS Nine tibial midshaft cortical bone specimens (25 mm long specimens cut at the mid-point of tibial shaft, 67 ± 20 years old, 5 women and 4 men) were scanned on a clinical 3 T MRI scanner for QSM measurement. The specimens were also scanned on a high-resolution micro-computed tomography (μCT) scanner for volumetric BMD estimation. QSM and μCT results were compared at approximately nine regions of interest (ROIs) per specimen. RESULTS Average 3D UTE-MRI QSM showed significantly strong correlation with volumetric BMD (R = -0.82, P < 0.01) and bone porosity (R = 0.72, P < 0.01). Combining all data points together (77 ROIs), QSM showed significant moderate to strong correlation with volumetric BMD after correction for interdependencies in specimens (R = -0.70, P < 0.01). The corrections were required because the data points were not independent in each specimen. Similarly, the correlation between QSM and porosity was significant (R = 0.68, P < 0.01). CONCLUSIONS These results suggest that the Cones 3D UTE-MRI QSM technique can potentially serve as a novel and accurate tool to assess intracortical bone mineral density whilst avoiding ionizing radiation.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, USA.
| | - Xing Lu
- Department of Radiology, University of California, San Diego, CA, USA; 12Sigma Technologies, San Diego, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, USA
| | - Behnam Namiranian
- Department of Radiology, University of California, San Diego, CA, USA
| | - Nicole Le
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Ying Li
- First affiliated hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Eric Y Chang
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA; Department of Radiology, University of California, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA.
| |
Collapse
|
21
|
Diefenbach MN, Meineke J, Ruschke S, Baum T, Gersing A, Karampinos DC. On the sensitivity of quantitative susceptibility mapping for measuring trabecular bone density. Magn Reson Med 2018; 81:1739-1754. [PMID: 30265769 PMCID: PMC6585956 DOI: 10.1002/mrm.27531] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/09/2018] [Accepted: 08/24/2018] [Indexed: 01/13/2023]
Abstract
Purpose To develop a methodological framework to simultaneously measure R2* and magnetic susceptibility in trabecularized yellow bone marrow and to investigate the sensitivity of Quantitative Susceptibility Mapping (QSM) for measuring trabecular bone density using a non‐UTE multi‐gradient echo sequence. Methods The ankle of 16 healthy volunteers and two patients was scanned using a time‐interleaved multi‐gradient‐echo (TIMGRE) sequence. After field mapping based on water–fat separation methods and background field removal based on the Laplacian boundary value method, three different QSM dipole inversion schemes were implemented. Mean susceptibility values in regions of different trabecular bone density in the calcaneus were compared to the corresponding values in the R2* maps, bone volume to total volume ratios (BV/TV) estimated from high resolution imaging (in 14 subjects), and CT attenuation (in two subjects). In addition, numerical simulations were performed in a simplified trabecular bone model of randomly positioned spherical bone inclusions to verify and compare the scaling of R2* and susceptibility with BV/TV. Results Differences in calcaneus trabecularization were well depicted in susceptibility maps, in good agreement with high‐resolution MR and CT images. Simulations and in vivo scans showed a linear relationship of measured susceptibility with BV/TV and R2*. The ankle in vivo results showed a strong linear correlation between susceptibility and R2* (R2 = 0.88, p < 0.001) with a slope and intercept of −0.004 and 0.2 ppm, respectively. Conclusions A method for multi‐paramteric mapping, including R2*‐mapping and QSM was developed for measuring trabecularized yellow bone marrow, showing good sensitivity of QSM for measuring trabecular bone density.
Collapse
Affiliation(s)
- Maximilian N Diefenbach
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | | | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany
| | - Alexandra Gersing
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| |
Collapse
|