1
|
Aphiwatthanasumet K, Jethwa K, Glover P, O'Donoghue G, Auer D, Gowland P. Morphology of the human inner ear and vestibulocochlear nerve assessed using 7 T MRI. MAGMA (NEW YORK, N.Y.) 2025; 38:121-130. [PMID: 39535680 PMCID: PMC11790716 DOI: 10.1007/s10334-024-01213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To optimize high-resolution 7 T MRI of the cochlea and measure normal cochlea and the cochlear nerve morphometry in vivo. MATERIALS AND METHODS Eight volunteers with normal hearing were scanned at 7 T using an optimized protocol. Two neuroradiologists independently scored image quality. The basal turn lumen diameter (BTLD), height, width, length and volume of the cochlear, long (LD) and short (SD) diameter the calculated cross-sectional area (CSA) of the cochlear nerve were measured. Intra and inter-observer reliability was assessed using intraclass correlation (ICC). RESULTS 3D T2W DRIVE combined with dielectric pads, allowed acquisition of high-resolution images showing detailed structures, such as the crista ampullaris in the semicircular canals. The overall grading scores from neuroradiologists were excellent. In the left ear, averaging over all subjects gave BTLD of 2.6 ± 0.05 mm, height of 4.9 ± 0.1 mm, width of 4.4 ± 0.2 mm, length of 36.5 ± 0.4 mm, volume of 0.16 ± 0.02 ml, LD of 1.31 ± 0.1 mm, SD of 1.06 ± 0.1 mm, and CSA of 1.1 ± 0.1 mm2. The right ear gave BTLD of 2.6 ± 0.04 mm, height of 4.9 ± 0.1 mm, width of 4.4 ± 0.3 mm, length of 35.5 ± 0.4 mm, volume of 0.16 ± 0.02 ml, LD of 1.29 ± 0.1 mm, SD of 1.07 ± 0.1 mm, and CSA of 1.10 ± 0.2 mm2. No statistically significant difference was found between the sides of the head (p-value > 0.05). The intra-observer reliability was high (0.77-0.94), while the inter-observer reliability varied from moderate to high (0.55-0.81). CONCLUSION 7 T MRI can provide excellent visualization of the internal structure of the cochlear and of the vestibulocochlear nerve in vivo.
Collapse
Affiliation(s)
- Kingkarn Aphiwatthanasumet
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK.
- Department of Radiological Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand.
| | - Ketan Jethwa
- Department of Radiology, Nottingham University Hospitals NHS Foundation Trust, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Paul Glover
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Gerard O'Donoghue
- Department of Otolaryngology, Head and Neck Surgery, University of Nottingham, Nottingham, UK
| | - Dorothee Auer
- Sir Peter Mansfield Imaging Centre, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Koloskov V, Brink WM, Webb AG, Shchelokova A. Flexible metasurface for improving brain imaging at 7T. Magn Reson Med 2024; 92:869-880. [PMID: 38469911 DOI: 10.1002/mrm.30088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE Ultra-high field MRI offers unprecedented detail for noninvasive visualization of the human brain. However, brain imaging is challenging at 7T due to the B 1 + $$ {}_1^{+} $$ field inhomogeneity, which results in signal intensity drops in temporal lobes and a bright region in the brain center. This study aims to evaluate using a metasurface to improve brain imaging at 7T and simplify the investigative workflow. METHODS Two flexible metasurfaces comprising a periodic structure of copper strips and parallel-plate capacitive elements printed on an ultra-thin substrate were optimized for brain imaging and implemented via PCB. We considered two setups: (1) two metasurfaces located near the temporal lobes and (2) one metasurface placed near the occipital lobe. The effect of metasurface placement on the transmit efficiency and specific absorption rate was evaluated via electromagnetic simulation studies with voxelized models. In addition, their impact on signal-to-noise ratio (SNR) and diagnostic image quality was assessed in vivo for two male and one female volunteers. RESULTS Placement of metasurfaces near the regions of interest led to an increase in homogeneity of the transmit field by 5% and 10.5% in the right temporal lobe and occipital lobe for a male subject, respectively. SAR efficiency values changed insignificantly, dropping by less than 8% for all investigated setups. In vivo studies also confirmed the numerically predicted improvement in field distribution and receive sensitivity in the desired ROI. CONCLUSION Optimized metasurfaces enable homogenizing transmit field distribution in the brain at 7T. The proposed lightweight and flexible structure can potentially provide MR examination with higher diagnostic value images.
Collapse
Affiliation(s)
- Vladislav Koloskov
- School of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | - Wyger M Brink
- Magnetic Detection & Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Andrew G Webb
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alena Shchelokova
- School of Physics and Engineering, ITMO University, St. Petersburg, Russia
| |
Collapse
|
3
|
Jacobs PS, Brink W, Reddy R. A review of recent developments and applications of high-permittivity dielectric shimming in magnetic resonance. NMR IN BIOMEDICINE 2024; 37:e5094. [PMID: 38214202 DOI: 10.1002/nbm.5094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/20/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
We present a review outlining the basic mechanism, background, recent technical developments, and clinical applications of aqueous dielectric padding in the field of MRI. Originally meant to be a temporary solution, it has gained traction as an effective method for correcting B1 + inhomogeneities due to the unique properties of the calcium titanate and barium titanate perovskites used. Aqueous dielectric pads have used a variety of high-permittivity materials over the years to improve the quality of MRI acquisitions at 1.5 and 3 T and more recently for 7 T neuroimaging applications. The technical development and assessment of these pads have been advanced by an increased use of mathematical modeling and electromagnetic simulations. These tools have allowed for a more complete understanding of the physical interactions between dielectric pads and the RF coil, making testing and safety assessments more accurate. The ease of use and effectiveness that dielectric pads offer have allowed them to become more commonplace in tackling imaging challenges in more clinically focused environments. More recently, they have seen usage not only in anatomical imaging methods but also in specialized metabolic imaging sequences such as GluCEST and NOEMTR . New colossally high-permittivity materials have been proposed; however, practical utilization has been a continued challenge due to unfavorable frequency dependences as well as safety limitations. A new class of metasurfaces has been under development to address the shortcomings of conventional dielectric padding while also providing increased performance in enhancing MRI images.
Collapse
Affiliation(s)
- Paul S Jacobs
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wyger Brink
- Magnetic Detection and Imaging group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Perera Molligoda Arachchige AS, Garner AK. Seven Tesla MRI in Alzheimer's disease research: State of the art and future directions: A narrative review. AIMS Neurosci 2023; 10:401-422. [PMID: 38188012 PMCID: PMC10767068 DOI: 10.3934/neuroscience.2023030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Seven tesla magnetic resonance imaging (7T MRI) is known to offer a superior spatial resolution and a signal-to-noise ratio relative to any other non-invasive imaging technique and provides the possibility for neuroimaging researchers to observe disease-related structural changes, which were previously only apparent on post-mortem tissue analyses. Alzheimer's disease is a natural and widely used subject for this technology since the 7T MRI allows for the anticipation of disease progression, the evaluation of secondary prevention measures thought to modify the disease trajectory, and the identification of surrogate markers for treatment outcome. In this editorial, we discuss the various neuroimaging biomarkers for Alzheimer's disease that have been studied using 7T MRI, which include morphological alterations, molecular characterization of cerebral T2*-weighted hypointensities, the evaluation of cerebral microbleeds and microinfarcts, biochemical changes studied with MR spectroscopy, as well as some other approaches. Finally, we discuss the limitations of the 7T MRI regarding imaging Alzheimer's disease and we provide our outlook for the future.
Collapse
|
5
|
Freire MJ, Marqués R, Tornero J. Magnetoinductive metasurface of capacitively-loaded split rings for local field homogenization in a 7 T MRI birdcage: A simulation study. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 357:107586. [PMID: 37944423 DOI: 10.1016/j.jmr.2023.107586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
The transmit field B1+ in a 7 T birdcage is inherently inhomogeneous due to the effects of wavelengths on tissue. This work investigates the homogenization of this field through metasurfaces that consist of a two-dimensional planar array of capacitively loaded conducting rings. The metasurfaces are placed in the intermediate space between the head and the birdcage on either side of the head. The periodical structure of this type of metasurface supports magnetoinductive waves because of the mutual inductive coupling existing between the elements of the array. The analysis takes advantage of this coupling and exploits the excitation of a standing magnetoinductive wave across the arrays, which creates a strong local field that contributes to locally homogenize the field of the birdcage. The presence of the arrays does not detune the birdcage, so that they can be used with commercial birdcages that operate both to transmit and to receive.
Collapse
Affiliation(s)
- Manuel J Freire
- Department of Electronics and Electromagnetism, University of Seville, Spain.
| | - Ricardo Marqués
- Department of Electronics and Electromagnetism, University of Seville, Spain
| | - Jesús Tornero
- Center for Clinical Neuroscience-Hospital Los Madroños, Brunete, Spain
| |
Collapse
|
6
|
Brink WM, Remis RF, Webb AG. Radiofrequency safety of high permittivity pads in MRI-Impact of insulation material. Magn Reson Med 2023; 89:2109-2116. [PMID: 36708148 DOI: 10.1002/mrm.29580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/30/2022] [Accepted: 12/26/2022] [Indexed: 01/29/2023]
Abstract
PURPOSE High permittivity dielectric pads are known to be effective for tailoring the RF field and improving image quality in high field MRI. Despite a number of studies reporting benign specific absorption rate (SAR) effects, their "universal" safety remains an open concern. In this work, we evaluate the impact of the insulation material in between the pad and the body, using both RF simulations as well as phantom experiments. METHODS A 3T configuration with high permittivity material was simulated and characterized experimentally in terms of B1 + fields and RF power absorption, both with and without electrical insulation in between the high permittivity material and the sample. Different insulation conditions were compared, and electromagnetic analyses on the induced current density were performed to elucidate the effect. RESULTS Increases in RF heating of up to 49% were observed experimentally in a tissue-mimicking phantom after removing the material insulation. The B1 + magnitude and RF transceive phase were not affected. Simulations indicated that an insulation thickness of 0.5-2 mm should be accounted for in numerical models in order to ensure reliable results. CONCLUSION A reliable RF safety assessment of high permittivity dielectric pads requires accounting for the insulating properties of the plastic encasing. Ignoring the electrical insulation can lead to erroneous results with substantial increases in local SAR at the interface. Conversely, the material insulation does not need to be modeled to predict the B1 + effects during the design of the pad geometry.
Collapse
Affiliation(s)
- Wyger M Brink
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Magnetic Detection & Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Rob F Remis
- Circuits and Systems Group, Department of Microelectronics, Delft University of Technology, Delft, The Netherlands
| | - Andrew G Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Park SE, Jeon YJ, Baek HM. Benefits of high-dielectric pad for neuroimaging study in 7-Tesla MRI. J Anal Sci Technol 2023. [DOI: 10.1186/s40543-023-00380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
AbstractThis study aimed to evaluate whether the use of a high-dielectric pad is effective in increasing transmit and receive sensitivity in areas of low signal intensity in the human brain at high magnetic fields and assess its usefulness in neuroimaging studies. The novelty of this study lies in the first reported use of diffusion tensor imaging (DTI) results to evaluate the effect of the pad on neuroimaging. Six volunteers underwent MR scanning using a 7 T MR system. T1-weighted images (T1w) and diffusion-weighted images (DWI) were acquired to demonstrate the benefits of a high-dielectric pad made of barium titanate (BaTiO3). For all imaging experiments, two datasets were acquired per person, one with and one without a high-dielectric pad. Enhancement of signal sensitivity in neuroimaging has been analyzed by DTI study. Higher signal intensities and spatial contrast were demonstrated in the in T1w images acquired using high-dielectric pad than in those acquired without high-dielectric pad. Especially in DTI studies, increased quantitative anisotropy (QA) signals were observed in the corticospinal tract (CST), frontopontine tract (FPT), splenium of corpus callosum (SCC), fornix (FX), inferior fronto-occipital fasciculus (IFOF), cerebellum (CB), middle cerebellar peduncle (MCP), and body of corpus callosum (BCC) (FDR < 0.05). The signal differences accounted for an overall 20% increase. A high-dielectric pad is effective in enhancing signal intensity in human brain images acquired using 7 T MRI. Our results show that the use of such pad can increase the spatial resolution, tissue contrast, and signal intensity in neuroimaging studies. These findings suggest that high-dielectric pads may provide a relatively simple and low-cost method for spatiotemporal brain imaging studies.
Collapse
|
8
|
Hardy BM, Banik R, Yan X, Anderson AW. Bench to bore ramifications of inter-subject head differences on RF shimming and specific absorption rates at 7T. Magn Reson Imaging 2022; 92:187-196. [PMID: 35842192 DOI: 10.1016/j.mri.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE This study shows how inter-subject variation over a dataset of 72 head models results in specific absorption rate (SAR) and B1+ field homogeneity differences using common shim scenarios. METHODS MR-CT datasets were used to segment 71 head models into 10 tissue compartments. These head models were affixed to the shoulders and neck of the virtual family Duke model and placed within an 8 channel transmit surface-loop array to simulate the electromagnetic fields of a 7T imaging experiment. Radio frequency (RF) shimming using the Gerchberg-Saxton algorithm and Circularly Polarized shim weights over the entire brain and select slices of each model was simulated. Various SAR metrics and B1+ maps were calculated to demonstrate the contribution of head variation to transmit inhomogeneity and SAR variability. RESULTS With varying head geometries the loading for each transmit loop changes as evidenced by changes in S-parameters. The varying shim conditions and head geometries are shown to affect excitation uniformity, spatial distributions of local SAR, and SAR averaging over different pulse sequences. The Gerchberg-Saxton RF shimming algorithm outperforms circularly polarized shimming for all head models. Peak local SAR within the coil most often occurs nearest the coil on the periphery of the body. Shim conditions vary the spatial distribution of SAR. CONCLUSION The work gives further support to the need for fast and more subject specific SAR calculations to maintain safety. Local SAR10g is shown to vary spatially given shim conditions, subject geometry and composition, and position within the coil.
Collapse
Affiliation(s)
- Benjamin M Hardy
- Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, Nashville, TN 37232, USA; Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Science Center, Nashville, TN 37232, USA.
| | - Rana Banik
- Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235, USA.
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, USA.
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, USA.
| |
Collapse
|
9
|
Sokol SL, Colwell ZA, Kandala SK, Imani MF, Sohn SM. Flexible Metamaterial Wrap for Improved Head Imaging at 3 T MRI With Low-Cost and Easy Fabrication Method. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS 2022; 21:2075-2079. [PMID: 36388763 PMCID: PMC9648536 DOI: 10.1109/lawp.2022.3190696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Magnetic resonance imaging (MRI) requires spatial uniformity of the radiofrequency (RF) field inside the subject for maximum signal-to-noise ratio (SNR) and image contrast. Bulky high permittivity dielectric pads (HPDPs) focus magnetic fields into the region of interest (ROI) and increase RF field uniformity when placed between the patient and RF coils in the MR scanner. Metamaterials could replace HPDPs and reduce system bulkiness, but those in the literature often require a complicated fabrication process and cannot conform to patient body shape. Proposed is a flexible metamaterial for brain imaging made with a scalable fabrication process using conductive paint and a plastic laminate substrate. The effects of single and double-sided placement of the metamaterial around a human head phantom were investigated in a 3 T scanner. When two metamaterial sheets were wrapped around a head phantom (double-sided placement), the total average signal in the resulting image increased by 10.14% compared to placing a single metamaterial sheet underneath the phantom (single-sided placement). The difference between the maximum and minimum signal intensity values decreased by 57% in six different ROIs with double-sided placement compared to single-sided placement.
Collapse
Affiliation(s)
- Samantha L Sokol
- Dept. of Elect. Eng., Sch. of Elect. Comput. & Energy Eng. Arizona State Univ. Tempe, AZ, USA
| | - Zachary A Colwell
- School of Biological and Health Sciences Arizona State Univ. Tempe, AZ, USA
| | - Sri Kirthi Kandala
- School of Biological and Health Sciences Arizona State Univ. Tempe, AZ, USA
| | - Mohammadreza F Imani
- Dept. of Elect. Eng., Sch. of Elect. Comput. & Energy Eng. Arizona State Univ. Tempe, AZ, USA
| | - Sung-Min Sohn
- School of Biological and Health Sciences Arizona State Univ. Tempe, AZ, USA
| |
Collapse
|
10
|
Okada T, Fujimoto K, Fushimi Y, Akasaka T, Thuy DHD, Shima A, Sawamoto N, Oishi N, Zhang Z, Funaki T, Nakamoto Y, Murai T, Miyamoto S, Takahashi R, Isa T. Neuroimaging at 7 Tesla: a pictorial narrative review. Quant Imaging Med Surg 2022; 12:3406-3435. [PMID: 35655840 PMCID: PMC9131333 DOI: 10.21037/qims-21-969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/05/2022] [Indexed: 01/26/2024]
Abstract
Neuroimaging using the 7-Tesla (7T) human magnetic resonance (MR) system is rapidly gaining popularity after being approved for clinical use in the European Union and the USA. This trend is the same for functional MR imaging (MRI). The primary advantages of 7T over lower magnetic fields are its higher signal-to-noise and contrast-to-noise ratios, which provide high-resolution acquisitions and better contrast, making it easier to detect lesions and structural changes in brain disorders. Another advantage is the capability to measure a greater number of neurochemicals by virtue of the increased spectral resolution. Many structural and functional studies using 7T have been conducted to visualize details in the white matter and layers of the cortex and hippocampus, the subnucleus or regions of the putamen, the globus pallidus, thalamus and substantia nigra, and in small structures, such as the subthalamic nucleus, habenula, perforating arteries, and the perivascular space, that are difficult to observe at lower magnetic field strengths. The target disorders for 7T neuroimaging range from tumoral diseases to vascular, neurodegenerative, and psychiatric disorders, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, major depressive disorder, and schizophrenia. MR spectroscopy has also been used for research because of its increased chemical shift that separates overlapping peaks and resolves neurochemicals more effectively at 7T than a lower magnetic field. This paper presents a narrative review of these topics and an illustrative presentation of images obtained at 7T. We expect 7T neuroimaging to provide a new imaging biomarker of various brain disorders.
Collapse
Affiliation(s)
- Tomohisa Okada
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Fujimoto
- Department of Real World Data Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Thai Akasaka
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Dinh H. D. Thuy
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Shima
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobukatsu Sawamoto
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Oishi
- Medial Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Zhilin Zhang
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Funaki
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadashi Isa
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Novel materials in magnetic resonance imaging: high permittivity ceramics, metamaterials, metasurfaces and artificial dielectrics. MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE 2022; 35:875-894. [PMID: 35471464 PMCID: PMC9596558 DOI: 10.1007/s10334-022-01007-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 11/01/2022]
Abstract
AbstractThis article reviews recent developments in designing and testing new types of materials which can be: (i) placed around the body for in vivo imaging, (ii) be integrated into a conventional RF coil, or (iii) form the resonator itself. These materials can improve the quality of MRI scans for both in vivo and magnetic resonance microscopy applications. The methodological section covers the basic operation and design of two different types of materials, namely high permittivity materials constructed from ceramics and artificial dielectrics/metasurfaces formed by coupled conductive subunits, either in air or surrounded by dielectric material. Applications of high permittivity materials and metasurfaces placed next to the body to neuroimaging and extremity imaging at 7 T, body and neuroimaging at 3 T, and extremity imaging at 1.5 T are shown. Results using ceramic resonators for both high field in vivo imaging and magnetic resonance microscopy are also shown. The development of new materials to improve MR image quality remains an active area of research, but has not yet found significant use in clinical applications. This is mainly due to practical issues such as specific absorption rate modelling, accurate and reproducible placement, and acceptable size/weight of such materials. The most successful area has been simple “dielectric pads” for neuroimaging at 7 T which were initially developed somewhat as a stop-gap while parallel transmit technology was being developed, but have continued to be used at many sites. Some of these issues can potentially be overcome using much lighter metasurfaces and artificial dielectrics, which are just beginning to be assessed.
Collapse
|
12
|
Raolison Z, Dubois M, Luong M, Neves AL, Mauconduit F, Enoch S, Mallejac N, Sabouroux P, Boumezbeur F, Berthault P, Zubkov M, Adenot-Engelvin AL, Hertz-Pannier L, Elodie G, Abdeddaim R, Vignaud A. Evaluation of new MR invisible silicon carbide based dielectric pads for 7 T MRI. Magn Reson Imaging 2022; 90:37-43. [DOI: 10.1016/j.mri.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
|
13
|
Willems T, Henke K. Imaging human engrams using 7 Tesla magnetic resonance imaging. Hippocampus 2021; 31:1257-1270. [PMID: 34739173 PMCID: PMC9298259 DOI: 10.1002/hipo.23391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022]
Abstract
The investigation of the physical traces of memories (engrams) has made significant progress in the last decade due to optogenetics and fluorescent cell tagging applied in rodents. Engram cells were identified. The ablation of engram cells led to the loss of the associated memory, silent memories were reactivated, and artificial memories were implanted in the brain. Human engram research lags behind engram research in rodents due to methodological and ethical constraints. However, advances in multivariate analysis techniques of functional magnetic resonance imaging (fMRI) data and machine learning algorithms allowed the identification of stable engram patterns in humans. In addition, MRI scanners with an ultrahigh field strength of 7 Tesla (T) have left their prototype state and became more common around the world to assist human engram research. Although most engram research in humans is still being performed with a field strength of 3T, fMRI at 7T will push engram research. Here, we summarize the current state and findings of human engram research and discuss the advantages and disadvantages of applying 7 versus 3T fMRI to image human memory traces.
Collapse
Affiliation(s)
- Tom Willems
- Institute of Psychology, University of Bern, Bern, Switzerland
| | - Katharina Henke
- Institute of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Deelchand DK, Ho ML, Nestrasil I. Ultra-High-Field Imaging of the Pediatric Brain and Spinal Cord. Magn Reson Imaging Clin N Am 2021; 29:643-653. [PMID: 34717851 DOI: 10.1016/j.mric.2021.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Neuroimaging with ultra-high field magnets (≥7T) provides superior signal-to-noise, spatial resolution and tissue contrast; but also greater safety concerns, longer scanning times, and increased distortion and field inhomogeneity. Brain and spinal cord anatomic microstructure and function imaged in greater detail offers improved lesion detection, delineation, and characterization. The ongoing development of novel imaging contrasts and translation of cutting-edge sequences will aid more accurate, sensitive, and precise diagnosis, interventional planning, and follow-up for a variety of pathologic conditions.
Collapse
Affiliation(s)
- Dinesh Kumar Deelchand
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, 2021 6th Street Southeast, Minneapolis, MN 55455, USA
| | - Mai-Lan Ho
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Igor Nestrasil
- Masonic Institute for the Developing Brain, Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, 2025 East River Parkway, Minneapolis, MN 55414, USA.
| |
Collapse
|
15
|
Zhao AJ, Liu BC, Gao CY, Quan DZ, Xia EL, Zhang FX. Evaluation of high-dielectric pads for macaque brain imaging at 7 T. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:104101. [PMID: 34717383 DOI: 10.1063/5.0057847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
A non-human primate is a valuable model for investigating the structure and function of the brain. Different from the human brain imaging using radio frequency (RF) head coils, in the present study, on a human whole-body 7 T magnetic resonance imaging system, we used an RF knee coil for monkey brain imaging in vivo due to the smaller size of the macaque's brain compared to that of a human, and particularly, high-dielectric pads were also utilized in order to improve brain imaging performance. Our experimental results suggest that high-dielectric pads can effectively enhance the B1 field strength and receive sensitivity, leading to a higher flip-angle magnitude, an image signal-to-noise ratio, and tissue contrast, and in the meantime, we did not observe elevated receive array element coupling and receive noise amplification nor apparent magnetic susceptibility-induced artifact or distortion, showing that the pads do not introduce adverse RF interferences in macaque brain imaging at 7 T.
Collapse
Affiliation(s)
- A Jie Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| | - B Chunyi Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - C Yang Gao
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - D Zhiyan Quan
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - E Ling Xia
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| | - F Xiaotong Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
16
|
Clinical 7-T MRI for neuroradiology: strengths, weaknesses, and ongoing challenges. Neuroradiology 2021; 63:167-177. [PMID: 33388947 DOI: 10.1007/s00234-020-02629-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Since the relatively recent regulatory approval for clinical use in both Europe and North America, 7-Tesla (T) MRI has been adopted for clinical practice at our institution. Based on this experience, this article reviews the unique features of 7-T MRI neuroimaging and addresses the challenges of establishing a 7-T MRI clinical practice. The underlying fundamental physics principals of high-field strength MRI are briefly reviewed. Scanner installation, safety considerations, and artifact mitigation techniques are discussed. Seven-tesla MRI case examples of neurologic diseases including epilepsy, vascular abnormalities, and tumor imaging are presented to illustrate specific applications of 7-T MRI. The advantages of 7-T MRI in conjunction with advanced neuroimaging techniques such as functional MRI are presented. Seven-tesla MRI produces more detailed information and, in some cases, results in specific diagnoses where previous 3-T studies were insufficient. Still, persistent technical issues for 7-T scanning present ongoing challenges for radiologists.
Collapse
|
17
|
Vorobyev V, Shchelokova A, Zivkovic I, Slobozhanyuk A, Baena JD, Del Risco JP, Abdeddaim R, Webb A, Glybovski S. An artificial dielectric slab for ultra high-field MRI: Proof of concept. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 320:106835. [PMID: 33065392 DOI: 10.1016/j.jmr.2020.106835] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/02/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
High-permittivity dielectric pads, i.e., thin, flexible slabs, usually consisting of mixed ceramic powders and liquids, have been previously shown to increase the magnetic field at high and ultra high-fields in regions of low efficiency of transmit coils, thus improving the homogeneity of images. However, their material parameters can change with time, and some materials they contain are bio incompatible. This article presents an alternative approach replacing ceramic mixtures with a low-cost and stable artificial dielectric slab. The latter comprises a stack of capacitive grids realized using multiple printed-circuit boards. Results in this article show that the proposed artificial dielectric structure can obtain the same increase in the local transmit radiofrequency magnetic field distribution in a head phantom at 7 T as the conventional dielectric pad.
Collapse
Affiliation(s)
- Vsevolod Vorobyev
- Department of Physics and Engineering, ITMO University, 197101 St. Petersburg, Russia.
| | - Alena Shchelokova
- Department of Physics and Engineering, ITMO University, 197101 St. Petersburg, Russia.
| | - Irena Zivkovic
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands.
| | - Alexey Slobozhanyuk
- Department of Physics and Engineering, ITMO University, 197101 St. Petersburg, Russia.
| | - Juan D Baena
- Department of Physics, Universidad Nacional de Colombia, Bogota 111321, Colombia.
| | - Juan P Del Risco
- School of Exact Sciences and Engineering, Universidad Sergio Arboleda, Bogota 111711, Colombia.
| | - Redha Abdeddaim
- Aix Marseille University, CNRS, Centrale Marseille, Institut Fresnel, F-13013 Marseille, France.
| | - Andrew Webb
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands.
| | - Stanislav Glybovski
- Department of Physics and Engineering, ITMO University, 197101 St. Petersburg, Russia.
| |
Collapse
|
18
|
Mitigation of B 1+ inhomogeneity for ultra-high-field magnetic resonance imaging: hybrid mode shaping with auxiliary EM potential. Sci Rep 2020; 10:11752. [PMID: 32678182 PMCID: PMC7366730 DOI: 10.1038/s41598-020-68651-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/29/2020] [Indexed: 11/25/2022] Open
Abstract
The notion of mode shaping based on evanescent coupling has been successfully applied in various fields of optics, such as in the dispersion engineering of optical waveguides. Here, we show that the same concept provides an opportunity for the seemingly different field of ultra-high-field MRI, addressing transmit RF magnetic field (B1+) inhomogeneity. In this work, treating the human phantom as a resonator, we employ an evanescently coupled high-index cladding layer to study the effects of the auxiliary potential on shaping the B1+ field distribution inside the phantom. Controlling the strength and coupling of the auxiliary potential ultimately determining the hybridized mode, we successfully demonstrate the global 2D homogenization of axial B1+ for a simplified cylindrical phantom and for a more realistic phantom of spheroidal geometry. The mode-shaping potentials with a magnetic permeability or material loss are also tested to offer additional degrees of freedom in the selection of materials as well as in the manipulation of the B1+ distribution, opening up the possibility of B1+ homogenization for 3D MRI scanning.
Collapse
|
19
|
Image Artifact Management for Clinical Magnetic Resonance Imaging on a 7 T Scanner Using Single-Channel Radiofrequency Transmit Mode. Invest Radiol 2020; 54:781-791. [PMID: 31503079 DOI: 10.1097/rli.0000000000000598] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The aim of this work was to devise mitigation strategies for addressing a range of image artifacts on a clinical 7 T magnetic resonance imaging scanner using the regulatory-approved single-channel radiofrequency transmit mode and vendor-supplied radiofrequency coils to facilitate clinical scanning within reasonable scan times. MATERIALS AND METHODS Optimized imaging sequence protocols were developed for routine musculoskeletal knee and neurological imaging. Sources of severe image nonuniformities were identified, and mitigation strategies were devised. A range of custom-made high permittivity dielectric pads were used to compensate for B1 and B1 inhomogeneities, and also for magnetic susceptibility-induced signal dropouts particularly in the basal regions of the temporal lobes and in the cerebellum. RESULTS Significant improvements in image uniformity were obtained using dielectric pads in the knee and brain. A combination of small voxels, reduced field of view B0 shimming, and high in-plane parallel imaging factors helped to minimize signal loss in areas of high susceptibility-induced field distortions. The high inherent signal-to-noise ratio at 7 T allowed for high receiver bandwidths and thin slices to minimize chemical shift artifacts. Intermittent artifacts due to radiofrequency inversion pulse limitations (power, bandwidth) were minimized with dielectric pads. A patient with 2 implanted metallic cranial fixation devices located within the radiofrequency transmit field was successfully imaged, with minimal image geometric distortions. CONCLUSIONS Challenges relating to severe image artifacts at 7 T using single-channel radiofrequency transmit functionality in the knee and brain were overcome using the approaches described in this article. The resultant high diagnostic image quality paves the way for incorporation of this technology into the routine clinical workflow. Further developmental efforts are required to expand the range of applications to other anatomical areas, and to expand the evidence- and knowledge-base relating to the safety of scanning patients with implanted metallic devices.
Collapse
|
20
|
van Gemert J, Brink W, Webb A, Remis R. High-permittivity pad design tool for 7T neuroimaging and 3T body imaging. Magn Reson Med 2018; 81:3370-3378. [PMID: 30561797 PMCID: PMC6519234 DOI: 10.1002/mrm.27629] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/18/2018] [Accepted: 11/16/2018] [Indexed: 11/20/2022]
Abstract
Purpose High‐permittivity materials in the form of flexible “dielectric pads” have proved very useful for addressing RF inhomogeneities in high field MRI systems. Finding the optimal design of such pads is, however, a tedious task, reducing the impact of this technique. We present an easy‐to‐use software tool which allows researchers and clinicians to design dielectric pads efficiently on standard computer systems, for 7T neuroimaging and 3T body imaging applications. Methods The tool incorporates advanced computational methods based on field decomposition and model order reduction as a framework to efficiently evaluate the B1+ fields resulting from dielectric pads. The tool further incorporates optimization routines which can either optimize the position of a given dielectric pad, or perform a full parametric design. The optimization procedure can target either a single target field, or perform a sweep to explore the trade‐off between homogeneity and efficiency of the B1+ field in a specific region of interest. The 3T version further allows for shifting of the imaging landmark to enable different imaging targets to be centered in the body coil. Results Example design results are shown for imaging the inner ear at 7T and for cardiac imaging at 3T. Computation times for all cases are approximately a minute per target field. Conclusion The developed tool can be easily used to design dielectric pads for any 7T neuroimaging and 3T body imaging application within minutes. This bridges the gap between the advanced design methods and the practical application by the MR community.
Collapse
Affiliation(s)
- Jeroen van Gemert
- Circuits & Systems Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Wyger Brink
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew Webb
- Circuits & Systems Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Rob Remis
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|