1
|
Lowen D, Pracht ED, Gras V, Massire A, Mauconduit F, Stoecker T, Boulant N. Design of calibration-free RF pulses for T 2 $$ {}_2 $$ -weighted single-slab 3D turbo-spin-echo sequences at 7T utilizing parallel transmission. Magn Reson Med 2024; 92:2037-2050. [PMID: 39054786 DOI: 10.1002/mrm.30212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE T 2 $$ {}_2 $$ -weighted turbo-spin-echo (TSE) sequences are a fundamental technique in brain imaging but suffer from field inhomogeneities at ultra-high fields. Several methods have been proposed to mitigate the problem, but were limited so far to nonselective three-dimensional (3D) measurements, making short acquisitions difficult to achieve when targeting very high resolution images, or needed additional calibration procedures, thus complicating their application. METHODS Slab-selective excitation pulses were designed for flexible placement utilizing the concept of k T $$ {}_T $$ -spokes. Phase-coherent refocusing universal pulses were subsequently optimized with the Gradient Ascent Pulse Engineering algorithm and tested in vivo for improved signal homogeneity. RESULTS Implemented within a 3D variable flip angle TSE sequence, these pulses led to a signal-to-noise ratio (SNR) improvement ranging from 10% to 30% compared to a two-dimensional (2D) T2w TSE sequence employingB 1 + $$ {\mathrm{B}}_1^{+} $$ -shimmed pulses.B 1 + $$ {\mathrm{B}}_1^{+} $$ field inhomogeneities could be mitigated and artifacts fromB 0 $$ {\mathrm{B}}_0 $$ deviations reduced. The concept of universal pulses was successfully applied. CONCLUSION We present a pulse design method which provides a set of calibration-free universal pulses (UPs) for slab-selective excitation and phase-coherent refocusing in slab-selective TSE sequences.
Collapse
Affiliation(s)
- Daniel Lowen
- MR Physics, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Eberhard D Pracht
- MR Physics, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Vincent Gras
- Commissariat à l'Energie Atomique, CNRS, NeuroSpin, BAOBAB, Université Paris-Saclay, Gif sur Yvette, France
| | | | - Franck Mauconduit
- Commissariat à l'Energie Atomique, CNRS, NeuroSpin, BAOBAB, Université Paris-Saclay, Gif sur Yvette, France
| | - Tony Stoecker
- MR Physics, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Physics & Astronomy, University of Bonn, Bonn, Germany
| | - Nicolas Boulant
- Commissariat à l'Energie Atomique, CNRS, NeuroSpin, BAOBAB, Université Paris-Saclay, Gif sur Yvette, France
| |
Collapse
|
2
|
Shao X, Zhang Z, Ma X, Liu F, Guo H, Ugurbil K, Wu X. Parallel-transmission spatial spectral pulse design with local specific absorption rate control: Demonstration for robust uniform water-selective excitation in the human brain at 7 T. Magn Reson Med 2024. [PMID: 39481025 DOI: 10.1002/mrm.30346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024]
Abstract
PURPOSE To propose a novel method for parallel-transmission (pTx) spatial-spectral pulse design and demonstrate its utility for robust uniform water-selective excitation (water excitation) across the entire brain. THEORY AND METHODS Our design problem is formulated as a magnitude-least-squares minimization with joint RF and k-space optimization under explicit specific-absorption-rate constraints. For improved robustness against off-resonance effects, the spectral component of the excitation target is prescribed to have a water passband and a fat stopband. A two-step algorithm was devised to solve our design problem, with Step 1 aiming to solve a reduced problem to find a sensible start point for Step 2 to solve the original problem. The efficacy of our pulse design was evaluated in simulation, phantom, and human experiments using the commercial Nova head coil. Universal pulses were also designed based on a 10-subject training data set to demonstrate the utility of our method for plug-and-play pTx. RESULTS For kT-points and spiral nonselective parameterizations, our design method outperformed the pTx interleaved binomial approach, reducing RMS error by up to about 35% for water excitation and about 97% for fat suppression (over a 200-Hz bandwidth) while decreasing local specific absorption rate by about 30%. Both our subject-specific and universal pulses improved water excitation, restoring signal loss in the cerebellum while suppressing fat signal even in regions of large susceptibility-induced off-resonances. CONCLUSION Demonstrated useful for 4D (3D spatial, one-dimensional spectral) pTx spatial-spectral pulse design, our proposed method provides an effective solution for robust volumetric uniform water excitation, holding a promise to many ultrahigh-field applications.
Collapse
Affiliation(s)
- Xin Shao
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Zhe Zhang
- Tiantan Neuroimaging Center of Excellence, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Ma
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Fan Liu
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Hua Guo
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaoping Wu
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Boğa Ç, Henning A. Bilateral orthogonality generative acquisitions method for homogeneous T 2 * images using parallel transmission at 7 T. Magn Reson Med 2024. [PMID: 39375826 DOI: 10.1002/mrm.30329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE The novel bilateral orthogonality generative acquisitions method has been developed for homogeneousT 2 * $$ {\mathrm{T}}_2^{\ast } $$ images without the effects of transmit field inhomogeneity using a parallel-transmission (pTx) system at 7 T. THEORY AND METHODS A new method has been introduced using four low-angle gradient-echo (GRE) acquisitions to obtain homogeneousT 2 * $$ {\mathrm{T}}_2^{\ast } $$ contrast by removing the effects of transmit field inhomogeneity in the pTx system. First, two input images are obtained in circularly polarized mode and another mode in which the first transmit channel or channel group have an additional transmit phase of π. The last two acquisitions are single-channel acquisitions for a dual-channel system or single-channel group acquisitions for more than two channels. The introduced method is demonstrated in dual-channel and eight-channel pTx systems using phantom and whole-brain in vivo experiments. Noise performance of the proposed method is also tested against the ratio of two GRE acquisitions and the TIAMO (time-interleaved acquisitions of modes) method. RESULTS Th new method results in more homogeneousT 2 * $$ {\mathrm{T}}_2^{\ast } $$ contrast in the final images than the compared methods, particularly in the low-intensity regions of circularly polarized-mode images for the images obtained via ratio of the two GRE acquisitions. CONCLUSION The introduced method is easy to implement, robust, and provides homogeneousT 2 * $$ {\mathrm{T}}_2^{\ast } $$ images of the whole brain using pTx systems with any number of channels, compared with the ratio of the two GRE images and the TIAMO method.
Collapse
Affiliation(s)
- Çelik Boğa
- UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anke Henning
- UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
4
|
Uher D, Drenthen GS, Poser BA, Hofman PAM, Wagner LG, van Lanen RHGJ, Hoeberigs CM, Colon AJ, Schijns OEMG, Jansen JFA, Backes WH. DeepFLAIR: A neural network approach to mitigate signal and contrast loss in temporal lobes at 7 Tesla FLAIR images. Magn Reson Imaging 2024; 110:57-68. [PMID: 38621552 DOI: 10.1016/j.mri.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND AND PURPOSE Higher magnetic field strength introduces stronger magnetic field inhomogeneities in the brain, especially within temporal lobes, leading to image artifacts. Particularly, T2-weighted fluid-attenuated inversion recovery (FLAIR) images can be affected by these artifacts. Here, we aimed to improve the FLAIR image quality in temporal lobe regions through image processing of multiple contrast images via machine learning using a neural network. METHODS Thirteen drug-resistant MR-negative epilepsy patients (age 29.2 ± 9.4y, 5 females) were scanned on a 7 T MRI scanner. Magnetization-prepared (MP2RAGE) and saturation-prepared with 2 rapid gradient echoes, multi-echo gradient echo with four echo times, and the FLAIR sequence were acquired. A voxel-wise neural network was trained on extratemporal-lobe voxels from the acquired structural scans to generate a new FLAIR-like image (i.e., deepFLAIR) with reduced temporal lobe inhomogeneities. The deepFLAIR was evaluated in temporal lobes through signal-to-noise (SNR), contrast-to-noise (CNR) ratio, the sharpness of the gray-white matter boundary and joint-histogram analysis. Saliency mapping demonstrated the importance of each input image per voxel. RESULTS SNR and CNR in both gray and white matter were significantly increased (p < 0.05) in the deepFLAIR's temporal ROIs, compared to the FLAIR. The gray-white matter boundary sharpness was either preserved or improved in 10/13 right-sided temporal regions and was found significantly increased in the ROIs. Multiple image contrasts were influential for the deepFLAIR reconstruction with the MP2RAGE second inversion image being the most important. CONCLUSIONS The deepFLAIR network showed promise to restore the FLAIR signal and reduce contrast attenuation in temporal lobe areas. This may yield a valuable tool, especially when artifact-free FLAIR images are not available.
Collapse
Affiliation(s)
- Daniel Uher
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands; Mental Health and Neuroscience Institute (MHeNs), Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Gerhard S Drenthen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands; Mental Health and Neuroscience Institute (MHeNs), Maastricht University, Maastricht, the Netherlands
| | - Benedikt A Poser
- Faculty of Psychology and Neuroscience (FPN), Maastricht University, the Netherlands
| | - Paul A M Hofman
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands; Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands
| | - Louis G Wagner
- Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands
| | - Rick H G J van Lanen
- Mental Health and Neuroscience Institute (MHeNs), Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Christianne M Hoeberigs
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands; Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands
| | - Albert J Colon
- Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands; Department of Epileptology, CHU-Martinique, Fort-de-France, France
| | - Olaf E M G Schijns
- Mental Health and Neuroscience Institute (MHeNs), Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands; Mental Health and Neuroscience Institute (MHeNs), Maastricht University, Maastricht, the Netherlands; Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Centre, Heeze/Maastricht, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Walter H Backes
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands; Mental Health and Neuroscience Institute (MHeNs), Maastricht University, Maastricht, the Netherlands; Cardiovascular Diseases Institute (CARIM), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
5
|
Kato Y, Naganawa S, Taoka T, Yoshida T, Sone M. Pitfalls of Using T2-contrast Enhancement Techniques in 3D-FLAIR to Detect Endolymphatic Hydrops. Magn Reson Med Sci 2023; 22:335-344. [PMID: 35545507 PMCID: PMC10449551 DOI: 10.2463/mrms.mp.2022-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/10/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To determine whether T2-contrast enhancement techniques can be used to diagnose endolymphatic hydrops, we compared fluid signal artifacts with and without T2-contrast enhancement techniques in 3D fluid-attenuated inversion recovery (3D-FLAIR). METHODS We prepared a custom-made phantom consisting of eight tubes half-filled with saline. Images were obtained using four 3D-FLAIR: without T2-contrast enhancement (Normal), with non-selective T2-inversion recovery (T2-IR), and two with non-selective T2 preparation IR (T2-prep). Scans were performed with and without rice covering the phantom to simulate minimal and severe B0-inhomogeneity conditions. The average signal intensity (SI) values of eight saline tubes were compared between the four sequences and between each other. Comparisons were performed for all measurement slices and the central 10 slices. The images using T2-contrast enhancement technique were obtained from a volunteer and a patient suspected of Meniere's disease. RESULTS The Normal sequence SI for all slices was significantly lower than that for the other sequences, with smaller standard deviation (SD) and no outliers. Several outliers were detected in the other sequences. The SDs and outliers were larger without rice than with rice. When the central 10 slices with rice, the T2-IR had a significantly higher SI with more outliers compared with the Normal sequence. The T2-prep had no outliers and SIs that were comparable to those of the Normal sequence. However, without rice, the T2-IR and T2-prep sequences had significantly higher SIs with outliers and larger SDs compared to the Normal sequence. In the corresponding images, the Normal sequence achieved excellent fluid suppression, whereas the T2-IR and T2-prep sequences showed high-signal artifacts. Imperfect fluid suppressions were observed in the volunteer image and the endolymphatic hydrops on the post-gadolinium image differed in size and shape in the non-injected T2-IR in the patient image. CONCLUSION T2-contrast enhancement techniques should be used with caution in 3D-FLAIR for diagnosing endolymphatic hydrops.
Collapse
Affiliation(s)
- Yutaka Kato
- Department of Radiological Technology, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshiaki Taoka
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tadao Yoshida
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Michihiko Sone
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
6
|
Herrler J, Williams SN, Liebig P, Ding B, McElhinney P, Allwood-Spiers S, Meixner CR, Gunamony S, Maier A, Dörfler A, Gumbrecht R, Porter DA, Nagel AM. The effects of RF coils and SAR supervision strategies for clinically applicable nonselective parallel-transmit pulses at 7 T. Magn Reson Med 2023; 89:1888-1900. [PMID: 36622945 DOI: 10.1002/mrm.29569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE To investigate the effects of using different parallel-transmit (pTx) head coils and specific absorption rate (SAR) supervision strategies on pTx pulse design for ultrahigh-field MRI using a 3D-MPRAGE sequence. METHODS The PTx universal pulses (UPs) and fast online-customized (FOCUS) pulses were designed with pre-acquired data sets (B0 , B1 + maps, specific absorption rate [SAR] supervision data) from two different 8 transmit/32 receive head coils on two 7T whole-body MR systems. For one coil, the SAR supervision model consisted of per-channel RF power limits. In the other coil, SAR estimations were done with both per-channel RF power limits as well as virtual observation points (VOPs) derived from electromagnetic field (EMF) simulations using three virtual human body models at three different positions. All pulses were made for nonselective excitation and inversion and evaluated on 132 B0 , B1 + , and SAR supervision datasets obtained with one coil and 12 from the other. At both sites, 3 subjects were examined using MPRAGE sequences that used UP/FOCUS pulses generated for both coils. RESULTS For some subjects, the UPs underperformed when simulated on a different coil from which they were derived, whereas FOCUS pulses still showed acceptable performance in that case. FOCUS inversion pulses outperformed adiabatic pulses when scaled to the same local SAR level. For the self-built coil, the use of VOPs showed reliable overestimation compared with the ground-truth EMF simulations, predicting about 52% lower local SAR for inversion pulses compared with per-channel power limits. CONCLUSION FOCUS inversion pulses offer a low-SAR alternative to adiabatic pulses and benefit from using EMF-based VOPs for SAR estimation.
Collapse
Affiliation(s)
- Jürgen Herrler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Siemens Healthcare, Erlangen, Germany
| | | | | | | | - Paul McElhinney
- Imaging Center of Excellence, University of Glasgow, Glasgow, UK
| | | | - Christian R Meixner
- Siemens Healthcare, Erlangen, Germany.,Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Shajan Gunamony
- Imaging Center of Excellence, University of Glasgow, Glasgow, UK.,MR CoilTech, Glasgow, UK
| | - Andreas Maier
- Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - David A Porter
- Imaging Center of Excellence, University of Glasgow, Glasgow, UK
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
7
|
Williams SN, McElhinney P, Gunamony S. Ultra-high field MRI: parallel-transmit arrays and RF pulse design. Phys Med Biol 2023; 68. [PMID: 36410046 DOI: 10.1088/1361-6560/aca4b7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
This paper reviews the field of multiple or parallel radiofrequency (RF) transmission for magnetic resonance imaging (MRI). Currently the use of ultra-high field (UHF) MRI at 7 tesla and above is gaining popularity, yet faces challenges with non-uniformity of the RF field and higher RF power deposition. Since its introduction in the early 2000s, parallel transmission (pTx) has been recognized as a powerful tool for accelerating spatially selective RF pulses and combating the challenges associated with RF inhomogeneity at UHF. We provide a survey of the types of dedicated RF coils used commonly for pTx and the important modeling of the coil behavior by electromagnetic (EM) field simulations. We also discuss the additional safety considerations involved with pTx such as the specific absorption rate (SAR) and how to manage them. We then describe the application of pTx with RF pulse design, including a practical guide to popular methods. Finally, we conclude with a description of the current and future prospects for pTx, particularly its potential for routine clinical use.
Collapse
Affiliation(s)
- Sydney N Williams
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Paul McElhinney
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Shajan Gunamony
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom.,MR CoilTech Limited, Glasgow, United Kingdom
| |
Collapse
|
8
|
Mooiweer R, Clark IA, Maguire EA, Callaghan MF, Hajnal JV, Malik SJ. Universal pulses for homogeneous excitation using single channel coils. Magn Reson Imaging 2022; 92:180-186. [PMID: 35820546 DOI: 10.1016/j.mri.2022.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Universal Pulses (UPs) are excitation pulses that reduce the flip angle inhomogeneity in high field MRI systems without subject-specific optimization, originally developed for parallel transmit (PTX) systems at 7 T. We investigated the potential benefits of UPs for single channel (SC) transmit systems at 3 T, which are widely used for clinical and research imaging, and for which flip angle inhomogeneity can still be problematic. METHODS SC-UPs were designed using a spiral nonselective k-space trajectory for brain imaging at 3 T using transmit field maps (B1+) and off-resonance maps (B0) acquired on two different scanner types: a 'standard' single channel transmit system and a system with a PTX body coil. The effect of training group size was investigated using data (200 subjects) from the standard system. The PTX system was used to compare SC-UPs to PTX-UPs (15 subjects). In two additional subjects, prospective imaging using SC-UP was studied. RESULTS Average flip angle homogeneity error fell from 9.5 ± 0.5 % for 'default' excitation to 3.0 ± 0.6 % using SC-UPs trained over 50 subjects. Performance of the UPs was found to steadily improve as training group size increased, but stabilized after ~15 subjects. On the PTX-enabled system, SC-UPs again outperformed default excitation in simulations (4.8 ± 0.6 % error versus 10.6 ± 0.8 % respectively) though greater homogenization could be achieved with PTX-UPs (3.9 ± 0.6 %) and personalized pulses (SC-PP 3.6 ± 1.0 %, PTX-PP 2.9 ± 0.6 %). MP-RAGE imaging using SC-UP resulted in greater separation between grey and white matter signal intensities than default excitation. CONCLUSIONS SC-UPs can improve excitation homogeneity in standard 3 T systems without further calibration and could be used instead of a default excitation pulse for nonselective neuroimaging at 3 T.
Collapse
Affiliation(s)
- Ronald Mooiweer
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom; MR Research Collaborations, Siemens Healthcare Limited, Camberley, United Kingdom
| | - Ian A Clark
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Joseph V Hajnal
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Shaihan J Malik
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom.
| |
Collapse
|
9
|
Geldschläger O, Bosch D, Henning A. OTUP workflow: target specific optimization of the transmit k-space trajectory for flexible universal parallel transmit RF pulse design. NMR IN BIOMEDICINE 2022; 35:e4728. [PMID: 35297104 DOI: 10.1002/nbm.4728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/09/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
PURPOSE To optimize transmit k-space trajectories for a wide range of excitation targets and to design "universal pTx RF pulses" based on these trajectories. METHODS Transmit k-space trajectories (stack of spirals and SPINS) were optimized to best match different excitation targets using the parameters of the analytical equations of spirals and SPINS. The performances of RF pulses designed based on optimized and non-optimized trajectories were compared. The optimized trajectories were utilized for universal pulse design. The universal pulse performances were compared with subject specific tailored pulse performances. The OTUP workflow (optimization of transmit k-space trajectories and universal pulse calculation) was tested on three test target excitation patterns. For one target (local excitation of a central area in the human brain) the pulses were tested in vivo at 9.4 T. RESULTS The workflow produced appropriate transmit k-space trajectories for each test target. Utilization of an optimized trajectory was crucial for the pulse performance. Using unsuited trajectories diminished the performance. It was possible to create target specific universal pulses. However, not every test target is equally well suited for universal pulse design. There was no significant difference in the in vivo performance between subject specific tailored pulses and a universal pulse at 9.4 T. CONCLUSIONS The proposed workflow further exploited and improved the universal pulse concept by combining it with gradient trajectory optimization for stack of spirals and SPINS. It emphasized the importance of a well suited trajectory for pTx RF pulse design. Universal and tailored pulses performed with a sufficient degree of similarity in simulations and a high degree of similarity in vivo. The implemented OTUP workflow and the B0 /B1+ map data from 18 subjects measured at 9.4 T are available as open source (https://github.com/ole1965/workflow_OTUP.git).
Collapse
Affiliation(s)
- Ole Geldschläger
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Dario Bosch
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany
| | - Anke Henning
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
10
|
Oliveira ÍAF, Roos T, Dumoulin SO, Siero JCW, van der Zwaag W. Can 7T MPRAGE match MP2RAGE for gray-white matter contrast? Neuroimage 2021; 240:118384. [PMID: 34265419 DOI: 10.1016/j.neuroimage.2021.118384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022] Open
Abstract
Ultra-High Field (UHF) MRI provides a significant increase in Signal-to-Noise Ratio (SNR) and gains in contrast weighting in several functional and structural acquisitions. Unfortunately, an increase in field strength also induces non-uniformities in the transmit field (B1+) that can compromise image contrast non-uniformly. The MPRAGE is one of the most common T1 weighted (T1w) image acquisitions for structural imaging. It provides excellent contrast between gray and white matter and is widely used for brain segmentation. At 7T, the signal non-uniformities tend to complicate this and therefore, the self-bias-field corrected MP2RAGE is often used there. In both MPRAGE and MP2RAGE, more homogeneous image contrast can be achieved with adiabatic pulses, like the TR-FOCI inversion pulse, or special pulse design on parallel transmission systems, like Universal Pulses (UP). In the present study, we investigate different strategies to improve the bias-field for MPRAGE at 7T, comparing the contrast and GM/WM segmentability against MP2RAGE. The higher temporal efficiency of MPRAGE combined with the potential of the user-friendly UPs was the primary motivation for this MPRAGE-MP2RAGE comparison. We acquired MPRAGE data in six volunteers, adding a k-space shutter to reduce scan time, a kt-point UP approach for homogeneous signal excitation, and a TR-FOCI pulse for homogeneous inversion. Our results show remarkable signal contrast improvement throughout the brain, including regions of low B1+ such as the cerebellum. The improvements in the MPRAGE were largest following the introduction of the UPs. In addition to the CNR, both SNR and GM/WM segmentability were also assessed. Among the MPRAGEs, the combined strategy (UP + TR-FOCI) yielded highest SNR and showed highest spatial similarity between GM segments to the MP2RAGE. Interestingly, the distance between gray and white matter peaks in the intensity histograms did not increase, as better pulses and higher SNR especially benefitted the (cerebellar) gray matter. Overall, the gray-white matter contrast from MP2RAGE is higher, with higher CNR and higher intensity peak distances, even when scaled to scan time. Hence, the extra acquisition time for MP2RAGE is justified by the improved segmentability.
Collapse
Affiliation(s)
- Ícaro A F Oliveira
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands.
| | - Thomas Roos
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands
| | - Serge O Dumoulin
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands; Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| | - Jeroen C W Siero
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Radiology, Utrecht Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | | |
Collapse
|
11
|
Geldschläger O, Bosch D, Glaser S, Henning A. Local excitation universal parallel transmit pulses at 9.4T. Magn Reson Med 2021; 86:2589-2603. [PMID: 34180089 DOI: 10.1002/mrm.28905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE To demonstrate that the concept of "universal pTx pulses" is applicable to local excitation applications. METHODS A database of B0 / B 1 + maps from eight different subjects was acquired at 9.4T. Based on these maps, universal pulses that aim at local excitation of the visual cortex area in the human brain (with a flip angle of 90° or 7°) were calculated. The remaining brain regions should not experience any excitation. The pulses were designed with an extension of the "spatial domain method." A 2D and a 3D target excitation pattern were tested, respectively. The pulse performance was examined on non-database subjects by Bloch simulations and in vivo at 9.4T using a GRE anatomical MRI and a presaturated TurboFLASH B 1 + mapping sequence. RESULTS The calculated universal pulses show excellent performance in simulations and in vivo on subjects that were not contained in the design database. The visual cortex region is excited, while the desired non-excitation areas produce the only minimal signal. In simulations, the pulses with 3D target pattern show a lack of excitation uniformity in the visual cortex region; however, in vivo, this inhomogeneity can be deemed acceptable. A reduced field of view application of the universal pulse design concept was performed successfully. CONCLUSIONS The proposed design approach creates universal local excitation pulses for a flip angle of 7° and 90°, respectively. Providing universal pTx pulses for local excitation applications prospectively abandons the need for time-consuming subject-specific B0 / B 1 + mapping and pTx-pulse calculation during the scan session.
Collapse
Affiliation(s)
- Ole Geldschläger
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Dario Bosch
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany
| | - Steffen Glaser
- Department for Chemistry, Technical University of Munich, Garching, Germany
| | - Anke Henning
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
Majewski K. Simultaneous optimization of radio frequency and gradient waveforms with exact Hessians and slew rate constraints applied to k T-points excitation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 326:106941. [PMID: 33721585 DOI: 10.1016/j.jmr.2021.106941] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/11/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
We consider an excitation pulse with piecewise constant gradient trajectories and radio frequency (RF) waveforms such that the solution of the Bloch equations without relaxation terms can be represented by rotations. Based on this analytic solution we formulate a non-linear program for finding sub-pulse durations, gradient strengths, and complex RF voltages which minimize the deviation between the achieved and desired magnetization. We develop explicit expressions for the first and second order derivatives of the objective function. We extend the non-linear program to precisely account for gradient slew rate constraints. Using an interior point solver we apply the developed theory to simultaneously optimize the positions of kT-points, their associated RF voltages and durations.
Collapse
Affiliation(s)
- Kurt Majewski
- Siemens AG, T RDA BAM ORD-DE, Munich 80200, Germany.
| |
Collapse
|
13
|
Herrler J, Liebig P, Gumbrecht R, Ritter D, Schmitter S, Maier A, Schmidt M, Uder M, Doerfler A, Nagel AM. Fast online-customized (FOCUS) parallel transmission pulses: A combination of universal pulses and individual optimization. Magn Reson Med 2021; 85:3140-3153. [PMID: 33400302 DOI: 10.1002/mrm.28643] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 11/03/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE To mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra-high field MRI using a combination of universal parallel transmit (pTx) pulses and fast subject-specific optimization. METHODS Data sets consisting of B0 , B 1 + maps, and virtual observation point (VOP) data were acquired from 72 subjects (study groups of 48/12 healthy Europeans/Asians and 12 Europeans with pathological or incidental findings) using an 8Tx/32Rx head coil on a 7T whole-body MR system. Combined optimization values (COV) were defined as combination of spiral-nonselective (SPINS) trajectory parameters and an energy regularization weight. A set of COV was optimized universally by simulating the individual RF pulse optimizations of 12 training data sets (healthy Europeans). Subsequently, corresponding universal pulses (UPs) were calculated. Using COV and UPs, individually optimized pulses (IOPs) were calculated during the sequence preparation phase (maximum 15 s). Two different UPs and IOPs were evaluated by calculating their normalized root-mean-square error (NRMSE) of the FA and SAR in simulations of all data sets. Seven additional subjects were examined using an MPRAGE sequence that uses the designed pTx excitation pulses and a conventional adiabatic inversion. RESULTS All pTx pulses resulted in decreased mean NRMSE compared to a circularly polarized (CP) pulse (CP = ~28%, UPs = ~17%, and IOPs = ~12%). UPs and IOPs improved homogeneity for all subjects. Differences in NRMSE between study groups were much lower than differences between different pulse types. CONCLUSION UPs can be used to generate fast online-customized (FOCUS) pulses gaining lower NRMSE and/or lower SAR values.
Collapse
Affiliation(s)
- Jürgen Herrler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | | | | | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Andreas Maier
- Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Manuel Schmidt
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Institute of Medical Physics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
14
|
Abbasi-Rad S, O'Brien K, Kelly S, Vegh V, Rodell A, Tesiram Y, Jin J, Barth M, Bollmann S. Improving FLAIR SAR efficiency at 7T by adaptive tailoring of adiabatic pulse power through deep learning B 1 + estimation. Magn Reson Med 2020; 85:2462-2476. [PMID: 33226685 DOI: 10.1002/mrm.28590] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 01/22/2023]
Abstract
PURPOSE The purpose of this study is to demonstrate a method for specific absorption rate (SAR) reduction for 2D T2 -FLAIR MRI sequences at 7 T by predicting the required adiabatic radiofrequency (RF) pulse power and scaling the RF amplitude in a slice-wise fashion. METHODS We used a time-resampled frequency-offset corrected inversion (TR-FOCI) adiabatic pulse for spin inversion in a T2 -FLAIR sequence to improve B 1 + homogeneity and calculated the pulse power required for adiabaticity slice-by-slice to minimize the SAR. Drawing on the implicit B 1 + inhomogeneity in a standard localizer scan, we acquired 3D AutoAlign localizers and SA2RAGE B 1 + maps in 28 volunteers. Then, we trained a convolutional neural network (CNN) to estimate the B 1 + profile from the localizers and calculated pulse scale factors for each slice. We assessed the predicted B 1 + profiles and the effect of scaled pulse amplitudes on the FLAIR inversion efficiency in oblique transverse, sagittal, and coronal orientations. RESULTS The predicted B 1 + amplitude maps matched the measured ones with a mean difference of 9.5% across all slices and participants. The slice-by-slice scaling of the TR-FOCI inversion pulse was most effective in oblique transverse orientation and resulted in a 1 min and 30 s reduction in SAR induced delay time while delivering identical image quality. CONCLUSION We propose a SAR reduction technique based on the estimation of B 1 + profiles from standard localizer scans using a CNN and show that scaling the inversion pulse power slice-by-slice for FLAIR sequences at 7T reduces SAR and scan time without compromising image quality.
Collapse
Affiliation(s)
- Shahrokh Abbasi-Rad
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Kieran O'Brien
- Siemens Healthcare Pty Ltd, Brisbane, Queensland, Australia.,ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland, Australia
| | - Samuel Kelly
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Viktor Vegh
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia.,ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland, Australia
| | - Anders Rodell
- Siemens Healthcare Pty Ltd, Brisbane, Queensland, Australia
| | - Yasvir Tesiram
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Jin Jin
- Siemens Healthcare Pty Ltd, Brisbane, Queensland, Australia.,ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia.,ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland, Australia.,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Steffen Bollmann
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia.,ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland, Australia.,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Van Damme L, Mauconduit F, Chambrion T, Boulant N, Gras V. Universal nonselective excitation and refocusing pulses with improved robustness to off-resonance for Magnetic Resonance Imaging at 7 Tesla with parallel transmission. Magn Reson Med 2020; 85:678-693. [PMID: 32755064 DOI: 10.1002/mrm.28441] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 11/07/2022]
Abstract
PURPOSE In MRI at ultra-high field, the k T -point and spiral nonselective (SPINS) pulse design techniques can be advantageously combined with the parallel transmission (pTX) and universal pulse techniques to create uniform excitation in a calibration-free manner. However, in these approaches, pulse duration is typically increased as compared to standard hard pulses, and excitation quality in regions exhibiting large resonance frequency offsets often suffer. This limitation is inherent to structure of k T -point or SPINS pulse, and likely can be mitigated using parameterization-free pulse design approaches. METHODS The Gradient Ascent Pulse Engineering (GRAPE) algorithm was used to design parameterization-free RF and magnetic field gradient (MFG) waveforms for creating 8 ∘ excitation, up to 105 ∘ scalable refocusing and inversion, nonselectively across the brain. Simulations were performed to provide flip angle normalized root-mean-squares error (FA-NRMSE) estimations for the 8 ∘ and the 180 ∘ k T -point, SPINS, and GRAPE pulses. GRAPE pulses were tested experimentally with anatomical head scans at 7T. RESULTS As compared to k T -points and SPINS, GRAPE provided substantial improvement of excitation, refocusing, and inversion quality at off-resonance while at least preserving the same global FA-NRMSE performance. As compared to k T -points, GRAPE allowed for a substantial reduction of the pulse duration for the 8 ∘ excitation and the 105 ∘ refocusing. CONCLUSIONS Parameterization-free universal nonselective pTX-pulses were successfully computed using GRAPE. Performance gains as compared to k T -points were validated numerically and experimentally for three imaging protocols. In its current implementation, the computational burden of GRAPE limits its use to applications where pulse computations are not subject to time constraints.
Collapse
Affiliation(s)
- L Van Damme
- Institut Elie Cartan, Université de Nancy, Nancy, France.,CEA, CNRS, BAOBAB, NeuroSpin, Université Paris-Saclay, Gif-sur-Yvette, France
| | - F Mauconduit
- CEA, CNRS, BAOBAB, NeuroSpin, Université Paris-Saclay, Gif-sur-Yvette, France
| | - T Chambrion
- Institut Elie Cartan, Université de Nancy, Nancy, France.,INRIA Nancy Grand Est, Vandœuvre, France
| | - N Boulant
- CEA, CNRS, BAOBAB, NeuroSpin, Université Paris-Saclay, Gif-sur-Yvette, France
| | - V Gras
- CEA, CNRS, BAOBAB, NeuroSpin, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Tong Y, Jezzard P, Okell TW, Clarke WT. Improving PCASL at ultra-high field using a VERSE-guided parallel transmission strategy. Magn Reson Med 2020; 84:777-786. [PMID: 31971634 PMCID: PMC7216913 DOI: 10.1002/mrm.28173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/02/2019] [Accepted: 12/24/2019] [Indexed: 11/16/2022]
Abstract
Purpose To improve the labeling efficiency of pseudo‐continuous arterial spin labeling (PCASL) at 7T using parallel transmission (pTx). Methods Five healthy subjects were scanned on an 8‐channel‐transmit 7T human MRI scanner. Time‐of‐flight (TOF) angiography was acquired to identify regions of interest (ROIs) around the 4 major feeding arteries to the brain, and B1+ and B0 maps were acquired in the labeling plane for tagging pulse design. Complex weights of the labeling pulses for each of the 8 transmit channels were calculated to produce a homogenous radiofrequency (RF) ‐shimmed labeling across the ROIs. Variable‐Rate Selective Excitation (VERSE) pulses were also implemented as a part of the labeling pulse train. Whole‐brain perfusion‐weighted images were acquired under conditions of RF shimming, VERSE with RF shimming, and standard circularly polarized (CP) mode. The same subjects were scanned on a 3T scanner for comparison. Results In simulation, VERSE with RF shimming improved the flip‐angles across the ROIs in the labeling plane by 90% compared with CP mode. VERSE with RF shimming improved the temporal signal‐to‐noise ratio by 375% compared with CP mode, but did not outperform a matched 3T sequence with a matched flip‐angle. Conclusion We have demonstrated improved PCASL tagging at 7T using VERSE with RF shimming on a commercial head coil under conservative SAR limits at 7T. However, improvements of 7T over 3T may require strategies with less conservative SAR restrictions.
Collapse
Affiliation(s)
- Yan Tong
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Peter Jezzard
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Thomas W Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| |
Collapse
|
17
|
Cao Z, Yan X, Gore JC, Grissom WA. Designing parallel transmit head coil arrays based on radiofrequency pulse performance. Magn Reson Med 2019; 83:2331-2342. [PMID: 31722120 DOI: 10.1002/mrm.28068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/23/2019] [Accepted: 10/16/2019] [Indexed: 12/27/2022]
Abstract
PURPOSE A new approach to design parallel transmit (pTx) head arrays is proposed that integrates transmit radiofrequency pulse designs with electromagnetic modeling of array coil elements. THEORY AND METHODS An approach to design pTx head arrays is proposed that finds optimal groupings of a large number of coils into a small number of channels. An algorithm is proposed to extend array-compressed parallel transmit pulse design by adding the ability to optimally select and prune coil elements, in addition to optimizing compression weights. The performance of the method is demonstrated in simulations of dynamic multislice shimming of the human brain in axial, coronal, and sagittal directions, and of reduced field-of-view excitation targeting the human occipital lobe, with simulated electromagnetic field maps from a group of 5 human head models at 7T. RESULTS For both dynamic multislice shimming and reduced field-of-view excitation, the method successfully designed pTx arrays that simultaneously achieved in general 15% lower mean excitation errors with 20% lower SDs, along with 20% lower mean global averaged specific absorption rate and 50% lower SD than previously reported pTx head array designs. CONCLUSION With the proposed optimal coil element selection algorithm, the array-compressed parallel transmit pulse design can be extended to design pTx transmit head arrays with joint consideration of the fields within the sample and the radiofrequency pulse. The pTx arrays from such an approach achieved higher transmit excitation accuracy, lower radiofrequency heating in subjects, and more robust performance across subjects compared with previously reported pTx head arrays with the same number of channels.
Collapse
Affiliation(s)
- Zhipeng Cao
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Nashville, Tennessee
| | - Xinqiang Yan
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Nashville, Tennessee
| | - John C Gore
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|