1
|
Ryu JK, Jung WB, Yu J, Son JP, Lee SK, Kim SG, Park JY. An equal-TE ultrafast 3D gradient-echo imaging method with high tolerance to magnetic susceptibility artifacts: Application to BOLD functional MRI. Magn Reson Med 2020; 85:1986-2000. [PMID: 33107102 DOI: 10.1002/mrm.28564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE To develop an ultrafast 3D gradient echo-based MRI method with constant TE and high tolerance to B0 inhomogeneity, dubbed ERASE (equal-TE rapid acquisition with sequential excitation), and to introduce its use in BOLD functional MRI (fMRI). THEORY AND METHODS Essential features of ERASE, including spin behavior, were characterized, and a comparison study was conducted with conventional EPI. To demonstrate high tolerance to B0 inhomogeneity, in vivo imaging of the mouse brain with a fiber-optic implant was performed at 9.4 T, and human brain imaging (including the orbitofrontal cortex) was performed at 3 T and 7 T. To evaluate the performance of ERASE in BOLD-fMRI, the characteristics of SNR and temporal SNR were analyzed for in vivo rat brains at 9.4 T in comparison with multislice gradient-echo EPI. Percent signal changes and t-scores are also presented. RESULTS For both mouse brain and human brain imaging, ERASE exhibited a high tolerance to magnetic susceptibility artifacts, showing much lower distortion and signal dropout, especially in the regions involving large magnetic susceptibility effects. For BOLD-fMRI, ERASE provided higher temporal SNR and t-scores than EPI, but exhibited similar percent signal changes in in vivo rat brains at 9.4 T. CONCLUSION When compared with conventional EPI, ERASE is much less sensitive, not only to EPI-related artifacts such as Nyquist ghosting, but also to B0 inhomogeneity including magnetic susceptibility effects. It is promising for use in BOLD-fMRI, providing higher temporal SNR and t-scores with constant TE when compared with EPI, although further optimization is needed for human fMRI.
Collapse
Affiliation(s)
- Jae-Kyun Ryu
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Won Beom Jung
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Jaeyong Yu
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeong Pyo Son
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Seung-Kyun Lee
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seong-Gi Kim
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jang-Yeon Park
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
2
|
Froelich T, Mullen M, Garwood M. MRI exploiting frequency-modulated pulses and their nonlinear phase. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 318:106779. [PMID: 32917297 DOI: 10.1016/j.jmr.2020.106779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Frequency-modulated (FM) pulses can provide several advantages over conventional amplitude-modulated pulses in the field of MRI; however, the manner in which spins are manipulated imprints a quadratic phase on the resulting magnetization. Historically this was considered a hindrance and slowed the widespread adoption of FM pulses. This article seeks to provide a historical perspective of the different techniques that researchers have used to exploit the benefits of FM pulses and to compensate for the nonlinear phase created by this class of pulses in MRI. Expanding on existing techniques, a new method of phase compensation is presented that utilizes nonlinear gradients to mitigate the undesirable phase imparted by this class of pulses.
Collapse
Affiliation(s)
- Taylor Froelich
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA.
| | - Michael Mullen
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA.
| | - Michael Garwood
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
3
|
Huang J, Chen L, Chan KWY, Cai C, Cai S, Chen Z. Super-resolved water/fat image reconstruction based on single-shot spatiotemporally encoded MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 314:106736. [PMID: 32361511 DOI: 10.1016/j.jmr.2020.106736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/11/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Single-shot spatiotemporally encoded (SPEN) MRI has been validated to possess considerable performance in both spatial and temporal resolution. Water/fat separation is essential for MRI applications in which only water signal is needed. In this article, a super-resolved water/fat image reconstruction method (dubbed SWAF) combined prior knowledge was developed based on single-shot SPEN MRI. The point spread function of spatiotemporal encoding under multiple chemical shifts situation was derived and used for constructing an equation for SWAF image reconstruction. By processing the prior chemical shift information with filtering operation, an initial spin density profile of water/fat and a weighting matrix for water/fat residual artifacts suppression were obtained to guide the reconstruction process. A l1 norm minimization problem with regularization was exploited to reconstruct separated water/fat images with high spatial resolution and less residual/aliasing artifacts. Numeric simulation and experiments on water-oil phantom and rat abdomen/neck imaging demonstrated the effectiveness and robustness of this new method. The SWAF method proposed herein would promote the application of SPEN MRI in the cases where water/fat separation is required.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China; Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Lin Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Congbo Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China.
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China.
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| |
Collapse
|