1
|
Voss HU, Razlighi QR. Pulsatility analysis of the circle of Willis. AGING BRAIN 2024; 5:100111. [PMID: 38495808 PMCID: PMC10940807 DOI: 10.1016/j.nbas.2024.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
Purpose To evaluate the phenomenological significance of cerebral blood pulsatility imaging in aging research. Methods N = 38 subjects from 20 to 72 years of age (24 females) were imaged with ultrafast MRI with a sampling rate of 100 ms and simultaneous acquisition of pulse oximetry data. Of these, 28 subjects had acceptable MRI and pulse data, with 16 subjects between 20 and 28 years of age, and 12 subjects between 61 and 72 years of age. Pulse amplitude in the circle of Willis was assessed with the recently developed method of analytic phase projection to extract blood volume waveforms. Results Arteries in the circle of Willis showed pulsatility in the MRI for both the young and old age groups. Pulse amplitude in the circle of Willis significantly increased with age (p = 0.01) but was independent of gender, heart rate, and head motion during MRI. Discussion and conclusion Increased pulse wave amplitude in the circle of Willis in the elderly suggests a phenomenological significance of cerebral blood pulsatility imaging in aging research. The physiologic origin of increased pulse amplitude (increased pulse pressure vs. change in arterial morphology vs. re-shaping of pulse waveforms caused by the heart, and possible interaction with cerebrospinal fluid pulsatility) requires further investigation.
Collapse
Affiliation(s)
- Henning U. Voss
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Cornell MRI Facility, College of Human Ecology, Cornell University, Ithaca, NY, USA
| | - Qolamreza R. Razlighi
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Shamim AMKM, Panagiotopoulos N, Spahic A, Harris DT, Roldán-Alzate A, Wieben O, Reeder SB, Oechtering TH, Johnson KM. Fat mitigation strategies to improve image quality of radial 4D flow MRI in obese subjects. Magn Reson Med 2023; 90:444-457. [PMID: 37036023 PMCID: PMC10231668 DOI: 10.1002/mrm.29652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/10/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023]
Abstract
PURPOSE This study addresses the challenges in obtaining abdominal 4D flow MRI of obese patients. We aimed to evaluate spectral saturation and inner volume excitation as methods to mitigating artifacts originating from adipose signals, with the goal of enhancing image quality and improving quantification. METHODS Radial 4D flow MRI acquisitions with fat mitigation (inner volume excitation [IVE] and intermittent fat saturation [FS]) were compared to a standard slab selective excitation (SSE) in a test-retest study of 15 obese participants. IVE selectively excited a cylindrical region of interest, avoiding contamination from peripheral adipose tissue, while FS globally suppressed fat based on spectral selection. Acquisitions were evaluated qualitatively based on expert ratings and quantitatively based on conservation of mass, test-retest repeatability, and a divergence free quality metric. Errors were evaluated statistically using the absolute and relative errors, regression, and Bland-Altman analysis. RESULTS IVE demonstrated superior performance quantitatively in the conservation of mass analysis in the portal vein, with higher correlation and lower bias in regression analysis. IVE also produced flow fields with the lowest divergence error and was rated best in overall image quality, delineating small vessels, and producing the least streaking artifacts. Evaluation results did not differ significantly between FS and SSE. Test-retest reproducibility was similarly high for all sequences, with data suggesting biological variations dominate the technical variability. CONCLUSION IVE improved hemodynamic assessment of radial 4D flow MRI in the abdomen of obese participants while FS did not lead to significant improvements in image quality or flow metrics.
Collapse
Affiliation(s)
- A M K Muntasir Shamim
- Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - Nikolaos Panagiotopoulos
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Universität zu Lübeck, Department of Radiology and Nuclear Medicine, Lübeck, Germany
| | - Alma Spahic
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - David T. Harris
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Alejandro Roldán-Alzate
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Mechanical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Oliver Wieben
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Scott B. Reeder
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Mechanical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Emergency Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Thekla Helene Oechtering
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Universität zu Lübeck, Department of Radiology and Nuclear Medicine, Lübeck, Germany
| | - Kevin M. Johnson
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Zhang Y, Jiang K, Jiang W, Wang N, Wright AJ, Liu A, Wang J. Multi-task convolutional neural network-based design of radio frequency pulse and the accompanying gradients for magnetic resonance imaging. NMR IN BIOMEDICINE 2021; 34:e4443. [PMID: 33200468 DOI: 10.1002/nbm.4443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Modern MRI systems usually load the predesigned RFs and the accompanying gradients during clinical scans, with minimal adaption to the specific requirements of each scan. Here, we describe a neural network-based method for real-time design of excitation RF pulses and the accompanying gradients' waveforms to achieve spatially two-dimensional selectivity. Nine thousand sets of radio frequency (RF) and gradient waveforms with two-dimensional spatial selectivity were generated as the training dataset using the Shinnar-Le Roux (SLR) method. Neural networks were created and trained with five strategies (TS-1 to TS-5). The neural network-designed RF and gradients were compared with their SLR-designed counterparts and underwent Bloch simulation and phantom imaging to investigate their performances in spin manipulations. We demonstrate a convolutional neural network (TS-5) with multi-task learning to yield both the RF pulses and the accompanying two channels of gradient waveforms that comply with the SLR design, and these design results also provide excitation spatial profiles comparable with SLR pulses in both simulation (normalized root mean square error [NRMSE] of 0.0075 ± 0.0038 over the 400 sets of testing data between TS-5 and SLR) and phantom imaging. The output RF and gradient waveforms between the neural network and SLR methods were also compared, and the joint NRMSE, with both RF and the two channels of gradient waveforms considered, was 0.0098 ± 0.0024 between TS-5 and SLR. The RF and gradients were generated on a commercially available workstation, which took ~130 ms for TS-5. In conclusion, we present a convolutional neural network with multi-task learning, trained with SLR transformation pairs, that is capable of simultaneously generating RF and two channels of gradient waveforms, given the desired spatially two-dimensional excitation profiles.
Collapse
Affiliation(s)
- Yajing Zhang
- MR Clinical Science, Philips Healthcare (Suzhou), Suzhou, China
| | - Ke Jiang
- MSC Clinical & Technical Solutions, Philips Healthcare, Beijing, China
| | - Weiwei Jiang
- MR Clinical Science, Philips Healthcare (Suzhou), Suzhou, China
| | - Nan Wang
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Alan J Wright
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Ailian Liu
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiazheng Wang
- MSC Clinical & Technical Solutions, Philips Healthcare, Beijing, China
| |
Collapse
|
4
|
Vinding MS, Aigner CS, Schmitter S, Lund TE. DeepControl: 2DRF pulses facilitating B 1 + inhomogeneity and B 0 off-resonance compensation in vivo at 7 T. Magn Reson Med 2021; 85:3308-3317. [PMID: 33480029 DOI: 10.1002/mrm.28667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 01/26/2023]
Abstract
PURPOSE Rapid 2DRF pulse design with subject-specific B 1 + inhomogeneity and B0 off-resonance compensation at 7 T predicted from convolutional neural networks is presented. METHODS The convolution neural network was trained on half a million single-channel transmit 2DRF pulses optimized with an optimal control method using artificial 2D targets, B 1 + and B0 maps. Predicted pulses were tested in a phantom and in vivo at 7 T with measured B 1 + and B0 maps from a high-resolution gradient echo sequence. RESULTS Pulse prediction by the trained convolutional neural network was done on the fly during the MR session in approximately 9 ms for multiple hand-drawn regions of interest and the measured B 1 + and B0 maps. Compensation of B 1 + inhomogeneity and B0 off-resonances has been confirmed in the phantom and in vivo experiments. The reconstructed image data agree well with the simulations using the acquired B 1 + and B0 maps, and the 2DRF pulse predicted by the convolutional neural networks is as good as the conventional RF pulse obtained by optimal control. CONCLUSION The proposed convolutional neural network-based 2DRF pulse design method predicts 2DRF pulses with an excellent excitation pattern and compensated B 1 + and B0 variations at 7 T. The rapid 2DRF pulse prediction (9 ms) enables subject-specific high-quality 2DRF pulses without the need to run lengthy optimizations.
Collapse
Affiliation(s)
- Mads Sloth Vinding
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus N, Denmark
| | | | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Torben Ellegaard Lund
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
5
|
Wink C, Bassenge JP, Ferrazzi G, Schaeffter T, Schmitter S. 4D flow imaging with UNFOLD in a reduced FOV. Magn Reson Med 2019; 84:327-338. [PMID: 31873954 DOI: 10.1002/mrm.28120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 11/08/2022]
Abstract
PURPOSE Two-dimensional selective excitation (2DRF) allows shortening 4D flow scan times by reducing the FOV, but the longer 2DRF pulse duration decreases the temporal resolution, yielding underestimated peak flow values. Multiple k-space lines per cardiac phase, nl ≥ 2, are commonly applied in 4D flow MRI to shorten the inherent long scan times. We demonstrate that 2DRF 4D flow with nl ≥ 2 can be easily combined with UNFOLD (UNaliasing by Fourier-encoding the Overlaps using the temporaL Dimension), a technique that allows regaining nominally the temporal resolution of the respective acquisition with nl = 1, to assure peak flow quantification. METHODS Two different 2DRF pulses with spiral k-space trajectories were designed and integrated into a 4D flow sequence. Flow phantom experiments and 7 healthy control 4D flow in vivo measurements, with and without UNFOLD reconstructions, were compared with conventional reconstruction and 1D slab-selective excitation (1DRF) by evaluating time-resolved flow curves, peak flow, peak velocity, blood flow volume per cardiac cycle, and spatial aliasing. RESULTS Applying UNFOLD to 4D flow imaging with 2DRF and reduced FOV increased the quantified in vivo peak flow values significantly by 3.7% ± 2.3% to 5.2% ± 2.4% (P < .05). Accordingly, the peak flow underestimation of 2DRF scans compared with conventional 1DRF scans decreased with UNFOLD. Finally, 2DRF combined with UNFOLD accelerated the 4D flow acquisition 3.5 ± 1.4 fold by reducing the FOV and increasing the effective temporal resolution by 6.7% compared with conventional 1D selective excitation, with 2 k-space lines per cardiac phase. CONCLUSION Two-dimensional selective excitation combined with UNFOLD allows limiting the FOV to shorten 4D flow scan times and compensates for the loss in temporal resolution with 2DRF (Δt = 64.8 ms) compared with 1DRF (Δt = 43.2 ms), yielding an effective resolution of Δteff = 40.5 ms to enhance peak flow quantification.
Collapse
Affiliation(s)
- Clarissa Wink
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,FG Medizintechnik, Technische Universität Berlin, Berlin, Germany
| | - Jean Pierre Bassenge
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Giulio Ferrazzi
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,FG Medizintechnik, Technische Universität Berlin, Berlin, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|