1
|
Foongkajornkiat S, Sokolowski K, Stephenson J, Lloyd T, Hugo HJ, Thompson EW, Momot KI. Quantitative measurement of mammographic density in breast-tissue explants using portable NMR: Precision and accuracy. Magn Reson Med 2024; 92:374-388. [PMID: 38380719 DOI: 10.1002/mrm.30040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/20/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024]
Abstract
PURPOSE Single-sided portable NMR (pNMR) has previously been demonstrated to be suitable for quantification of mammographic density (MD) in excised breast tissue samples. Here we investigate the precision and accuracy of pNMR measurements of MD ex vivo as compared with the gold standards. METHODS Forty-five breast-tissue explants from 9 prophylactic mastectomy patients were measured. The relative tissue water content was taken as the MD-equivalent quantity. In each sample, the water content was measured using some combination of three pNMR techniques (apparent T2, diffusion, and T1 measurements) and two gold-standard techniques (computed microtomography [μCT] and hematoxylin and eosin [H&E] histology). Pairwise correlation plots and Bland-Altman analysis were used to quantify the degree of agreement between pNMR techniques and the gold standards. RESULTS Relative water content measured from both apparent T2 relaxation spectra, and diffusion decays exhibited strong correlation with the H&E and μCT results. Bland-Altman analysis yielded average bias values of -0.4, -2.6, 2.6, and 2.8 water percentage points (pp) and 95% confidence intervals of 13.1, 7.5, 11.2, and 11.8 pp for the H&E - T2, μCT - T2, H&E - diffusion, and μCT - diffusion comparison pairs, respectively. T1-based measurements were found to be less reliable, with the Bland-Altman confidence intervals of 27.7 and 33.0 pp when compared with H&E and μCT, respectively. CONCLUSION Apparent T2-based and diffusion-based pNMR measurements enable quantification of MD in breast-tissue explants with the precision of approximately 10 pp and accuracy of approximately 3 pp or better, making pNMR a promising measurement modality for radiation-free quantification of MD.
Collapse
Affiliation(s)
- Satcha Foongkajornkiat
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kamil Sokolowski
- Preclincal Imaging Facility, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - James Stephenson
- Department of Breast and Endocrine Surgery, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
- Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Thomas Lloyd
- Department of Diagnostic Radiology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Honor J Hugo
- School of Health and Behavioural Science, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Medicine and Dentistry, Griffith University Sunshine Coast, Birtinya, Queensland, Australia
| | - Erik W Thompson
- Translational Research Institute, Woolloongabba, Queensland, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Konstantin I Momot
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Capuani S, Maiuro A, Giampà E, Montuori M, Varrucciu V, Hagberg GE, Vinicola V, Colonna S. Assessment of Calcaneal Spongy Bone Magnetic Resonance Characteristics in Women: A Comparison between Measures Obtained at 0.3 T, 1.5 T, and 3.0 T. Diagnostics (Basel) 2024; 14:1050. [PMID: 38786348 PMCID: PMC11119204 DOI: 10.3390/diagnostics14101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND There is a growing interest in bone tissue MRI and an even greater interest in using low-cost MR scanners. However, the characteristics of bone MRI remain to be fully defined, especially at low field strength. This study aimed to characterize the signal-to-noise ratio (SNR), T2, and T2* in spongy bone at 0.3 T, 1.5 T, and 3.0 T. Furthermore, relaxation times were characterized as a function of bone-marrow lipid/water ratio content and trabecular bone density. METHODS Thirty-two women in total underwent an MR-imaging investigation of the calcaneus at 0.3 T, 1.5 T, and 3.0 T. MR-spectroscopy was performed at 3.0 T to assess the fat/water ratio. SNR, T2, and T2* were quantified in distinct calcaneal regions (ST, TC, and CC). ANOVA and Pearson correlation statistics were used. RESULTS SNR increase depends on the magnetic field strength, acquisition sequence, and calcaneal location. T2* was different at 3.0 T and 1.5 T in ST, TC, and CC. Relaxation times decrease as much as the magnetic field strength increases. The significant linear correlation between relaxation times and fat/water found in healthy young is lost in osteoporotic subjects. CONCLUSION The results have implications for the possible use of relaxation vs. lipid/water marrow content for bone quality assessment and the development of quantitative MRI diagnostics at low field strength.
Collapse
Affiliation(s)
- Silvia Capuani
- CNR-ISC c/o Physics Department, “Sapienza” University of Rome, P.zle Aldo Moro 5, 00185 Rome, Italy; (A.M.); (M.M.)
- Neuroimaging Laboratory, Santa Lucia Foundation, IRCCS Rome, Via Ardeatina 309, 00179 Rome, Italy
| | - Alessandra Maiuro
- CNR-ISC c/o Physics Department, “Sapienza” University of Rome, P.zle Aldo Moro 5, 00185 Rome, Italy; (A.M.); (M.M.)
- Physics Department, “Sapienza” University of Rome, P.zle Aldo Moro 5, 00185 Rome, Italy
| | - Emiliano Giampà
- Rehabilitation Hospital, Santa Lucia Foundation, IRCCS Rome, Via Ardeatina 309, 00179 Rome, Italy; (E.G.); (V.V.)
| | - Marco Montuori
- CNR-ISC c/o Physics Department, “Sapienza” University of Rome, P.zle Aldo Moro 5, 00185 Rome, Italy; (A.M.); (M.M.)
| | - Viviana Varrucciu
- Radiology Department, Santa Lucia Foundation, IRCCS Rome, Via Ardeatina 309, 00179 Rome, Italy; (V.V.); (S.C.)
| | - Gisela E. Hagberg
- High Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, 72076 Tübingen, Germany;
| | - Vincenzo Vinicola
- Rehabilitation Hospital, Santa Lucia Foundation, IRCCS Rome, Via Ardeatina 309, 00179 Rome, Italy; (E.G.); (V.V.)
| | - Sergio Colonna
- Radiology Department, Santa Lucia Foundation, IRCCS Rome, Via Ardeatina 309, 00179 Rome, Italy; (V.V.); (S.C.)
| |
Collapse
|
3
|
Alqurashi M, Momot KI, Aamry A, Almohammed H, Aamri H, Johary YH, Abolaban FA, Sulieman A. Sensing mammographic density using single-sided portable Nuclear Magnetic Resonance. Saudi J Biol Sci 2022; 29:2447-2454. [PMID: 35531236 PMCID: PMC9073015 DOI: 10.1016/j.sjbs.2021.12.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022] Open
Abstract
This research paper presents a quantitative approach to sensing mammographic density (MD) using single-sided portable Nuclear Magnetic Resonance (NMR). It focuses on three main techniques: spin-lattice relaxation (recovery) time (T1), spin-spin relaxation (decay) time (T2), and Diffusion (D) techniques by testing whether or not the aforementioned techniques are in agreement with the gold standard and with each other when used for scanning breast tissue specimens with a variety of mammographic densities (MDs). The high mammographic density (HMD), intermediate MD, and low mammographic density (LMD) regions of each slice were identified according to the mammogram images. Subsequently, the grayscale values for these regions were quantified. One region was measured from the first sample while the remaining ones were measured from the second sample. The same areas were then exposed to portable NMR, and the sequences used as following: the stimulated echo sequence for diffusion (D), the Carr-Purcell-Meiboom-Gill (CPMG) sequence for T2, and saturation recovery sequence for T1. The correlations between the grayscale values and NMR techniques were strongly correlated. The Pearson correlation coefficient, R, of T1 (%) versus grayscale value, D (%) versus grayscale value, and T2 (%) versus grayscale value, was 0.91, 0.91, and 0.93, respectively. Furthermore, the relative water content of the breast slices based on T1, T2, and diffusion (D) measurements were strongly in agreement with each other. The Pearson correlation coefficient, R, of D (%) versus T1 (%), D (%) versus T2 (%), and T1 (%) versus T2 (%), was 0.984, 0.966, and 0.9868, respectively. The three pulse sequences can be employed in a portable NMR device to deliver continuous quantitative measurements of MD in breast tissue samples. As a result, the method demonstrated to be acceptable for determining the distribution of MDs among breast tissue samples without the need for additional qualitative analysis.
Collapse
Affiliation(s)
- Maher Alqurashi
- Radiology Department, Ministry of Health, Riyadh, Saudi Arabia
| | - Konstantin I. Momot
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
| | - Ali Aamry
- Nuclear Medicine Department, King Saud Medical City, Riyadh, Saudi Arabia
| | - H.I. Almohammed
- Department of Radiological Sciences, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, P.O Box 84428, Riyadh 11671, Saudi Arabia
| | - Hussin Aamri
- Medical Physics Department, King Saud University Medical City (KSUMC), Riyadh, Saudi Arabia
| | - Yehia H. Johary
- Medical Physics Department, General Directorate of Health Affairs in Aseer Region, Abha, Saudi Arabia
| | - Fouad A. Abolaban
- Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University, P. O. Box 80221, Jeddah 21589, Saudi Arabia
| | - Abdelmoneim Sulieman
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, P.O. Box 422, Alkharj 11942, Saudi Arabia
| |
Collapse
|
4
|
Thomas DG, Galvosas P, Tzeng YC, Harrison FG, Berry MJ, Teal PD, Wright GA, Obruchkov S. Oxygen saturation-dependent effects on blood transverse relaxation at low fields. MAGMA (NEW YORK, N.Y.) 2022; 35:805-815. [PMID: 35107697 PMCID: PMC9463268 DOI: 10.1007/s10334-021-00993-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/28/2021] [Accepted: 12/15/2021] [Indexed: 11/28/2022]
Abstract
Objective Blood oxygenation can be measured using magnetic resonance using the paramagnetic effect of deoxy-haemoglobin, which decreases the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\textit{T}_{2}$$\end{document}T2 relaxation time of blood. This \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\textit{T}_{2}$$\end{document}T2 contrast has been well characterised at the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\textit{B}_{{0}}$$\end{document}B0 fields used in MRI (1.5 T and above). However, few studies have characterised this effect at lower magnetic fields. Here, the feasibility of blood oximetry at low field based on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\textit{T}_{2}$$\end{document}T2 changes that are within a physiological relevant range is explored. This study could be used for specifying requirements for construction of a monitoring device based on low field permanent magnet systems. Methods A continuous flow circuit was used to control parameters such as oxygen saturation and temperature in a sample of blood. It flowed through a variable field magnet, where CPMG experiments were performed to measure its \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\textit{T}_{2}$$\end{document}T2. In addition, the oxygen saturation was monitored by an optical sensor for comparison with the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\textit{T}_{2}$$\end{document}T2 changes. Results These results show that at low \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\textit{B}_{{0}}$$\end{document}B0 fields, the change in blood \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\textit{T}_{2}$$\end{document}T2 due to oxygenation is small, but still detectable. The data measured at low fields are also in agreement with theoretical models for the oxy-deoxy \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\textit{T}_{2}$$\end{document}T2 effect. Conclusion \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\textit{T}_{2}$$\end{document}T2 changes in blood due to oxygenation were observed at fields as low as 0.1 T. These results suggest that low field NMR relaxometry devices around 0.3 T could be designed to detect changes in blood oxygenation.
Collapse
Affiliation(s)
- Dion G Thomas
- School of Chemical and Physical Sciences and MacDiarmid Institute for Advanced Materials, Victoria University of Wellington, Wellington, New Zealand
| | - Petrik Galvosas
- School of Chemical and Physical Sciences and MacDiarmid Institute for Advanced Materials, Victoria University of Wellington, Wellington, New Zealand
| | - Yu-Chieh Tzeng
- Centre for Translational Research, University of Otago, Wellington, New Zealand
| | - Freya G Harrison
- Centre for Translational Research, University of Otago, Wellington, New Zealand
| | - Mary J Berry
- Centre for Translational Research and Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Paul D Teal
- School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
| | - Graham A Wright
- Sunnybrook Research Institute and University of Toronto, Toronto, ON, Canada
| | - Sergei Obruchkov
- Robinson Research Institute, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
5
|
Barbieri M, Fantazzini P, Testa C, Bortolotti V, Baruffaldi F, Kogan F, Brizi L. Characterization of Structural Bone Properties through Portable Single-Sided NMR Devices: State of the Art and Future Perspectives. Int J Mol Sci 2021; 22:7318. [PMID: 34298936 PMCID: PMC8303251 DOI: 10.3390/ijms22147318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
Nuclear Magnetic Resonance (NMR) is a well-suited methodology to study bone composition and structural properties. This is because the NMR parameters, such as the T2 relaxation time, are sensitive to the chemical and physical environment of the 1H nuclei. Although magnetic resonance imaging (MRI) allows bone structure assessment in vivo, its cost limits the suitability of conventional MRI for routine bone screening. With difficulty accessing clinically suitable exams, the diagnosis of bone diseases, such as osteoporosis, and the associated fracture risk estimation is based on the assessment of bone mineral density (BMD), obtained by the dual-energy X-ray absorptiometry (DXA). However, integrating the information about the structure of the bone with the bone mineral density has been shown to improve fracture risk estimation related to osteoporosis. Portable NMR, based on low-field single-sided NMR devices, is a promising and appealing approach to assess NMR properties of biological tissues with the aim of medical applications. Since these scanners detect the signal from a sensitive volume external to the magnet, they can be used to perform NMR measurement without the need to fit a sample inside a bore of a magnet, allowing, in principle, in vivo application. Techniques based on NMR single-sided devices have the potential to provide a high impact on the clinical routine because of low purchasing and running costs and low maintenance of such scanners. In this review, the development of new methodologies to investigate structural properties of trabecular bone exploiting single-sided NMR devices is reviewed, and current limitations and future perspectives are discussed.
Collapse
Affiliation(s)
- Marco Barbieri
- Department of Radiology, Stanford University, Stanford, CA 94395, USA;
- Department of Physics and Astronomy “Augusto Righi”, University of Bologna, 40127 Bologna, Italy; (P.F.); (C.T.)
| | - Paola Fantazzini
- Department of Physics and Astronomy “Augusto Righi”, University of Bologna, 40127 Bologna, Italy; (P.F.); (C.T.)
| | - Claudia Testa
- Department of Physics and Astronomy “Augusto Righi”, University of Bologna, 40127 Bologna, Italy; (P.F.); (C.T.)
- IRCCS Istituto delle Scienze Neurologiche Bologna, Functional and Molecular Neuroimaging Unit, 40139 Bologna, Italy
| | - Villiam Bortolotti
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, 40134 Bologna, Italy;
| | - Fabio Baruffaldi
- Medical Technology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Feliks Kogan
- Department of Radiology, Stanford University, Stanford, CA 94395, USA;
| | - Leonardo Brizi
- Department of Physics and Astronomy “Augusto Righi”, University of Bologna, 40127 Bologna, Italy; (P.F.); (C.T.)
| |
Collapse
|
6
|
Chen L, Liu J, Chu C, Han Z, Yadav N, Xu J, Bai R, Staedtke V, Pearl M, Walczak P, van Zijl P, Janowski M, Liu G. Deuterium oxide as a contrast medium for real-time MRI-guided endovascular neurointervention. Theranostics 2021; 11:6240-6250. [PMID: 33995656 PMCID: PMC8120199 DOI: 10.7150/thno.55953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/20/2021] [Indexed: 12/28/2022] Open
Abstract
Rationale: Endovascular intervention plays an important role in the treatment of various diseases, in which MRI-guidance can potentially improve precision. However, the clinical applications of currently available contrast media, including Gadolinium-based contrast agents and superparamagnetic iron oxide particles (SPIO), are hindered by safety concerns. In the present study, we sought to develop D2O as a novel contrast agent for guiding endovascular neurointervention. Methods: Animal studies were approved by institutional ACUC and conducted using an 11.7 T Bruker Biospec system and a 3T Siemens Trio clinical scanner for rodent and canine imaging, respectively. The locally selective blood brain barrier opening (BBBO) in rat brains was obtained by intraarterial (IA) injection of mannitol. The dynamic T2w* EPI MRI sequence was used to study the trans-catheter perfusion territory by IA administered SPIO before mannitol administration, whereas a dynamic T1w FLASH sequence was used to acquire Gd contrast-enhanced MRI for assessing BBBO after injection of mannitol. The contrast generated by D2O assessed by either EPI or FLASH methods was compared with the corresponding results assessed by SPIO or Gd. The utility of D2O MRI was also demonstrated to guide drug delivery to glioma in a mouse model. Finally, the clinical utility of D2O-MRI was demonstrated in a canine model. Results: Our study has shown that the contrast generated by D2O can be used to precisely delineate trans-catheter perfusion territory in both small and large animals. The perfusion territories determined by D2O-MRI show moderate correlation with those by SPIO-MRI (Spearman coefficient r = 0.5234, P < 0.001). Moreover, our results show that the perfusion territory determined by D2O-MRI can successfully predict the areas with BBBO after mannitol treatment similar to that assessed by Gd-MRI (Spearman coefficient r = 0.6923, P < 0.001). Using D2O-MRI as imaging guidance, the optimal infusion rate in the mouse brain was determined to be 150 µL/min to maximize the delivery efficacy to the tumor without serious off-target delivery to the brain parenchyma. The enhanced drug delivery of antibodies to the brain tumor was confirmed by fluorescence imaging. Conclusion: Our study demonstrated that D2O can be used as a negative MRI contrast medium to guide endovascular neurointervention. The established D2O -MRI method is safe and quantitative, without the concern of contrast accumulation. These qualities make it an attempting approach for a variety of endovascular procedures.
Collapse
Affiliation(s)
- Lin Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, Fujian, China
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jing Liu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Chengyan Chu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
| | - Zheng Han
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Nirhbay Yadav
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Renyuan Bai
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Verena Staedtke
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Monica Pearl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
| | - Peter van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
7
|
Barbieri M, Fantazzini P, Bortolotti V, Baruffaldi F, Festa A, Manners DN, Testa C, Brizi L. Single-sided NMR to estimate morphological parameters of the trabecular bone structure. Magn Reson Med 2020; 85:3353-3369. [PMID: 33349979 DOI: 10.1002/mrm.28648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 11/06/2022]
Abstract
PURPOSE Single-sided 1 H-NMR is proposed for the estimation of morphological parameters of trabecular bone, and potentially the detection of pathophysiological alterations of bone structure. In this study, a new methodology was used to estimate such parameters without using an external reference signal, and to study intratrabecular and intertrabecular porosities, with a view to eventually scanning patients. METHODS Animal trabecular bone samples were analyzed by a single-sided device. The Carr-Purcell-Meiboom-Gill sequence of 1 H nuclei of fluids, including marrow, confined inside the bone, was analyzed by quasi-continuous T2 distributions and separated into two 1 H pools: short and long T2 components. The NMR parameters were estimated using models of trabecular bone structure, and compared with the corresponding micro-CT. RESULTS Without any further assumptions, the internal reference parameter (short T2 signal intensity fraction) enabled prediction of the micro-CT parameters BV/TV (volume of the trabeculae/total sample volume) and BS/TV (external surface of the trabeculae/total sample volume) with linear correlation coefficient >0.80. The assignment of the two pools to intratrabecular and intertrabecular components yielded an estimate of average intratrabecular porosity (33 ± 5)%. Using the proposed models, the NMR-estimated BV/TV and BS/TV were found to be linearly related to the corresponding micro-CT values with high correlation (>0.90 for BV/TV; >0.80 for BS/TV) and agreement coefficients. CONCLUSION Low-field, low-cost portable devices that rely on intrinsic magnetic field gradients and do not use ionizing radiation are viable tools for in vitro preclinical studies of pathophysiological structural alterations of trabecular bone.
Collapse
Affiliation(s)
- Marco Barbieri
- Physics and Astronomy Department, University of Bologna, Bologna, Italy.,Department of Radiology, Stanford University, Stanford, CA, USA
| | - Paola Fantazzini
- Physics and Astronomy Department, University of Bologna, Bologna, Italy
| | - Villiam Bortolotti
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Bologna, Italy
| | | | - Anna Festa
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - David N Manners
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudia Testa
- Physics and Astronomy Department, University of Bologna, Bologna, Italy.,National Institute for Nuclear Physics Bologna, Bologna, Italy
| | - Leonardo Brizi
- Physics and Astronomy Department, University of Bologna, Bologna, Italy.,National Institute for Nuclear Physics Bologna, Bologna, Italy
| |
Collapse
|
8
|
Huang X, Reye G, Momot KI, Blick T, Lloyd T, Tilley WD, Hickey TE, Snell CE, Okolicsanyi RK, Haupt LM, Ferro V, Thompson EW, Hugo HJ. Heparanase Promotes Syndecan-1 Expression to Mediate Fibrillar Collagen and Mammographic Density in Human Breast Tissue Cultured ex vivo. Front Cell Dev Biol 2020; 8:599. [PMID: 32760722 PMCID: PMC7373078 DOI: 10.3389/fcell.2020.00599] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/19/2020] [Indexed: 01/06/2023] Open
Abstract
Mammographic density (MD) is a strong and independent factor for breast cancer (BC) risk and is increasingly associated with BC progression. We have previously shown in mice that high MD, which is characterized by the preponderance of a fibrous stroma, facilitates BC xenograft growth and metastasis. This stroma is rich in extracellular matrix (ECM) factors, including heparan sulfate proteoglycans (HSPGs), such as the BC-associated syndecan-1 (SDC1). These proteoglycans tether growth factors, which are released by heparanase (HPSE). MD is positively associated with estrogen exposure and, in cell models, estrogen has been implicated in the upregulation of HPSE, the activity of which promotes SDC expression. Herein we describe a novel measurement approach (single-sided NMR) using a patient-derived explant (PDE) model of normal human (female) mammary tissue cultured ex vivo to investigate the role(s) of HPSE and SDC1 on MD. Relative HSPG gene and protein analyses determined in patient-paired high vs. low MD tissues identified SDC1 and SDC4 as potential mediators of MD. Using the PDE model we demonstrate that HPSE promotes SDC1 rather than SDC4 expression and cleavage, leading to increased MD. In this model system, synstatin (SSTN), an SDC1 inhibitory peptide designed to decouple SDC1-ITGαvβ3 parallel collagen alignment, reduced the abundance of fibrillar collagen as assessed by picrosirius red viewed under polarized light, and reduced MD. Our results reveal a potential role for HPSE in maintaining MD via its direct regulation of SDC1, which in turn physically tethers collagen into aligned fibers characteristic of MD. We propose that inhibitors of HPSE and/or SDC1 may afford an opportunity to reduce MD in high BC risk individuals and reduce MD-associated BC progression in conjunction with established BC therapies.
Collapse
Affiliation(s)
- Xuan Huang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Gina Reye
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Konstantin I Momot
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Tony Blick
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Thomas Lloyd
- Radiology Department, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Cameron E Snell
- Cancer Pathology Research Group, Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia.,Mater Pathology, Mater Hospital Brisbane, South Brisbane, QLD, Australia
| | - Rachel K Okolicsanyi
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Larisa M Haupt
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Honor J Hugo
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Bashyam A, Frangieh CJ, Li M, Cima MJ. Dehydration assessment via a portable, single sided magnetic resonance sensor. Magn Reson Med 2019; 83:1390-1404. [PMID: 31631380 DOI: 10.1002/mrm.28004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Undiagnosed dehydration compromises health outcomes across many populations. Existing dehydration diagnostics require invasive bodily fluid sampling or are easily confounded by fluid and electrolyte intake, environment, and physical activity limiting widespread adoption. We present a portable MR sensor designed to measure intramuscular fluid shifts to identify volume depletion. METHODS Fluid loss is induced via a mouse model of thermal dehydration (37°C; 15-20% relative humidity). We demonstrate quantification of fluid loss induced by hyperosmotic dehydration with multicomponent T2 relaxometry using both a benchtop NMR system and MRI localized to skeletal muscle tissue. We then describe a miniaturized (~1000 cm3 ) portable (~4 kg) MR sensor (0.28 T) designed to identify dehydration-induced fluid loss. T2 relaxometry measurements were performed using a Carr-Purcell-Meiboom-Gill pulse sequence in ~4 min. RESULTS T2 values from the portable MR sensor exhibited strong (R2 = 0.996) agreement with benchtop NMR spectrometer. Thermal dehydration induced weight loss of 4 to 11% over 5 to 10 h. Fluid loss induced by thermal dehydration was accurately identified via whole-animal NMR and skeletal muscle. The portable MR sensor accurately identified dehydration via multicomponent T2 relaxometry. CONCLUSION Performing multicomponent T2 relaxometry localized to the skeletal muscle with a miniaturized MR sensor provides a noninvasive, physiologically relevant measure of dehydration induced fluid loss in a mouse model. This approach offers sensor portability, reduced system complexity, fully automated operation, and low cost compared with MRI. This approach may serve as a versatile and portable point of care technique for dehydration monitoring.
Collapse
Affiliation(s)
- Ashvin Bashyam
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Chris J Frangieh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Matthew Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Michael J Cima
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|