1
|
Lei X, Yang B, Chen J, Yang F, Tang J, Li J, Zhao Q, Zhang J, Li J, Li Y, Zuo Y. Biodegradable Polyurethane Scaffolds in Regeneration Therapy: Characterization and In Vivo Real-Time Degradation Monitoring by Grafted Fluorescent Tracer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:111-126. [PMID: 38112686 DOI: 10.1021/acsami.3c13187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
There is an urgent need to assess material degradation in situ and in real time for their promising application in regeneration therapy. However, traditional monitoring methods in vitro cannot always profile the complicated behavior in vivo. This study designed and synthesized a new biodegradable polyurethane (PU-P) scaffold with polycaprolactone glycol, isophorone diisocyanate, and l-lysine ethyl ester dihydrochloride. To monitor the degradation process of PU-P, calcein was introduced into the backbone (PU-5) as a chromophore tracing in different sites of the body and undegradable fluorescent scaffold (CPU-5) as the control group. Both PU-P and PU-5 can be enzymatically degraded, and the degradation products are molecularly small and biosafe. Meanwhile, by virtue of calcein anchoring with urethane, polymer chains of PU-5 have maintained the conformational stability and extended the system conjugation, raising a structure-induced emission effect that successfully achieved a significant enhancement in the fluorescence intensity better than pristine calcein. Evidently, unlike the weak fluorescent response of CPU-5, PU-5 and its degradation can be clearly imaged and monitored in real time after implantation in the subcutaneous tissue of nude mice. Meanwhile, the in situ osteogeneration has also been promoted after the two degradable scaffolds have been implanted in the rabbit femoral condyles and degraded with time. To sum up, the strategy of underpinning tracers into degradable polymer chains provides a possible and effective way for real-time monitoring of the degradation process of implants in vivo.
Collapse
Affiliation(s)
- Xiaoyu Lei
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Boyuan Yang
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jie Chen
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Fang Yang
- Radboud Institute for Molecular Life Sciences, Department of Dentistry-Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen 6525EX, The Netherlands
| | - Jiajing Tang
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jihua Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qing Zhao
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jinzheng Zhang
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jidong Li
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yubao Li
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yi Zuo
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
2
|
Kern AL, Gutberlet M, Rumpel R, Bruesch I, Hohlfeld JM, Wacker F, Hensen B. Compartment-specific 129Xe HyperCEST z spectroscopy and chemical shift imaging of cucurbit[6]uril in spontaneously breathing rats. Z Med Phys 2023:S0939-3889(23)00094-6. [PMID: 37661475 DOI: 10.1016/j.zemedi.2023.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/28/2023] [Accepted: 08/13/2023] [Indexed: 09/05/2023]
Abstract
129Xe hyperpolarized gas chemical exchange saturation transfer (HyperCEST) MRI has been suggested as molecular imaging modality but translation to in vivo imaging has been slow, likely due to difficulties of synthesizing suitable molecules. Cucurbit[6]uril-either in readily available non-functionalized or potentially in functionalized form-may, combined with 129Xe HyperCEST MRI, prove useful as a switchable 129Xe MR contrast agent but the likely differential properties of contrast generation in individual chemical compartments as well as the influence of 129Xe signal drifts encountered in vivo on HyperCEST MRI are unknown. Here, HyperCEST z spectroscopy and chemical shift imaging with compartment-specific analysis are performed in a total of 10 rats using cucurbit[6]uril injected i.v. and under a protocol employing spontaneous respiration. Differences in intensity of the HyperCEST effect between chemical compartments and anatomical regions are investigated. Strategies to mitigate influence of signal instabilities associated with drifts in physiological parameters are developed. It is shown that presence of cucurbit[6]uril can be readily detected under spontaneous 129Xe inhalation mostly in aqueous tissues further away from the lung. Differences of effect intensity in individual regions and compartments must be considered in HyperCEST data interpretation. In particular, there seems to be almost no effect in lipids. 129Xe HyperCEST MR measurements utilizing spontaneous respiration protocols and extended measurement times are feasible. HyperCEST MRI of non-functionalized cucurbit[6]uril may create contrast between anatomical structures in vivo.
Collapse
Affiliation(s)
- Agilo Luitger Kern
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Regina Rumpel
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Inga Bruesch
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Jens M Hohlfeld
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany; Department of Respiratory Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Bennet Hensen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| |
Collapse
|
3
|
Kimura A, Utsumi S, Shimokawa A, Nishimori R, Hosoi R, Stewart NJ, Imai H, Fujiwara H. Targeted Imaging of Lung Cancer with Hyperpolarized 129Xe MRI Using Surface-Modified Iron Oxide Nanoparticles as Molecular Contrast Agents. Cancers (Basel) 2022; 14:cancers14246070. [PMID: 36551556 PMCID: PMC9776850 DOI: 10.3390/cancers14246070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Hyperpolarized 129Xe (HP 129Xe) MRI enables functional imaging of various lung diseases but has been scarcely applied to lung cancer imaging. The aim of this study is to investigate the feasibility of targeted imaging of lung cancer with HP 129Xe MRI using surface-modified iron oxide nanoparticles (IONPs) as molecular targeting contrast agents. A mouse model of lung cancer (LC) was induced in nine mice by intra-peritoneal injection of urethane. Three months after the urethane administration, the mice underwent lung imaging with HP 129Xe MRI at baseline (0 h). Subsequently, the LC group was divided into two sub-groups: mice administered with polyethylene glycol-coated IONPs (PEG-IONPs, n = 4) and folate-conjugated dextran-coated IONPs (FA@Dex-IONPs, n = 5). The mice were imaged at 3, 6, and 24 h after the intravenous injection of IONPs. FA@Dex-IONPs mice showed a 25% reduction in average signal intensity at cancer sites at 3 h post injection, and a 24% reduction at 24 h post injection. On the other hand, in PEG-IONPs mice, while a signal reduction of approximately 28% was observed at cancer sites at 3 to 6 h post injection, the signal intensity was unchanged from that of the baseline at 24 h. Proton MRI of LC mice (n = 3) was able to detect cancer five months after urethane administration, i.e., later than HP 129Xe MRI (3 months). Furthermore, a significant decrease in averaged 1H T2 values at cancer sites was observed at only 6 h post injection of FA@Dex-IONPs (p < 0.05). As such, the targeted delivery of IONPs to cancer tissue was successfully imaged with HP 129Xe MRI, and their surface modification with folate likely has a high affinity with LC, which causes overexpression of folate receptors.
Collapse
Affiliation(s)
- Atsuomi Kimura
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Correspondence: ; Tel.: +81-6-6879-2578
| | - Seiya Utsumi
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Akihiro Shimokawa
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Renya Nishimori
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Rie Hosoi
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Neil J. Stewart
- POLARIS, Imaging Sciences, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield S10 2TA, UK
| | - Hirohiko Imai
- Division of Systems Informatics, Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto 606-8561, Japan
| | - Hideaki Fujiwara
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
4
|
New Frontiers in Molecular Imaging with Superparamagnetic Iron Oxide Nanoparticles (SPIONs): Efficacy, Toxicity, and Future Applications. Nucl Med Mol Imaging 2020; 54:65-80. [PMID: 32377258 DOI: 10.1007/s13139-020-00635-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 12/29/2022] Open
Abstract
Supermagnetic Iron Oxide Nanoparticles (SPIONs) are nanoparticles that have an iron oxide core and a functionalized shell. SPIONs have recently raised much interest in the scientific community, given their exciting potential diagnostic and theragnostic applications. The possibility to modify their surface and the characteristics of their core make SPIONs a specific contrast agent for magnetic resonance imaging but also an intriguing family of tracer for nuclear medicine. An example is 68Ga-radiolabeled bombesin-conjugated to superparamagnetic nanoparticles coated with trimethyl chitosan that is selective for the gastrin-releasing peptide receptors. These receptors are expressed by several human cancer cells such as breast and prostate neoplasia. Since the coating does not interfere with the properties of the molecules bounded to the shell, it has been proposed to link SPIONs with antibodies. SPIONs can be used also to monitor the biodistribution of mesenchymal stromal cells and take place in various applications. The aim of this review of literature is to analyze the diagnostic aspect of SPIONs in magnetic resonance imaging and in nuclear medicine, with a particular focus on sentinel lymph node applications. Moreover, it is taken into account the possible toxicity and the effects on human physiology to determine the SPIONs' safety.
Collapse
|