1
|
Ajala A, Abad N, Foo TKF, Lee SK. Retrospective correction of second-order concomitant fields in 3D axial stack-of-spirals imaging on a high-performance gradient system. Magn Reson Med 2024; 92:1128-1137. [PMID: 38650101 DOI: 10.1002/mrm.30113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE MRI using 3D stack-of-spirals (SoS) readout on a high-performance gradient system is subject to strong second-order, spatially varying concomitant fields, which can lead to signal dropout and blurring artifacts that become more significant at locations farther from the gradient isocenter. A method for compensating for second-order concomitant fields in 3D axial SoS image reconstruction is described. METHODS We retrospectively correct for second-order concomitant field-induced phase error in the 3D SoS data by slice-dependent k-space phase compensation based on the nominal spiral readout trajectories. The effectiveness of the method was demonstrated in phantom and healthy volunteer scans in which 3D pseudo-continuous arterial spin labeling imaging was performed with SoS fast spin-echo readout at 3 T. RESULTS Substantial reduction in blurring was observed with the proposed method. In phantom scans, blurring was reduced by about 53% at 98 mm from the gradient isocenter. In the in vivo 3D pseudo-continuous arterial spin labeling scans, differences of up to 10% were observed at 78 mm from the isocenter, especially around the white-matter and gray-matter interfaces, between the corrected and uncorrected proton density images, perfusion-weighted images, and cerebral blood flow maps. CONCLUSIONS The described retrospective correction method provides a means to correct erroneous phase accruals due to second-order concomitant fields in 3D axial stack-of-spirals imaging.
Collapse
Affiliation(s)
- Afis Ajala
- GE HealthCare, Technology and Innovation Center, Niskayuna, New York, USA
| | - Nastaren Abad
- GE HealthCare, Technology and Innovation Center, Niskayuna, New York, USA
| | - Thomas K F Foo
- GE HealthCare, Technology and Innovation Center, Niskayuna, New York, USA
| | - Seung-Kyun Lee
- GE HealthCare, Technology and Innovation Center, Niskayuna, New York, USA
| |
Collapse
|
2
|
Bardwell Speltz LJ, Shu Y, Watson RE, Trzasko JD, In MH, Gray EM, Halverson MA, Tarasek MR, Hua Y, Huston J, Cogswell PM, Foo TKF, Bernstein MA. Evaluation of a compact 3 T MRI scanner for patients with implanted devices. Magn Reson Imaging 2023; 103:109-118. [PMID: 37468020 PMCID: PMC10528046 DOI: 10.1016/j.mri.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
Access to high-quality MR exams is severely limited for patients with some implanted devices due to labeled MR safety conditions, but small-bore systems can overcome this limitation. For example, a compact 3 T MR scanner (C3T) with high-performance gradients can acquire exams of the head, extremities, and infants. Because of its reduced bore size and the patient being advanced only partially into the bore, the associated electromagnetic (EM) fields drop off rapidly caudal to the head, compared to whole-body systems. Therefore, some patients with MR conditional implanted devices can safely receive 3 T brain exams on the C3T using its strong gradients and a multiple-channel receive coil, while a corresponding exam on whole-body MR is precluded. The purpose of this study is to evaluate the performance of a small-bore scanner for subjects with MR conditional spinal or sacral nerve stimulators, or abandoned cardiac implantable electronic device (CIED) leads. The spatial dependence of specific absorption rate (SAR) on the C3T was compared to whole-body scanners. A device assessment tool was developed and applied to evaluate MR safety individually on the C3T for 12 subjects with implanted devices or abandoned CIED leads. Once MR safety was established, the subjects received a C3T brain exam along with their clinical, 1.5 T exam. The resulting images were graded by three board-certified neuroradiologists. The C3T exams were well-tolerated with no adverse events, and significantly outperformed the whole-body 1.5 T exams in terms of overall image quality.
Collapse
Affiliation(s)
- Lydia J Bardwell Speltz
- Department of Radiology, Mayo Clinic, Rochester, MN, United States; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Yunhong Shu
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Robert E Watson
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Joshua D Trzasko
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Myung-Ho In
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Erin M Gray
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | | | | | - Yihe Hua
- GE Research, Niskayuna, NY, United States
| | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | | | | | - Matt A Bernstein
- Department of Radiology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
3
|
Abad N, Lee SK, Ajala A, In MH, Frigo LM, Bhushan C, Morris HD, Hua Y, Ho VB, Bernstein MA, Foo TKF. Calibration of concomitant field offsets using phase contrast MRI for asymmetric gradient coils. Magn Reson Med 2023; 89:262-275. [PMID: 36129000 PMCID: PMC9617788 DOI: 10.1002/mrm.29452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/25/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022]
Abstract
PURPOSE Asymmetric gradient coils introduce zeroth- and first-order concomitant field terms, in addition to higher-order terms common to both asymmetric and symmetric gradients. Salient to compensation strategies is the accurate calibration of the concomitant field spatial offset parameters for asymmetric coils. A method that allows for one-time calibration of the offset parameters is described. THEORY AND METHODS A modified phase contrast pulse sequence with single-sided bipolar flow encoding is proposed to calibrate the offsets for asymmetric, transverse gradient coils. By fitting the measured phase offsets to different gradient amplitudes, the spatial offsets were calculated by fitting the phase variation. This was used for calibrating real-time pre-emphasis compensation of the zeroth- and first-order concomitant fields. RESULTS Image quality improvement with the proposed corrections was demonstrated in phantom and healthy volunteers with non-Cartesian and Cartesian trajectory acquisitions. Concomitant field compensation using the calibrated offsets resulted in a residual phase error <3% at the highest gradient amplitude and demonstrated substantial reduction of image blur and slice position/selection artifacts. CONCLUSIONS The proposed implementation provides an accurate method for calibrating spatial offsets that can be used for real-time concomitant field compensation of zeroth and first-order terms, substantially reducing artifacts without retrospective correction or sequence specific waveform modifications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - H. Douglas Morris
- Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Yihe Hua
- GE Research, Niskayuna, NY 12309, USA
| | - Vincent B. Ho
- Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Uniformed Services University, Bethesda, MD 20814, USA
| | | | - Thomas K. F. Foo
- GE Research, Niskayuna, NY 12309, USA
- Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
4
|
Hernandez‐Garcia L, Aramendía‐Vidaurreta V, Bolar DS, Dai W, Fernández‐Seara MA, Guo J, Madhuranthakam AJ, Mutsaerts H, Petr J, Qin Q, Schollenberger J, Suzuki Y, Taso M, Thomas DL, van Osch MJP, Woods J, Zhao MY, Yan L, Wang Z, Zhao L, Okell TW. Recent Technical Developments in ASL: A Review of the State of the Art. Magn Reson Med 2022; 88:2021-2042. [PMID: 35983963 PMCID: PMC9420802 DOI: 10.1002/mrm.29381] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/31/2022] [Accepted: 06/18/2022] [Indexed: 12/11/2022]
Abstract
This review article provides an overview of a range of recent technical developments in advanced arterial spin labeling (ASL) methods that have been developed or adopted by the community since the publication of a previous ASL consensus paper by Alsop et al. It is part of a series of review/recommendation papers from the International Society for Magnetic Resonance in Medicine Perfusion Study Group. Here, we focus on advancements in readouts and trajectories, image reconstruction, noise reduction, partial volume correction, quantification of nonperfusion parameters, fMRI, fingerprinting, vessel selective ASL, angiography, deep learning, and ultrahigh field ASL. We aim to provide a high level of understanding of these new approaches and some guidance for their implementation, with the goal of facilitating the adoption of such advances by research groups and by MRI vendors. Topics outside the scope of this article that are reviewed at length in separate articles include velocity selective ASL, multiple-timepoint ASL, body ASL, and clinical ASL recommendations.
Collapse
Affiliation(s)
| | | | - Divya S. Bolar
- Center for Functional Magnetic Resonance Imaging, Department of RadiologyUniversity of California at San DiegoSan DiegoCaliforniaUSA
| | - Weiying Dai
- Department of Computer ScienceState University of New York at BinghamtonBinghamtonNYUSA
| | | | - Jia Guo
- Department of BioengineeringUniversity of California RiversideRiversideCaliforniaUSA
| | | | - Henk Mutsaerts
- Department of Radiology & Nuclear MedicineAmsterdam University Medical Center, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Jan Petr
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer ResearchDresdenGermany
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Yuriko Suzuki
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Manuel Taso
- Division of MRI research, RadiologyBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - David L. Thomas
- Department of Brain Repair and RehabilitationUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Matthias J. P. van Osch
- C.J. Gorter Center for high field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Joseph Woods
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
- Department of RadiologyUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Moss Y. Zhao
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Lirong Yan
- Department of Radiology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Ze Wang
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Li Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument ScienceZhejiang UniversityZhejiangPeople's Republic of China
| | - Thomas W. Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
5
|
Kang D, Jo HJ, In MH, Yarach U, Meyer NK, Bardwell Speltz LJ, Gray EM, Trzasko JD, Huston Iii J, Bernstein MA, Shu Y. The benefit of high-performance gradients on echo planar imaging for BOLD-based resting-state functional MRI. Phys Med Biol 2020; 65:235024. [PMID: 33245051 DOI: 10.1088/1361-6560/abb2ec] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Improved gradient performance in an MRI system reduces distortion in echo planar imaging (EPI), which has been a key imaging method for functional studies. A lightweight, low-cryogen compact 3T MRI scanner (C3T) is capable of achieving 80 mT m-1 gradient amplitude with 700 T m-1 s-1 slew rate, in comparison with a conventional whole-body 3T MRI scanner (WB3T, 50 mT m-1 with 200 T m-1 s-1). We investigated benefits of the high-performance gradients in a high-spatial-resolution (1.5 mm isotropic) functional MRI study. Reduced echo spacing in the EPI pulse sequence inherently leads to less severe geometric distortion, which provided higher accuracy than with WB3T for registration between EPI and anatomical images. The cortical coverage of C3T datasets was improved by more accurate signal depiction (i.e. less dropout or pile-up). Resting-state functional analysis results showed that greater magnitude and extent in functional connectivity (FC) for the C3T than the WB3T when the selected seed region is susceptible to distortions, while the FC matrix for well-known brain networks showed little difference between the two scanners. This shows that the improved quality in EPI is particularly valuable for studying certain brain regions typically obscured by severe distortion.
Collapse
Affiliation(s)
- Daehun Kang
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, United States of America. Co-first/equal authorship - these authors contributed equally to this work
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
In MH, Shu Y, Trzasko JD, Yarach U, Kang D, Gray EM, Huston J, Bernstein MA. Reducing PNS with minimal performance penalties via simple pulse sequence modifications on a high-performance compact 3T scanner. Phys Med Biol 2020; 65:15NT02. [PMID: 32503007 DOI: 10.1088/1361-6560/ab99e2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One of the major concerns associated with high-performance gradients is peripheral nerve stimulation (PNS) of the subject during MRI exams. Since the installation, more than 680 volunteer subjects (patients and controls) have been scanned on a compact 3 T MRI system with high-performance gradients, capable of 80 mT m-1 gradient amplitude and 700 T m-1 s-1 slew rate simultaneously. Despite PNS concerns associated with the high-performance gradients, due to the smaller physical dimensions of the gradient coils, minimal or no PNS sensation was reported with most pulse sequences. The exception was PNS reported by only five of 252 subjects (about 2%) scanned with a specific 3D fast spin echo pulse sequence (3DFLAIR). Rather than derating the entire system performance across all pulse sequences and all gradient lobes, we addressed reported PNS effect with a simple and specific modification to the targeted lobes of the problematic pulse sequence. in addition, the PNS convolutional model was adapted to predict sequence-specific PNS threshold level and its reduction after derating. The effectiveness of the targeted pulse sequence modification was demonstrated by successfully re-scanning four of the subjects who previously reported PNS sensations without further reported PNS. The pulse sequence modification did not result in noticeable degradation of image quality or substantial increase in scan time. The results demonstrated that PNS was rarely reported on the compact 3 T, and when it was, utilizing a specific modification of the gradient waveform causing PNS was an effective strategy, rather than derating the performance of the entire gradient system.
Collapse
Affiliation(s)
- Myung-Ho In
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kang D, Yarach U, In MH, Gray EM, Trzasko JD, Jo HJ, Shu Y, Huston J, Bernstein MA. The effect of spiral trajectory correction on pseudo-continuous arterial spin labeling with high-performance gradients on a compact 3T scanner. Magn Reson Med 2020; 84:192-205. [PMID: 31799747 PMCID: PMC7083700 DOI: 10.1002/mrm.28110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE To demonstrate the feasibility of pseudo-continuous arterial-spin-labeled (pCASL) imaging with 3D fast-spin-echo stack-of-spirals on a compact 3T scanner (C3T), to perform trajectory correction for eddy-current-induced deviations in the spiral readout of pCASL imaging, and to assess the correction effect on perfusion-related images with high-performance gradients (80 mT/m, 700T/m/s) of the C3T. METHODS To track eddy-current-induced artifacts with Archimedean spiral readout, the spiral readout in pCASL imaging was performed with 5 different peak gradient slew rate (Smax ) values ranging from 70 to 500 T/m/s. The trajectory for each Smax was measured using a dynamic field camera and applied in a density-compensated gridding image reconstruction in addition to the nominal trajectory. The effect of the trajectory correction was assessed with perfusion-weighted (ΔM) images and proton-density-weighted images as well as cerebral blood flow (CBF) maps, obtained from 10 healthy volunteers. RESULTS Blurring artifact on ΔM images was mitigated by the trajectory correction. CBF values on the left and right calcarine cortices showed no significant difference after correction. Also, the signal-to-noise ratio of ΔM images improved, on average, by 7.6% after correction (P < .001). The greatest improvement of 12.1% on ΔM images was achieved with a spiral readout using Smax of 300~400 T/m/s. CONCLUSION Eddy currents can cause spiral trajectory deviation, which leads to deformation of the CBF map even in cases of low value Smax . The trajectory correction for spiral-readout-based pCASL produces more reliable results for perfusion imaging. These results suggest that pCASL is feasible on C3T with high-performance gradients.
Collapse
Affiliation(s)
- Daehun Kang
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Uten Yarach
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Myung-Ho In
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Erin M. Gray
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Hang Joon Jo
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Yunhong Shu
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|