1
|
Mostert JM, Dur NB, Li X, Ellermann JM, Hemke R, Hales L, Mazzoli V, Kogan F, Griffith JF, Oei EH, van der Heijden RA. Advanced Magnetic Resonance Imaging and Molecular Imaging of the Painful Knee. Semin Musculoskelet Radiol 2023; 27:618-631. [PMID: 37935208 PMCID: PMC10629992 DOI: 10.1055/s-0043-1775741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Chronic knee pain is a common condition. Causes of knee pain include trauma, inflammation, and degeneration, but in many patients the pathophysiology remains unknown. Recent developments in advanced magnetic resonance imaging (MRI) techniques and molecular imaging facilitate more in-depth research focused on the pathophysiology of chronic musculoskeletal pain and more specifically inflammation. The forthcoming new insights can help develop better targeted treatment, and some imaging techniques may even serve as imaging biomarkers for predicting and assessing treatment response in the future. This review highlights the latest developments in perfusion MRI, diffusion MRI, and molecular imaging with positron emission tomography/MRI and their application in the painful knee. The primary focus is synovial inflammation, also known as synovitis. Bone perfusion and bone metabolism are also addressed.
Collapse
Affiliation(s)
- Jacob M. Mostert
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Niels B.J. Dur
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Orthopedics and Sports Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Xiufeng Li
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota
| | - Jutta M. Ellermann
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota
| | - Robert Hemke
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Laurel Hales
- Department of Radiology, Stanford University, Stanford, California
| | | | - Feliks Kogan
- Department of Radiology, Stanford University, Stanford, California
| | - James F. Griffith
- Department of Imaging and Interventional Radiology Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Edwin H.G. Oei
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rianne A. van der Heijden
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
2
|
Taso M, Aramendía-Vidaurreta V, Englund EK, Francis S, Franklin S, Madhuranthakam AJ, Martirosian P, Nayak KS, Qin Q, Shao X, Thomas DL, Zun Z, Fernández-Seara MA. Update on state-of-the-art for arterial spin labeling (ASL) human perfusion imaging outside of the brain. Magn Reson Med 2023; 89:1754-1776. [PMID: 36747380 DOI: 10.1002/mrm.29609] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
This review article provides an overview of developments for arterial spin labeling (ASL) perfusion imaging in the body (i.e., outside of the brain). It is part of a series of review/recommendation papers from the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group. In this review, we focus on specific challenges and developments tailored for ASL in a variety of body locations. After presenting common challenges, organ-specific reviews of challenges and developments are presented, including kidneys, lungs, heart (myocardium), placenta, eye (retina), liver, pancreas, and muscle, which are regions that have seen the most developments outside of the brain. Summaries and recommendations of acquisition parameters (when appropriate) are provided for each organ. We then explore the possibilities for wider adoption of body ASL based on large standardization efforts, as well as the potential opportunities based on recent advances in high/low-field systems and machine-learning. This review seeks to provide an overview of the current state-of-the-art of ASL for applications in the body, highlighting ongoing challenges and solutions that aim to enable more widespread use of the technique in clinical practice.
Collapse
Affiliation(s)
- Manuel Taso
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Erin K Englund
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan Francis
- Sir Peter Mansfield Imaging Center, University of Nottingham, Nottingham, UK
| | - Suzanne Franklin
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Image Sciences, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ananth J Madhuranthakam
- Department of Radiology, Advanced Imaging Research Center, and Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Petros Martirosian
- Section on Experimental Radiology, Department of Radiology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Zungho Zun
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
3
|
Aringhieri G, Zampa V, Tosetti M. Musculoskeletal MRI at 7 T: do we need more or is it more than enough? Eur Radiol Exp 2020; 4:48. [PMID: 32761480 PMCID: PMC7410909 DOI: 10.1186/s41747-020-00174-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Ultra-high field magnetic resonance imaging (UHF-MRI) provides important diagnostic improvements in musculoskeletal imaging. The higher signal-to-noise ratio leads to higher spatial and temporal resolution which results in improved anatomic detail and higher diagnostic confidence. Several methods, such as T2, T2*, T1rho mapping, delayed gadolinium-enhanced, diffusion, chemical exchange saturation transfer, and magnetisation transfer techniques, permit a better tissue characterisation. Furthermore, UHF-MRI enables in vivo measurements by low-γ nuclei (23Na, 31P, 13C, and 39K) and the evaluation of different tissue metabolic pathways. European Union and Food and Drug Administration approvals for clinical imaging at UHF have been the first step towards a more routinely use of this technology, but some drawbacks are still present limiting its widespread clinical application. This review aims to provide a clinically oriented overview about the application of UHF-MRI in the different anatomical districts and tissues of musculoskeletal system and its pros and cons. Further studies are needed to consolidate the added value of the use of UHF-MRI in the routine clinical practice and promising efforts in technology development are already in progress.
Collapse
Affiliation(s)
- Giacomo Aringhieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Risorgimento, 36, Pisa, Italy.
| | - Virna Zampa
- Diagnostic and Interventional Radiology, University Hospital of Pisa, Via paradisa, 2, Pisa, Italy
| | | |
Collapse
|
4
|
Li X, Johnson CP, Ellermann J. Measuring Knee Bone Marrow Perfusion Using Arterial Spin Labeling at 3 T. Sci Rep 2020; 10:5260. [PMID: 32210271 PMCID: PMC7093505 DOI: 10.1038/s41598-020-62110-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Bone perfusion is an essential physiological measure reflecting vasculature status and tissue viability of the skeletal system. Arterial spin labeling (ASL), as a non-invasive and non-contrast enhanced perfusion imaging method, is an attractive approach for human research studies. To evaluate the feasibility of ASL perfusion imaging of knee bone marrow in the distal femoral condyle at a 3 T MRI scanner, a study was performed with eight healthy volunteers (three males and five females, 26 ± 2 years old) and two patients (male, 15 and 11 years old) with diagnosed stage II juvenile osteochondritis dissecans (JOCD). ASL imaging utilized a flow-sensitive alternating inversion recovery method for labeling and a single-shot fast spin echo sequence for image readout. In addition to quantitative knee bone marrow ASL imaging, studies were also performed to evaluate the effects of prolonged post-bolus delay and varied labeling size. ASL imaging was successfully performed with all volunteers. Despite the benefits of hyper-intensive signal suppression within bone marrow, the use of a prolonged post-bolus delay caused excessive perfusion signal decay, resulting in low perfusion signal-to-noise ratio (SNR) and poor image quality. Bone marrow perfusion signal changed with the labeling size, suggesting that the measured bone marrow perfusion signal is flow-associated. The means and standard deviations of bone marrow blood flow, spatial SNR, and temporal SNR from the quantitative perfusion study were 38.3 ± 5.2 mL/100 g/min, 3.31 ± 0.48, and 1.33 ± 0.31, respectively. The imaging results from JOCD patients demonstrated the potential of ASL imaging to detect disease-associated bone marrow perfusion changes. This study demonstrates that it is feasible to perform ASL imaging of knee bone marrow in the distal femoral condyle at 3 T.
Collapse
Affiliation(s)
- Xiufeng Li
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| | - Casey P Johnson
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Veterinary Clinical Sciences Department, University of Minnesota, Saint Paul, MN, USA
| | - Jutta Ellermann
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|