1
|
Li R, Chen X, Liao Y, Xin SX. Evaluation of the RF depositions at 3T in routine clinical scans with respect to the SAR safety to improve efficiency of MRI utilization. BIOMED ENG-BIOMED TE 2024:bmt-2024-0339. [PMID: 39286927 DOI: 10.1515/bmt-2024-0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVES This study explores the potential for improving of 3T MRI utilization by assessing and tailoring RF exposure in routine clinical scans while complying to standard safety limit. METHODS Using two generic human body models, we evaluated pbSAR10g values at four landmark positions (knee, pelvis, thoracic spine, head) at different wbSAR levels. Specifically, we analyzed local SAR10g in different operating modes and computed the maximum safety wbSAR, ensuring compliance with IEC limits. RESULTS In normal operating mode, the RF power deposition reached wbSAR limit before the pbSAR10g limit. In the first level controlled operating mode, pbSAR10g limit is reached before the wbSAR limit in the knee, thoracic spine scanning scenarios, while the wbSAR limit is reached first in the pelvis scanning scenarios, making it the most potential-releasing (up to 33.33 %) scanning scenario. For head exposure, the head SAR10g limit is reached before the wbSAR limit, highlighting the necessity for strict SAR control. Moreover, we calculated the minimum allowable TR for common imaging sequences for reference. CONCLUSIONS Different RF exposure setups are necessary to meet safety standards in various scenarios. By implementing careful RF exposure setups in routine clinical scans, the high potential capacity of 3T MRI can be fully released.
Collapse
Affiliation(s)
- Ruixin Li
- Laboratory of Biophysics, School of Medicine, South China University of Technology Guangzhou, China
| | - Xinlian Chen
- Laboratory of Biophysics, School of Medicine, South China University of Technology Guangzhou, China
| | - Yupeng Liao
- College of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| | - Sherman Xuegang Xin
- Laboratory of Biophysics, School of Medicine, South China University of Technology Guangzhou, China
| |
Collapse
|
2
|
Petzold J, Schmitter S, Silemek B, Winter L, Speck O, Ittermann B, Seifert F. Investigation of alternative RF power limit control methods for 0.5T, 1.5T, and 3T parallel transmission cardiac imaging: A simulation study. Magn Reson Med 2024; 91:1659-1675. [PMID: 38031517 DOI: 10.1002/mrm.29932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
PURPOSE To investigate safety and performance aspects of parallel-transmit (pTx) RF control-modes for a body coil atB 0 ≤ 3 T $$ {B}_0\le 3\mathrm{T} $$ . METHODS Electromagnetic simulations of 11 human voxel models in cardiac imaging position were conducted forB 0 = 0.5 T $$ {B}_0=0.5\mathrm{T} $$ ,1.5 T $$ 1.5\mathrm{T} $$ and3 T $$ 3\mathrm{T} $$ and a body coil with a configurable number of transmit channels (1, 2, 4, 8, 16). Three safety modes were considered: the 'SAR-controlled mode' (SCM), where specific absorption rate (SAR) is limited directly, a 'phase agnostic SAR-controlled mode' (PASCM), where phase information is neglected, and a 'power-controlled mode' (PCM), where the voltage amplitude for each channel is limited. For either mode, safety limits were established based on a set of 'anchor' simulations and then evaluated in 'target' simulations on previously unseen models. The comparison allowed to derive safety factors accounting for varying patient anatomies. All control modes were compared in terms of theB 1 + $$ {B}_1^{+} $$ amplitude and homogeneity they permit under their respective safety requirements. RESULTS Large safety factors (approximately five) are needed if only one or two anchor models are investigated but they shrink with increasing number of anchors. The achievableB 1 + $$ {B}_1^{+} $$ is highest for SCM but this advantage is reduced when the safety factor is included. PCM appears to be more robust against variations of subjects. PASCM performance is mostly in between SCM and PCM. Compared to standard circularly polarized (CP) excitation, pTx offers minorB 1 + $$ {B}_1^{+} $$ improvements if local SAR limits are always enforced. CONCLUSION PTx body coils can safely be used atB 0 ≤ 3 T $$ {B}_0\le 3\mathrm{T} $$ . Uncertainties in patient anatomy must be accounted for, however, by simulating many models.
Collapse
Affiliation(s)
- Johannes Petzold
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Berk Silemek
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Lukas Winter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Oliver Speck
- Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
3
|
Kazemivalipour E, Wald LL, Guerin B. Comparison of tight-fitting 7T parallel-transmit head array designs using excitation uniformity and local specific absorption rate metrics. Magn Reson Med 2024; 91:1209-1224. [PMID: 37927216 PMCID: PMC10848211 DOI: 10.1002/mrm.29900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 09/15/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
PURPOSE We model the performance of parallel transmission (pTx) arrays with 8, 16, 24, and 32 channels and varying loop sizes built on a close-fitting helmet for brain imaging at 7 T and compare their local specific absorption rate (SAR) and flip-angle performances to that of birdcage coil (used as a baseline) and cylindrical 8-channel and 16-channel pTx coils (single-row and dual-row). METHODS We use the co-simulation approach along with MATLAB scripting for batch-mode simulation of the coils. For each coil, we extracted B1 + maps and SAR matrices, which we compressed using the virtual observation points algorithm, and designed slice-selective RF shimming pTx pulses with multiple local SAR and peak power constraints to generate L-curves in the transverse, coronal, and sagittal orientations. RESULTS Helmet designs outperformed cylindrical pTx arrays at a constant number of channels in the flip-angle uniformity at a constant local SAR metric: up to 29% for 8-channel arrays, and up to 34% for 16-channel arrays, depending on the slice orientation. For all helmet arrays, increasing the loop diameter led to better local SAR versus flip-angle uniformity tradeoffs, although this effect was more pronounced for the 8-channel and 16-channel systems than the 24-channel and 32-channel systems, as the former have more limited degrees of freedom and therefore benefit more from loop-size optimization. CONCLUSION Helmet pTx arrays significantly outperformed cylindrical arrays with the same number of channels in local SAR and flip-angle uniformity metrics. This improvement was especially pronounced for non-transverse slice excitations. Loop diameter optimization for helmets appears to favor large loops, compatible with nearest-neighbor decoupling by overlap.
Collapse
Affiliation(s)
- Ehsan Kazemivalipour
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Lawrence L. Wald
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences Technology, Cambridge, Massachusetts, USA
| | - Bastien Guerin
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Petzold J, Schmitter S, Silemek B, Winter L, Speck O, Ittermann B, Seifert F. Towards an integrated radiofrequency safety concept for implant carriers in MRI based on sensor-equipped implants and parallel transmission. NMR IN BIOMEDICINE 2023; 36:e4900. [PMID: 36624556 DOI: 10.1002/nbm.4900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/11/2022] [Accepted: 01/04/2023] [Indexed: 06/15/2023]
Abstract
To protect implant carriers in MRI from excessive radiofrequency (RF) heating it has previously been suggested to assess that hazard via sensors on the implant. Other work recommended parallel transmission (pTx) to actively mitigate implant-related heating. Here, both ideas are integrated into one comprehensive safety concept where native pTx safety (without implant) is ensured by state-of-the-art field simulations and the implant-specific hazard is quantified in situ using physical sensors. The concept is demonstrated by electromagnetic simulations performed on a human voxel model with a simplified spinal-cord implant in an eight-channel pTx body coil at 3 T . To integrate implant and native safety, the sensor signal must be calibrated in terms of an established safety metric (e.g., specific absorption rate [SAR]). Virtual experiments show that E -field and implant-current sensors are well suited for this purpose, while temperature sensors require some caution, and B 1 probes are inadequate. Based on an implant sensor matrix Q s , constructed in situ from sensor readings, and precomputed native SAR limits, a vector space of safe RF excitations is determined where both global (native) and local (implant-related) safety requirements are satisfied. Within this safe-excitation subspace, the solution with the best image quality in terms of B 1 + magnitude and homogeneity is then found by a straightforward optimization algorithm. In the investigated example, the optimized pTx shim provides a 3-fold higher mean B 1 + magnitude compared with circularly polarized excitation for a maximum implant-related temperature increase ∆ T imp ≤ 1 K . To date, sensor-equipped implants interfaced to a pTx scanner exist as demonstrator items in research labs, but commercial devices are not yet within sight. This paper aims to demonstrate the significant benefits of such an approach and how this could impact implant-related RF safety in MRI. Today, the responsibility for safe implant scanning lies with the implant manufacturer and the MRI operator; within the sensor concept, the MRI manufacturer would assume much of the operator's current responsibility.
Collapse
Affiliation(s)
- Johannes Petzold
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Berk Silemek
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Lukas Winter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Oliver Speck
- Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
5
|
Kopanoglu E. Actual patient position versus safety models: Specific Absorption Rate implications of initial head position for Ultrahigh Field Magnetic Resonance Imaging. NMR IN BIOMEDICINE 2023; 36:e4876. [PMID: 36385447 PMCID: PMC10802886 DOI: 10.1002/nbm.4876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/20/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Specific absorption rate (SAR) relates power absorption to tissue heating, and therefore is used as a safety constraint in magnetic resonance imaging (MRI). This study investigates the implications of initial head positioning on local and whole-head SAR. A virtual body model was simulated at 161 positions inside an eight-channel parallel-transmit (pTx) array. On-axis displacements and rotations of up to 20 mm/degrees and off-axis axial/coronal translations were investigated. Single-channel, radiofrequency (RF) shimming (i.e., single-spoke pTx) and multispoke pTx pulses were designed for seven axial, five coronal and five sagittal slices at each position (the slices were consistent across all positions). Whole-head and local SAR were calculated using safety models consisting of a single (centred) body position, multiple representative positions and all simulated body positions. Positional mismatches between safety models and actual positions cause SAR underestimation. For axial imaging, the actual peak local SAR was up to 4.2-fold higher for both single-channel and 5-spoke pTx, 3.5-fold higher for 3-/4-spoke pTx, and 2-fold higher for RF shimming and 2-spoke pTx, compared with that calculated using the centred body position. For sagittal and coronal imaging, the underestimation of peak local SAR was up to 5.2-fold and 3.8-fold, respectively. Using all body positions to estimate SAR prevented SAR underestimation but yielded up to 11-fold SAR overestimation for RF shimming. Local SAR of single-channel and pTx multispoke pulses showed considerable dependence on the initial patient position. RF shimming yielded much lower sensitivity to positional mismatches for axial imaging but not for sagittal and coronal imaging. This was deemed attributable to the higher degrees-of-freedom of control offered by the investigated coil array for axial imaging. Whole-head SAR is less sensitive to positional mismatches compared with local SAR. Nevertheless, whole-head SAR increased by up to 80% for sagittal imaging. Local and whole-head SAR were observed to be more sensitive to positional mismatches in the axial plane, because of larger variations in coil-tissue proximity. Using all possible body positions in the safety model may become substantially over-conservative and limit imaging performance, especially for the RF shimming mode for axial imaging.
Collapse
Affiliation(s)
- Emre Kopanoglu
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| |
Collapse
|
6
|
Williams SN, McElhinney P, Gunamony S. Ultra-high field MRI: parallel-transmit arrays and RF pulse design. Phys Med Biol 2023; 68. [PMID: 36410046 DOI: 10.1088/1361-6560/aca4b7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
This paper reviews the field of multiple or parallel radiofrequency (RF) transmission for magnetic resonance imaging (MRI). Currently the use of ultra-high field (UHF) MRI at 7 tesla and above is gaining popularity, yet faces challenges with non-uniformity of the RF field and higher RF power deposition. Since its introduction in the early 2000s, parallel transmission (pTx) has been recognized as a powerful tool for accelerating spatially selective RF pulses and combating the challenges associated with RF inhomogeneity at UHF. We provide a survey of the types of dedicated RF coils used commonly for pTx and the important modeling of the coil behavior by electromagnetic (EM) field simulations. We also discuss the additional safety considerations involved with pTx such as the specific absorption rate (SAR) and how to manage them. We then describe the application of pTx with RF pulse design, including a practical guide to popular methods. Finally, we conclude with a description of the current and future prospects for pTx, particularly its potential for routine clinical use.
Collapse
Affiliation(s)
- Sydney N Williams
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Paul McElhinney
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Shajan Gunamony
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom.,MR CoilTech Limited, Glasgow, United Kingdom
| |
Collapse
|
7
|
Ding B, Dragonu I, Rua C, Carlin JD, Halai AD, Liebig P, Heidemann R, Correia MM, Rodgers CT. Parallel transmit (pTx) with online pulse design for task-based fMRI at 7 T. Magn Reson Imaging 2022; 93:163-174. [PMID: 35863691 DOI: 10.1016/j.mri.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 10/31/2022]
Abstract
PURPOSE Parallel transmission (pTx) is an approach to improve image uniformity for ultra-high field imaging. In this study, we modified an echo planar imaging (EPI) sequence to design subject-specific pTx pulses online. We compared its performance against EPI with conventional circularly polarised (CP) pulses. METHODS We compared the pTx-EPI and CP-EPI sequences in a short EPI acquisition protocol and for two different functional paradigms in six healthy volunteers (2 female, aged 23-36 years, mean age 29.2 years). We chose two paradigms that are typically affected by signal dropout at 7 T: a visual objects localiser to determine face/scene selective brain regions and a semantic-processing task. RESULTS Across all subjects, pTx-EPI improved whole-brain mean temporal signal-to-noise ratio (tSNR) by 11.0% compared to CP-EPI. We also compared the ability of pTx-EPI and CP-EPI to detect functional activation for three contrasts over the two paradigms: face > object and scene > object for the visual objects localiser and semantic association > pattern matching for the semantic-processing paradigm. Across all three contrasts, pTx-EPI showed higher median z-scores and detected more active voxels in relevant areas, as determined from previous 3 T studies. CONCLUSION We have demonstrated a workflow for EPI acquisitions with online per-subject pulse calculations. We saw improved performance in both tSNR and functional acquisitions from pTx-EPI. Thus, we believe that online calculation pTx-EPI is robust enough for future fMRI studies, especially where activation is expected in brain areas liable to significant signal dropout.
Collapse
Affiliation(s)
- Belinda Ding
- Wolfson Brain Imaging Centre, University of Cambridge, UK.
| | | | - Catarina Rua
- Wolfson Brain Imaging Centre, University of Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, UK; Invicro, Invicro London, UK
| | | | - Ajay D Halai
- MRC Cognition and Brain Science Unit, Cambridge, UK
| | | | | | | | | |
Collapse
|
8
|
Hardy BM, Banik R, Yan X, Anderson AW. Bench to bore ramifications of inter-subject head differences on RF shimming and specific absorption rates at 7T. Magn Reson Imaging 2022; 92:187-196. [PMID: 35842192 DOI: 10.1016/j.mri.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE This study shows how inter-subject variation over a dataset of 72 head models results in specific absorption rate (SAR) and B1+ field homogeneity differences using common shim scenarios. METHODS MR-CT datasets were used to segment 71 head models into 10 tissue compartments. These head models were affixed to the shoulders and neck of the virtual family Duke model and placed within an 8 channel transmit surface-loop array to simulate the electromagnetic fields of a 7T imaging experiment. Radio frequency (RF) shimming using the Gerchberg-Saxton algorithm and Circularly Polarized shim weights over the entire brain and select slices of each model was simulated. Various SAR metrics and B1+ maps were calculated to demonstrate the contribution of head variation to transmit inhomogeneity and SAR variability. RESULTS With varying head geometries the loading for each transmit loop changes as evidenced by changes in S-parameters. The varying shim conditions and head geometries are shown to affect excitation uniformity, spatial distributions of local SAR, and SAR averaging over different pulse sequences. The Gerchberg-Saxton RF shimming algorithm outperforms circularly polarized shimming for all head models. Peak local SAR within the coil most often occurs nearest the coil on the periphery of the body. Shim conditions vary the spatial distribution of SAR. CONCLUSION The work gives further support to the need for fast and more subject specific SAR calculations to maintain safety. Local SAR10g is shown to vary spatially given shim conditions, subject geometry and composition, and position within the coil.
Collapse
Affiliation(s)
- Benjamin M Hardy
- Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, Nashville, TN 37232, USA; Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Science Center, Nashville, TN 37232, USA.
| | - Rana Banik
- Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235, USA.
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, USA.
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, USA.
| |
Collapse
|
9
|
Malik SJ, Hand JW, Carmichael DW, Hajnal JV. Evaluation of specific absorption rate and heating in children exposed to a 7T MRI head coil. Magn Reson Med 2022; 88:1434-1449. [PMID: 35666836 PMCID: PMC9328145 DOI: 10.1002/mrm.29283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/25/2022] [Accepted: 04/13/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE To evaluate specific absorption rate (SAR) and temperature distributions resulting from pediatric exposure to a 7T head coil. METHODS Exposure from a 297-MHz birdcage head transmit coil (CP mode single-channel transmission) was simulated in several child models (ages 3-14, mass 13.9-50.4 kg) and one adult, using time-domain electromagnetic and thermal solvers. Position variability, age-related changes in dielectric properties, and differences in thermoregulation were also considered. RESULTS Age-adjusted dielectric properties had little effect in this population. Head average SAR (hdSAR) was the limiting factor for all models centered in the coil. The value of hdSAR (normalized to net power) was found to decrease linearly with increasing mass (R2 = 0.86); no equivalent relationship for peak-spatial 10g averaged SAR (psSAR10g ) was identified. Relatively small (< 10%) variability was observed in hdSAR for position shifts of ±25 mm in each orthogonal direction when normalized to net power; accounting for B1+$$ {\mathrm{B}}_1^{+} $$ efficiency can lead to much larger variability. Position sensitivity of psSAR10g was greater, but in most cases hdSAR remained the limiting quantity. For thermal simulations, if blood temperature is fixed (i.e., asserting good thermoregulation), maximum temperatures are compliant with International Electrotechnical Commission limits during 60-min exposure at the SAR limit. Introducing variable blood temperature leads to core temperature changes proportional to whole-body averaged SAR, exceeding guideline limits for all child models. CONCLUSIONS Children experienced higher SAR than adults for the 297-MHz head transmit coil examined in this work. Thermal simulations suggest that core temperature changes could occur in smaller subjects, although experimental data are needed for validation.
Collapse
Affiliation(s)
- Shaihan J Malik
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK.,Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Jeffrey W Hand
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - David W Carmichael
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Joseph V Hajnal
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK.,Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| |
Collapse
|
10
|
Schoen N, Seifert F, Petzold J, Metzger GJ, Speck O, Ittermann B, Schmitter S. The Impact of Respiratory Motion on Electromagnetic Fields and Specific Absorption Rate in Cardiac Imaging at 7T. Magn Reson Med 2022; 88:2645-2661. [PMID: 35906923 DOI: 10.1002/mrm.29402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To present electromagnetic simulation setups for detailed analyses of respiration's impact on B 1 + $$ {B}_1^{+} $$ and E-fields, local specific absorption rate (SAR) and associated safety-limits for 7T cardiac imaging. METHODS Finite-difference time-domain electromagnetic field simulations were performed at five respiratory states using a breathing body model and a 16-element 7T body transceiver RF-coil array. B 1 + $$ {B}_1^{+} $$ and SAR are analyzed for fixed and moving coil configurations. SAR variations are investigated using phase/amplitude shimming considering (i) a local SAR-controlled mode (here SAR calculations consider RF amplitudes and phases) and (ii) a channel-wise power-controlled mode (SAR boundary calculation is independent of the channels' phases, only dependent on the channels' maximum amplitude). RESULTS Respiration-induced variations of both B 1 + $$ {B}_1^{+} $$ amplitude and phase are observed. The flip angle homogeneity depends on the respiratory state used for B 1 + $$ {B}_1^{+} $$ shimming; best results were achieved for shimming on inhale and exhale simultaneously ( | Δ C V | < 35 % $$ \mid \Delta CV\mid <35\% $$ ). The results reflect that respiration impacts position and amplitude of the local SAR maximum. With the local-SAR-control mode, a safety factor of up to 1.4 is needed to accommodate for respiratory variations while the power control mode appears respiration-robust when the coil moves with respiration (SAR peak decrease: 9% exhale→inhale). Instead, a spatially fixed coil setup yields higher SAR variations with respiration. CONCLUSION Respiratory motion does not only affect the B 1 + $$ {B}_1^{+} $$ distribution and hence the image contrast, but also location and magnitude of the peak spatial SAR. Therefore, respiration effects may need to be included in safety analyses of RF coils applied to the human thorax.
Collapse
Affiliation(s)
- Natalie Schoen
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Johannes Petzold
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Oliver Speck
- Otto von Guericke University, Magdeburg, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
11
|
Okada T, Fujimoto K, Fushimi Y, Akasaka T, Thuy DHD, Shima A, Sawamoto N, Oishi N, Zhang Z, Funaki T, Nakamoto Y, Murai T, Miyamoto S, Takahashi R, Isa T. Neuroimaging at 7 Tesla: a pictorial narrative review. Quant Imaging Med Surg 2022; 12:3406-3435. [PMID: 35655840 PMCID: PMC9131333 DOI: 10.21037/qims-21-969] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/05/2022] [Indexed: 01/26/2024]
Abstract
Neuroimaging using the 7-Tesla (7T) human magnetic resonance (MR) system is rapidly gaining popularity after being approved for clinical use in the European Union and the USA. This trend is the same for functional MR imaging (MRI). The primary advantages of 7T over lower magnetic fields are its higher signal-to-noise and contrast-to-noise ratios, which provide high-resolution acquisitions and better contrast, making it easier to detect lesions and structural changes in brain disorders. Another advantage is the capability to measure a greater number of neurochemicals by virtue of the increased spectral resolution. Many structural and functional studies using 7T have been conducted to visualize details in the white matter and layers of the cortex and hippocampus, the subnucleus or regions of the putamen, the globus pallidus, thalamus and substantia nigra, and in small structures, such as the subthalamic nucleus, habenula, perforating arteries, and the perivascular space, that are difficult to observe at lower magnetic field strengths. The target disorders for 7T neuroimaging range from tumoral diseases to vascular, neurodegenerative, and psychiatric disorders, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, major depressive disorder, and schizophrenia. MR spectroscopy has also been used for research because of its increased chemical shift that separates overlapping peaks and resolves neurochemicals more effectively at 7T than a lower magnetic field. This paper presents a narrative review of these topics and an illustrative presentation of images obtained at 7T. We expect 7T neuroimaging to provide a new imaging biomarker of various brain disorders.
Collapse
Affiliation(s)
- Tomohisa Okada
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Fujimoto
- Department of Real World Data Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Thai Akasaka
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Dinh H. D. Thuy
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Shima
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobukatsu Sawamoto
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Oishi
- Medial Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Zhilin Zhang
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Funaki
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadashi Isa
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Plumley A, Watkins L, Treder M, Liebig P, Murphy K, Kopanoglu E. Rigid motion-resolved B1+ prediction using deep learning for real-time parallel-transmission pulse design. Magn Reson Med 2022; 87:2254-2270. [PMID: 34958134 PMCID: PMC7613077 DOI: 10.1002/mrm.29132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE Tailored parallel-transmit (pTx) pulses produce uniform excitation profiles at 7 T, but are sensitive to head motion. A potential solution is real-time pulse redesign. A deep learning framework is proposed to estimate pTx B 1 + distributions following within-slice motion, which can then be used for tailored pTx pulse redesign. METHODS Using simulated data, conditional generative adversarial networks were trained to predict B 1 + distributions in the head following a displacement. Predictions were made for two virtual body models that were not included in training. Predicted maps were compared with ground-truth (simulated, following motion) B1 maps. Tailored pTx pulses were designed using B1 maps at the original position (simulated, no motion) and evaluated using simulated B1 maps at displaced position (ground-truth maps) to quantify motion-related excitation error. A second pulse was designed using predicted maps (also evaluated on ground-truth maps) to investigate improvement offered by the proposed method. RESULTS Predicted B 1 + maps corresponded well with ground-truth maps. Error in predicted maps was lower than motion-related error in 99% and 67% of magnitude and phase evaluations, respectively. Worst-case flip-angle normalized RMS error due to motion (76% of target flip angle) was reduced by 59% when pulses were redesigned using predicted maps. CONCLUSION We propose a framework for predicting B 1 + maps online with deep neural networks. Predicted maps can then be used for real-time tailored pulse redesign, helping to overcome head motion-related error in pTx.
Collapse
Affiliation(s)
- Alix Plumley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Luke Watkins
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- School of Physics & Astronomy, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff, United Kingdom
| | - Matthias Treder
- School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| | | | - Kevin Murphy
- School of Physics & Astronomy, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff, United Kingdom
| | - Emre Kopanoglu
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
13
|
Balbastre Y, Aghaeifar A, Corbin N, Brudfors M, Ashburner J, Callaghan MF. Correcting inter-scan motion artifacts in quantitative R 1 mapping at 7T. Magn Reson Med 2022; 88:280-291. [PMID: 35313378 PMCID: PMC9314963 DOI: 10.1002/mrm.29216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/20/2022] [Accepted: 02/11/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE Inter-scan motion is a substantial source of error in R 1 estimation methods based on multiple volumes, for example, variable flip angle (VFA), and can be expected to increase at 7T where B 1 fields are more inhomogeneous. The established correction scheme does not translate to 7T since it requires a body coil reference. Here we introduce two alternatives that outperform the established method. Since they compute relative sensitivities they do not require body coil images. THEORY The proposed methods use coil-combined magnitude images to obtain the relative coil sensitivities. The first method efficiently computes the relative sensitivities via a simple ratio; the second by fitting a more sophisticated generative model. METHODS R 1 maps were computed using the VFA approach. Multiple datasets were acquired at 3T and 7T, with and without motion between the acquisition of the VFA volumes. R 1 maps were constructed without correction, with the proposed corrections, and (at 3T) with the previously established correction scheme. The effect of the greater inhomogeneity in the transmit field at 7T was also explored by acquiring B 1 + maps at each position. RESULTS At 3T, the proposed methods outperform the baseline method. Inter-scan motion artifacts were also reduced at 7T. However, at 7T reproducibility only converged on that of the no motion condition if position-specific transmit field effects were also incorporated. CONCLUSION The proposed methods simplify inter-scan motion correction of R 1 maps and are applicable at both 3T and 7T, where a body coil is typically not available. The open-source code for all methods is made publicly available.
Collapse
Affiliation(s)
- Yaël Balbastre
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ali Aghaeifar
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK.,MR Research Collaborations, Siemens Healthcare Limited, Frimley, UK
| | - Nadège Corbin
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, University Bordeaux, Bordeaux, France
| | - Mikael Brudfors
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - John Ashburner
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
14
|
Collins JD, Rowley H, Leiner T, Reeder S, Hood M, Dekkers I, Tha K, Gulani V, Kopanoglu E. Magnetic Resonance Imaging During a Pandemic: Recommendations by the ISMRM Safety Committee. J Magn Reson Imaging 2021; 55:1322-1339. [PMID: 34927776 DOI: 10.1002/jmri.28006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/23/2023] Open
Abstract
The COVID-19 pandemic highlighted the challenges delivering face-to-face patient care across healthcare systems. In particular the COVID-19 pandemic challenged the imaging community to provide timely access to essential diagnostic imaging modalities while ensuring appropriate safeguards were in place for both patients and personnel. With increasing vaccine availability and greater prevalence of vaccination in communities worldwide we are finally emerging on the other side of the COVID-19 pandemic. As we learned from our institutional and healthcare system responses to the pandemic, maintaining timely access to MR imaging is essential. Radiologists and other imaging providers partnered with their referring providers to ensure that timely access to advanced MR imaging was maintained. On behalf of the International Magnetic Resonance in Medicine (ISMRM) Safety Committee, this white paper is intended to serve as a guide for radiology departments, imaging centers, and other imaging specialists who perform MR imaging to refer to as we prepare for the next pandemic. Lessons learned including strategies to triage and prioritize MR imaging research during a pandemic are discussed. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
| | - Howard Rowley
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Tim Leiner
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Scott Reeder
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Maureen Hood
- Department of Radiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Ilona Dekkers
- Department of Radiology, Leids University Medical Center, Leiden, The Netherlands
| | - Khin Tha
- Global Center for Biomedical Science and Engineering, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Vikas Gulani
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Emre Kopanoglu
- CUBRIC, School of Psychology, Cardiff University, Cardiff, UK
| | | |
Collapse
|
15
|
Malik SJ, Hand JW, Satnarine R, Price AN, Hajnal JV. Specific absorption rate and temperature in neonate models resulting from exposure to a 7T head coil. Magn Reson Med 2021; 86:1299-1313. [PMID: 33811667 DOI: 10.1002/mrm.28784] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/11/2021] [Accepted: 03/06/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE To investigate safe limits for neonatal imaging using a 7T head coil, including both specific absorption rate (SAR) and temperature predictions. METHODS Head-centered neonate models were simulated using finite-difference time domain-based electromagnetic and thermal solvers. The effects of higher water content of neonatal tissues compared with adults, position shifts, and thermal insulation were also considered. An adult model was simulated for comparison. RESULTS Maximum and average SAR are both elevated in the neonate when compared with an adult model. When normalized to B1+ , the SAR experienced by a neonate is greater than an adult by approximately a factor of 2; when normalized to net forward power (forward-reflected), this increases to a factor of 2.5-3.0; and when normalized to absorbed power, approximately a factor of 4. Use of age-adjusted dielectric properties significantly increases the predicted SAR, compared with using adult tissue properties for the neonates. Thermal simulations predict that change in core temperature/maximum temperature remain compliant with International Electrotechnical Commission limits when a thermally insulated neonate is exposed at the SAR limit for up to an hour. CONCLUSION This study of two neonate models cannot quantify the variability expected within a larger population. Likewise, the use of age-adjusted dielectric properties have a significant effect, but while their use is well motivated by literature, there is uncertainty in the true dielectric properties of neonatal tissue. Nevertheless, the main finding is that unlike at lower field strengths, operational limits for 7T neonatal MRI using an adult head coil should be more conservative than limits for use on adults.
Collapse
Affiliation(s)
- Shaihan J Malik
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom.,Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Jeffrey W Hand
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Ryan Satnarine
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Anthony N Price
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom.,Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Joseph V Hajnal
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom.,Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
| |
Collapse
|
16
|
Abstract
After introduction of the first human 7 tesla (7T) system in 1999, 7T MR systems have been employed as one of the most advanced platforms for human MR research for more than 20 years. Currently, two 7T MR models are approved for clinical use in the U.S.A. The approval facilitated introduction of the 7T system, summing up to around 100 worldwide. The approval in Japan is much awaited. As a clinical MR scanner, the 7T MR system is drawing attention in terms of safety.Several large-sized studies on bioeffects have been reported for vertigo, dizziness, motion disturbances, nausea, and others. Such effects might also be found in MR workers and researchers. Frequency and severity of reported bioeffects will be presented and discussed, including their variances. The high resonance frequency and shorter RF wavelength of 7T increase the concern about the safety. Homogeneous RF pulse excitation is difficult even for the brain, and a multi-channel parallel transmit (pTx) system is considered mandatory. However, pTx may create a hot spot, which makes the estimation of specific absorption rate (SAR) to be difficult. The stronger magnetic field of 7T causes a large force of displacement and heating on metallic implants or devices, and the scan of patients with them should not be conducted at 7T. However, there are some opinions that such patients might be scanned even at 7T, if certain criteria are met. This article provides a brief review on the effect of the static magnetic field on humans (MR subjects, workers, and researchers) and neurons, in addition to scan sound, SAR, and metal implants and devices. Understanding and avoiding adverse effects will contribute to the reduction in safety risks and the prevention of incidents.
Collapse
Affiliation(s)
- Tomohisa Okada
- Human Brain Research Center, Graduate School of Medicine, Kyoto University
| | - Thai Akasaka
- Human Brain Research Center, Graduate School of Medicine, Kyoto University
| | - Dinh Hd Thuy
- Human Brain Research Center, Graduate School of Medicine, Kyoto University
| | - Tadashi Isa
- Human Brain Research Center, Graduate School of Medicine, Kyoto University
| |
Collapse
|