1
|
Aastrup M, Kjærgaard U, Laustsen C. Editorial for "Initial Experience of Metabolic Imaging With Hyperpolarized [1- 13C]pyruvate MRI in Kidney Transplant Patients". J Magn Reson Imaging 2024. [PMID: 39243157 DOI: 10.1002/jmri.29582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 09/09/2024] Open
Affiliation(s)
- Malene Aastrup
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Uffe Kjærgaard
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Van Der Hoek JL, Krommendijk ME, Manohar S, Arens J, Groot Jebbink E. Ex-Vivo Human-Sized Organ Machine Perfusion: A Systematic Review on the Added Value of Medical Imaging for Organ Condition Assessment. Transpl Int 2024; 37:12827. [PMID: 39296469 PMCID: PMC11408214 DOI: 10.3389/ti.2024.12827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/06/2024] [Indexed: 09/21/2024]
Abstract
Machine perfused ex-vivo organs offer an excellent experimental platform, e.g., for studying organ physiology and for conducting pre-clinical trials for drug delivery. One main challenge in machine perfusion is the accurate assessment of organ condition. Assessment is often performed using viability markers, i.e., lactate concentrations and blood gas analysis. Nonetheless, existing markers for condition assessment can be inconclusive, and novel assessment methods remain of interest. Over the last decades, several imaging modalities have given unique insights into the assessment of organ condition. A systematic review was conducted according to accepted guidelines to evaluate these medical imaging methods, focussed on literature that use machine perfused human-sized organs, that determine organ condition with medical imaging. A total of 18 out of 1,465 studies were included that reported organ condition results in perfused hearts, kidneys, and livers, using both conventional viability markers and medical imaging. Laser speckle imaging, ultrasound, computed tomography, and magnetic resonance imaging were used to identify local ischemic regions and quantify intra-organ perfusion. A detailed investigation of metabolic activity was achieved using 31P magnetic resonance imaging and near-infrared spectroscopy. The current review shows that medical imaging is a powerful tool to assess organ condition.
Collapse
Affiliation(s)
- Jan L. Van Der Hoek
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Marleen E. Krommendijk
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Srirang Manohar
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Jutta Arens
- Engineering Organ Support Technologies Group, Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| | - Erik Groot Jebbink
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, Netherlands
| |
Collapse
|
3
|
Arildsen MM, Mariager CØ, Overgaard CV, Vorre T, Bøjesen M, Moeslund N, Alstrup AKO, Tolbod LP, Vendelbo MH, Ringgaard S, Pedersen M, Buus NH. Ex Vivo Simultaneous H 215O Positron Emission Tomography and Magnetic Resonance Imaging of Porcine Kidneys-A Feasibility Study. J Imaging 2024; 10:209. [PMID: 39330429 PMCID: PMC11433579 DOI: 10.3390/jimaging10090209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024] Open
Abstract
The aim was to establish combined H215O PET/MRI during ex vivo normothermic machine perfusion (NMP) of isolated porcine kidneys. We examined whether changes in renal arterial blood flow (RABF) are accompanied by changes of a similar magnitude in renal blood perfusion (RBP) as well as the relation between RBP and renal parenchymal oxygenation (RPO). METHODS Pig kidneys (n = 7) were connected to a NMP circuit. PET/MRI was performed at two different pump flow levels: a blood-oxygenation-level-dependent (BOLD) MRI sequence performed simultaneously with a H215O PET sequence for determination of RBP. RESULTS RBP was measured using H215O PET in all kidneys (flow 1: 0.42-0.76 mL/min/g, flow 2: 0.7-1.6 mL/min/g). We found a linear correlation between changes in delivered blood flow from the perfusion pump and changes in the measured RBP using PET imaging (r2 = 0.87). CONCLUSION Our study demonstrated the feasibility of combined H215O PET/MRI during NMP of isolated porcine kidneys with tissue oxygenation being stable over time. The introduction of H215O PET/MRI in nephrological research could be highly relevant for future pre-transplant kidney evaluation and as a tool for studying renal physiology in healthy and diseased kidneys.
Collapse
Affiliation(s)
- Maibritt Meldgaard Arildsen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus, Denmark
| | - Christian Østergaard Mariager
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Christoffer Vase Overgaard
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus, Denmark
| | - Thomas Vorre
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus, Denmark
| | - Martin Bøjesen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus, Denmark
| | - Niels Moeslund
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus, Denmark
| | - Aage Kristian Olsen Alstrup
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Lars Poulsen Tolbod
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Mikkel Holm Vendelbo
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus, Denmark
| | - Steffen Ringgaard
- MR Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus, Denmark
- Radiology Research Unit, South Danish University, Kløvervænget 10, 5000 Odense, Denmark
| | - Niels Henrik Buus
- Department of Renal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
| |
Collapse
|
4
|
Wang Z, Hao D, Zhao S, Zhang Z, Zeng Z, Wang X. Lactate and Lactylation: Clinical Applications of Routine Carbon Source and Novel Modification in Human Diseases. Mol Cell Proteomics 2023; 22:100641. [PMID: 37678638 PMCID: PMC10570128 DOI: 10.1016/j.mcpro.2023.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/15/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023] Open
Abstract
Cell metabolism generates numerous intermediate metabolites that could serve as feedback and feed-forward regulation substances for posttranslational modification. Lactate, a metabolic product of glycolysis, has recently been conceptualized to play a pleiotropic role in shaping cell identities through metabolic rewiring and epigenetic modifications. Lactate-derived carbons, sourced from glucose, mediate the crosstalk among glycolysis, lactate, and lactylation. Furthermore, the multiple metabolic fates of lactate make it an ideal substrate for metabolic imaging in clinical application. Several studies have identified the crucial role of protein lactylation in human diseases associated with cell fate determination, embryonic development, inflammation, neoplasm, and neuropsychiatric disorders. Herein, this review will focus on the metabolic fate of lactate-derived carbon to provide useful information for further research and therapeutic approaches in human diseases. We comprehensively discuss its role in reprogramming and modification during the regulation of glycolysis, the clinical translation prospects of the hyperpolarized lactate signal, lactyl modification in human diseases, and its application with other techniques and omics.
Collapse
Affiliation(s)
- Zhimin Wang
- Division of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Hao
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; Shijiazhuang Zhongnongtongchuang (ZNTC) Biotechnology Co, Ltd, Shijiazhuang, China
| | - Shuiying Zhao
- Division of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ziyin Zhang
- Division of Information, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zeng
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Xiao Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China; Konge Larsen ApS, Kongens Lyngby, Denmark.
| |
Collapse
|
5
|
Sharma G, Maptue N, Rahim M, Trigo Mijes ML, Hever T, Wen X, Funk AM, Malloy CR, Young JD, Khemtong C. Oxidation of hyperpolarized [1- 13 C]pyruvate in isolated rat kidneys. NMR IN BIOMEDICINE 2023; 36:e4857. [PMID: 36285844 PMCID: PMC9980878 DOI: 10.1002/nbm.4857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Kidneys play a central role in numerous disorders but current imaging methods have limited utility to probe renal metabolism. Hyperpolarized (HP) 13 C magnetic resonance imaging is uniquely suited to provide metabolite-specific information about key biochemical pathways and it offers the further advantage that renal imaging is practical in humans. This study evaluated the feasibility of hyperpolarization examinations in a widely used model for analysis of renal physiology, the isolated kidney, which enables isolation of renal metabolism from the effects of other organs and validation of HP results by independent measurements. Isolated rat kidneys were supplied with either HP [1-13 C]pyruvate only or HP [1-13 C]pyruvate plus octanoate. Metabolic activity in both groups was confirmed by stable renal oxygen consumption. HP [1-13 C]pyruvate was readily metabolized to [13 C]bicarbonate, [1-13 C]lactate, and [1-13 C]alanine, detectable seconds after HP [1-13 C]pyruvate was injected. Octanoate suppressed but did not eliminate the production of HP [13 C]bicarbonate from [1-13 C]pyruvate. Steady-state flux analyses using non-HP 13 C substrates validated the utilization of HP [1-13 C]pyruvate, as observed by HP 13 C NMR. In the presence of octanoate, lactate is generated from a tricarboxylic acid cycle intermediate, oxaloacetate. The isolated rat kidney may serve as an excellent model for investigating and establishing new HP 13 C metabolic probes for future kidney imaging applications.
Collapse
Affiliation(s)
- Gaurav Sharma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nesmine Maptue
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA
| | - Mohsin Rahim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Miriam L. Trigo Mijes
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas Hever
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaodong Wen
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexander M. Funk
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Craig R. Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- VA North Texas Health Care System, Dallas, TX, USA
| | - Jamey D. Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Chalermchai Khemtong
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Schutter R, van Varsseveld OC, Lantinga VA, Pool MBF, Hamelink TH, Potze JH, Leuvenink HGD, Laustsen C, Borra RJH, Moers C. Magnetic resonance imaging during warm ex vivo kidney perfusion. Artif Organs 2023; 47:105-116. [PMID: 35996889 PMCID: PMC10086841 DOI: 10.1111/aor.14391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND The shortage of donor organs for transplantation remains a worldwide problem. The utilization of suboptimal deceased donors enlarges the pool of potential organs, yet consequently, clinicians face the difficult decision of whether these sub-optimal organs are of sufficient quality for transplantation. Novel technologies could play a pivotal role in making pre-transplant organ assessment more objective and reliable. METHODS Ex vivo normothermic machine perfusion (NMP) at temperatures around 35-37°C allows organ quality assessment in a near-physiological environment. Advanced magnetic resonance imaging (MRI) techniques convey unique information about an organ's structural and functional integrity. The concept of applying magnetic resonance imaging during renal normothermic machine perfusion is novel in both renal and radiological research and we have developed the first MRI-compatible NMP setup for human-sized kidneys. RESULTS We were able to obtain a detailed and real-time view of ongoing processes inside renal grafts during ex vivo perfusion. This new technique can visualize structural abnormalities, quantify regional flow distribution, renal metabolism, and local oxygen availability, and track the distribution of ex vivo administered cellular therapy. CONCLUSION This platform allows for advanced pre-transplant organ assessment, provides a new realistic tool for studies into renal physiology and metabolism, and may facilitate therapeutic tracing of pharmacological and cellular interventions to an isolated kidney.
Collapse
Affiliation(s)
- Rianne Schutter
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Otis C van Varsseveld
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Veerle A Lantinga
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Merel B F Pool
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tim H Hamelink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Hendrik Potze
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Henri G D Leuvenink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Christoffer Laustsen
- Department of Clinical Medicine, The MR Research Center, Aarhus University, Aarhus, Denmark
| | - Ronald J H Borra
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cyril Moers
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Gonzalez-Viedma A, Van Dyck R, De Beule J, Ghesquière B, Jochmans I. Unraveling metabolism during kidney perfusion using tracer studies, a systematic review. Artif Organs 2022; 46:2118-2134. [PMID: 35848397 DOI: 10.1111/aor.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/02/2022] [Accepted: 07/03/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Understanding kidney metabolism during perfusion is vital to further develop the technology as a preservation, viability assessment, and resuscitation platform. We reviewed the evidence on the use of labeled metabolites (tracers) to understand "on-pump" kidney behavior. METHODS PubMed, Embase, Web of Science, and Cochrane databases were systematically searched for studies evaluating metabolism of (non)radioactively labeled endogenous compounds during kidney perfusion. RESULTS Of 5899 articles, 30 were included. All were animal studies [rat (70%), dog (13%), pig (10%), rabbit (7%)] perfusing but not transplanting kidneys. Perfusion took place at hypothermic (4-12°C) (20%), normothermic (35-40°C) (77%), or undefined temperatures (3%). Hypothermic perfusion used albumin or a clinical kidney preservation solution, mostly in the presence of oxygen. Normothermic perfusion was mostly performed with oxygenated crystalloids often containing glucose and amino acids with unclear partial oxygen tensions. Active metabolism of carbohydrate, amino acid, lipids, and large molecules was shown in hypothermic and normothermic perfusion. Production of macromolecules, such as prostaglandin, thromboxane, and vitamin D, takes place during normothermic perfusion. No experiments compared differences in metabolic activity between hypothermic and normothermic perfusion. One conference abstract showed increased anaerobic metabolism in kidneys donated after circulatory death by adding labeled glucose to hypothermically perfused human kidneys. CONCLUSIONS Tracer studies during kidney perfusion contribute to unraveling kidney metabolic behavior in pre-clinical models. Whether findings are truly translational needs further investigation in large animal models of human kidneys. Furthermore, it is essential to better understand how ischemia changes this metabolic behavior.
Collapse
Affiliation(s)
- Arantxa Gonzalez-Viedma
- Department of Microbiology, Immunology, and Transplantation, Transplantation Research Group, Lab of Abdominal Transplantation, KU Leuven, Leuven, Belgium
| | - Robbe Van Dyck
- Department of Microbiology, Immunology, and Transplantation, Transplantation Research Group, Lab of Abdominal Transplantation, KU Leuven, Leuven, Belgium
| | - Julie De Beule
- Department of Microbiology, Immunology, and Transplantation, Transplantation Research Group, Lab of Abdominal Transplantation, KU Leuven, Leuven, Belgium
| | - Bart Ghesquière
- Metabolomics Expertise Center, Center for Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium.,Metabolomics Expertise Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ina Jochmans
- Department of Microbiology, Immunology, and Transplantation, Transplantation Research Group, Lab of Abdominal Transplantation, KU Leuven, Leuven, Belgium.,Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Hamelink TL, Ogurlu B, De Beule J, Lantinga VA, Pool MBF, Venema LH, Leuvenink HGD, Jochmans I, Moers C. Renal Normothermic Machine Perfusion: The Road Toward Clinical Implementation of a Promising Pretransplant Organ Assessment Tool. Transplantation 2022; 106:268-279. [PMID: 33979315 DOI: 10.1097/tp.0000000000003817] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The increased utilization of high-risk renal grafts for transplantation requires optimization of pretransplant organ assessment strategies. Current decision-making methods to accept an organ for transplantation lack overall predictive power and always contain an element of subjectivity. Normothermic machine perfusion (NMP) creates near-physiological conditions, which might facilitate a more objective assessment of organ quality before transplantation. NMP is rapidly gaining popularity, with various transplant centers developing their own NMP protocols and renal viability criteria. However, to date, no validated sets of on-pump viability markers exist nor are there unified NMP protocols. This review provides a critical overview of the fundamentals of current renal NMP protocols and proposes a framework to approach further development of ex vivo organ evaluation. We also comment on the potential logistical implications of routine clinical use of NMP, which is a more complex procedure compared with static cold storage or even hypothermic machine perfusion.
Collapse
Affiliation(s)
- Tim L Hamelink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Baran Ogurlu
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Julie De Beule
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Veerle A Lantinga
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Merel B F Pool
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Leonie H Venema
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ina Jochmans
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
9
|
A Review of Current and Emerging Trends in Donor Graft-Quality Assessment Techniques. J Clin Med 2022; 11:jcm11030487. [PMID: 35159939 PMCID: PMC8836899 DOI: 10.3390/jcm11030487] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
The number of patients placed on kidney transplant waiting lists is rapidly increasing, resulting in a growing gap between organ demand and the availability of kidneys for transplantation. This organ shortage has forced medical professionals to utilize marginal kidneys from expanded criteria donors (ECD) to broaden the donor pool and shorten wait times for patients with end-stage renal disease. However, recipients of ECD kidney grafts tend to have worse outcomes compared to those receiving organs from standard criteria donors (SCD), specifically increased risks of delayed graft function (DGF) and primary nonfunction incidence. Thus, representative methods for graft-quality assessment are strongly needed, especially for ECDs. Currently, graft-quality evaluation is limited to interpreting the donor’s recent laboratory tests, clinical risk scores, the visual evaluation of the organ, and, in some cases, a biopsy and perfusion parameters. The last few years have seen the emergence of many new technologies designed to examine organ function, including new imaging techniques, transcriptomics, genomics, proteomics, metabolomics, lipidomics, and new solutions in organ perfusion, which has enabled a deeper understanding of the complex mechanisms associated with ischemia-reperfusion injury (IRI), inflammatory process, and graft rejection. This review summarizes and assesses the strengths and weaknesses of current conventional diagnostic methods and a wide range of new potential strategies (from the last five years) with respect to donor graft-quality assessment, the identification of IRI, perfusion control, and the prediction of DGF.
Collapse
|
10
|
Ischemia-Reperfusion Injuries Assessment during Pancreas Preservation. Int J Mol Sci 2021; 22:ijms22105172. [PMID: 34068301 PMCID: PMC8153272 DOI: 10.3390/ijms22105172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/25/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
Maintaining organ viability between donation and transplantation is of critical importance for optimal graft function and survival. To date in pancreas transplantation, static cold storage (SCS) is the most widely practiced method of organ preservation. The first experiments in ex vivo perfusion of the pancreas were performed at the beginning of the 20th century. These perfusions led to organ oedema, hemorrhage, and venous congestion after revascularization. Despite these early hurdles, a number of factors now favor the use of perfusion during preservation: the encouraging results of HMP in kidney transplantation, the development of new perfusion solutions, and the development of organ perfusion machines for the lung, heart, kidneys and liver. This has led to a resurgence of research in machine perfusion for whole organ pancreas preservation. This review highlights the ischemia-reperfusion injuries assessment during ex vivo pancreas perfusion, both for assessment in pre-clinical experimental models as well for future use in the clinic. We evaluated perfusion dynamics, oedema assessment, especially by impedance analysis and MRI, whole organ oxygen consumption, tissue oxygen tension, metabolite concentrations in tissue and perfusate, mitochondrial respiration, cell death, especially by histology, total cell free DNA, caspase activation, and exocrine and endocrine assessment.
Collapse
|
11
|
Mariager CØ, Hansen ESS, Bech SK, Eiskjaer H, Nielsen PF, Ringgaard S, Kimose HH, Laustsen C. Development of a human heart-sized perfusion system for metabolic imaging studies using hyperpolarized [1- 13 C]pyruvate MRI. Magn Reson Med 2020; 85:3510-3521. [PMID: 33368597 DOI: 10.1002/mrm.28639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 11/09/2022]
Abstract
PURPOSE Increasing worldwide demand for cardiac transplantation has spurred new developments to increase the donor pool. Normothermic preservation of heart grafts for transplantation is an emerging strategy to improve the utilization of marginal grafts. Hyperpolarized MR using metabolic tracers such as [1-13 C]pyruvate, provide a novel means of investigating metabolic status without the use of ionizing radiation. We demonstrate the use of this methodology to examine ex vivo perfused porcine heart grafts. METHODS Hearts from three 40-kg Danish domestic pigs were harvested and subsequently perfused in Langendorff mode under normothermic conditions, using an MR-compatible perfusion system adapted to the heart. Proton MRI and hyperpolarized [1-13 C]pyruvate were used to investigate and quantify the functional and metabolic status of the grafts. RESULTS Hearts were perfused with whole blood for 120 min, using a dynamic contrast-enhanced perfusion experiment to verify successful myocardial perfusion. Hyperpolarized [1-13 C]pyruvate MRI was used to assess the metabolic state of the myocardium. Functional assessment was performed using CINE imaging and ventricular pressure data. High lactate and modest alanine levels were observed in the hyperpolarized experiment. The functional assessment produced reduced functional parameters. This suggests an altered functional and metabolic profile compared with corresponding in vivo values. CONCLUSION We investigated the metabolic and functional status of machine-perfused porcine hearts. Utilizing hyperpolarized methodology to acquire detailed myocardial metabolic information-in combination with already established MR methods for cardiac investigation-provides a powerful tool to aid the progress of donor heart preservation.
Collapse
Affiliation(s)
| | | | - Sabrina Kahina Bech
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Hans Eiskjaer
- Department of Clinical Medicine, Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Fast Nielsen
- Department of Cardiothoracic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Ringgaard
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Hans-Henrik Kimose
- Department of Cardiothoracic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Christoffer Laustsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| |
Collapse
|