1
|
Shinozaki A, Sanchez-Heredia JD, Andersen MP, Redda M, Dang DA, Hansen ESS, Schulte RF, Laustsen C, Tyler DJ, Grist JT. Enabling SENSE accelerated 2D CSI for hyperpolarized carbon-13 imaging. Sci Rep 2024; 14:20591. [PMID: 39231982 PMCID: PMC11375102 DOI: 10.1038/s41598-024-70892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
As hyperpolarized (HP) carbon-13 (13C) metabolic imaging is clinically translated, there is a need for easy-to-implement, fast, and robust imaging techniques. However, achieving high temporal resolution without decreasing spatial and/or spectral resolution, whilst maintaining the usability of the imaging sequence is challenging. Therefore, this study looked to accelerate HP 13C MRI by combining a well-established and robust sequence called two-dimensional Chemical Shift Imaging (2D CSI) with prospective under sampling and SENSitivity Encoding (SENSE) reconstruction. Due to the low natural abundance of 13C, the sensitivity maps cannot be pre-acquired for the reconstruction. As such, the implementation of sodium (23Na) sensitivity maps for SENSE reconstructed 13C CSI was demonstrated in a phantom and in vivo in the pig kidney. Results showed that SENSE reconstruction using 23Na sensitivity maps corrected aliased images with a four-fold acceleration. With high temporal resolution, the kidney spectra produced a detailed metabolic arrival and decay curve, useful for further metabolite kinetic modelling or denoising. Metabolic ratio maps were produced in three pigs demonstrating the technique's ability for repeat metabolic measurements. In cases with unknown metabolite spectra or limited HP MRI specialist knowledge, this robust acceleration method ensures comprehensive capture of metabolic signals, mitigating the risk of missing spectral data.
Collapse
Affiliation(s)
- Ayaka Shinozaki
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | | | | | - Mohsen Redda
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Duy A Dang
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Esben S S Hansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Damian J Tyler
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - James T Grist
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK.
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.
- Department of Radiology, Oxford University Hospitals, Oxford, UK.
| |
Collapse
|
2
|
Sanchez‐Heredia JD, Olin RB, Grist JT, Wang W, Bøgh N, Zhurbenko V, Hansen ES, Schulte RF, Tyler D, Laustsen C, Ardenkjær‐Larsen JH. RF coil design for accurate parallel imaging on 13 C MRSI using 23 Na sensitivity profiles. Magn Reson Med 2022; 88:1391-1405. [PMID: 35635156 PMCID: PMC9328386 DOI: 10.1002/mrm.29259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE To develop a coil-based method to obtain accurate sensitivity profiles in 13 C MRI at 3T from the endogenous 23 Na. An eight-channel array is designed for 13 C MR acquisitions. As application examples, the array is used for two-fold accelerated acquisitions of both hyperpolarized 13 C metabolic imaging of pig kidneys and the human brain. METHODS A flexible coil array was tuned optimally for 13 C at 3T (32.1 MHz), with the coil coupling coefficients matched to be nearly identical at the resonance frequency of 23 Na (33.8 MHz). This is done by enforcing a high decoupling (obtained through highly mismatched preamplifiers) and adjusting the coupling frequency response. The SNR performance is compared to reference coils. RESULTS The measured sensitivity profiles on a phantom showed high spatial similarity for 13 C and 23 Na resonances, with average noise correlation of 9 and 11%, respectively. For acceleration factors 2, 3, and 4, the obtained maximum g-factors were 1.0, 1.1, and 2.6, respectively. The 23 Na profiles obtained in vivo could be used successfully to perform two-fold acceleration of hyperpolarized 13 C 3D acquisitions of both pig kidneys and a healthy human brain. CONCLUSION A receive array has been developed in such a way that the 13 C sensitivity profiles could be accurately obtained from measurements at the 23 Na frequency. This technique facilitates accelerated acquisitions for hyperpolarized 13 C imaging. The SNR performance obtained at the 13 C frequency, compares well to other state-of-the-art coils for the same purpose, showing slightly better superficial and central SNR.
Collapse
Affiliation(s)
| | - Rie B. Olin
- Department of Health TechnologyTechnical University of DenmarkKgs. LyngbyDenmark
| | - James T. Grist
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Oxford Centre for Clinical Magnetic Resonance ResearchUniversity of OxfordOxfordUK
- Department of RadiologyOxford University Hospitals TrustOxfordUK
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Wenjun Wang
- National Space InstituteTechnical University of DenmarkKgs. LyngbyDenmark
| | - Nikolaj Bøgh
- MR Research Centre, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Vitaliy Zhurbenko
- National Space InstituteTechnical University of DenmarkKgs. LyngbyDenmark
| | - Esben S. Hansen
- MR Research Centre, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | | | - Damian Tyler
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Oxford Centre for Clinical Magnetic Resonance ResearchUniversity of OxfordOxfordUK
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | | |
Collapse
|
3
|
Lee PM, Chen HY, Gordon JW, Zhu Z, Larson PE, Dwork N, Van Criekinge M, Carvajal L, Ohliger MA, Wang ZJ, Xu D, Kurhanewicz J, Bok RA, Aggarwal R, Munster PN, Vigneron DB. Specialized computational methods for denoising, B 1 correction, and kinetic modeling in hyperpolarized 13 C MR EPSI studies of liver tumors. Magn Reson Med 2021; 86:2402-2411. [PMID: 34216051 PMCID: PMC8565779 DOI: 10.1002/mrm.28901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/14/2021] [Accepted: 06/03/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE To develop a novel post-processing pipeline for hyperpolarized (HP) 13 C MRSI that integrates tensor denoising and B 1 + correction to measure pyruvate-to-lactate conversion rates (kPL ) in patients with liver tumors. METHODS Seven HP 13 C MR scans of progressing liver tumors were acquired using a custom 13 C surface transmit/receive coil and the echo-planar spectroscopic imaging (EPSI) data analysis included B0 correction, tensor rank truncation, and zero- and first-order phase corrections to recover metabolite signals that would otherwise be obscured by spectral noise as well as a correction for inhomogeneous transmit ( B 1 + ) using a B 1 + map aligned to the coil position for each patient scan. Processed HP data and corrected flip angles were analyzed with an inputless two-site exchange model to calculate kPL . RESULTS Denoising averages SNR increases of pyruvate, lactate, and alanine were 37.4-, 34.0-, and 20.1-fold, respectively, with lactate and alanine dynamics most noticeably recovered and better defined. In agreement with Monte Carlo simulations, over-flipped regions underestimated kPL and under-flipped regions overestimated kPL . B 1 + correction addressed this issue. CONCLUSION The new HP 13 C EPSI post-processing pipeline integrated tensor denoising and B 1 + correction to measure kPL in patients with liver tumors. These technical developments not only recovered metabolite signals in voxels that did not receive the prescribed flip angle, but also increased the extent and accuracy of kPL estimations throughout the tumor and adjacent regions including normal-appearing tissue and additional lesions.
Collapse
Affiliation(s)
- Philip M. Lee
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Zihan Zhu
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Peder E.Z. Larson
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Nicholas Dwork
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Mark Van Criekinge
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Lucas Carvajal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Michael A. Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Zhen J. Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Duan Xu
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - John Kurhanewicz
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Robert A. Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Rahul Aggarwal
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Pamela N. Munster
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Daniel B. Vigneron
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|