1
|
Kikken MWI, Steensma BR, van den Berg CAT, Raaijmakers AJE. Multi-echo MR thermometry in the upper leg at 7 T using near-harmonic 2D reconstruction for initialization. Magn Reson Med 2023; 89:2347-2360. [PMID: 36688273 DOI: 10.1002/mrm.29591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/24/2023]
Abstract
PURPOSE The aim of this work is the development of a thermometry method to measure temperature increases in vivo, with a precision and accuracy sufficient for validation against thermal simulations. Such an MR thermometry model would be a valuable tool to get an indication on one of the major safety concerns in MR imaging: the tissue heating occurring due to radiofrequency (RF) exposure. To prevent excessive temperature rise, RF power deposition, expressed as specific absorption rate, cannot exceed predefined thresholds. Using these thresholds, MRI has demonstrated an extensive history of safe usage. Nevertheless, MR thermometry would be a valuable tool to address some of the unmet needs in the area of RF safety assessment, such as validation of specific absorption rate and thermal simulations, investigation of local peak temperatures during scanning, or temperature-based safety guidelines. METHODS The harmonic initialized model-based multi-echo approach is proposed. The method combines a previously published model-based multi-echo water/fat separated approach with an also previously published near-harmonic 2D reconstruction method. The method is tested on the human thigh with a multi-transmit array at 7 T, in three volunteers, and for several RF shims. RESULTS Precision and accuracy are improved considerably compared to a previous fat-referenced method (precision: 0.09 vs. 0.19°C). Comparison of measured temperature rise distributions to subject-specific simulated counterparts show good relative agreement for multiple RF shim settings. CONCLUSION The high precision shows promising potential for validation purposes and other RF safety applications.
Collapse
Affiliation(s)
- Mathijs W I Kikken
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart R Steensma
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis A T van den Berg
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexander J E Raaijmakers
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
2
|
Williams SN, McElhinney P, Gunamony S. Ultra-high field MRI: parallel-transmit arrays and RF pulse design. Phys Med Biol 2023; 68. [PMID: 36410046 DOI: 10.1088/1361-6560/aca4b7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
This paper reviews the field of multiple or parallel radiofrequency (RF) transmission for magnetic resonance imaging (MRI). Currently the use of ultra-high field (UHF) MRI at 7 tesla and above is gaining popularity, yet faces challenges with non-uniformity of the RF field and higher RF power deposition. Since its introduction in the early 2000s, parallel transmission (pTx) has been recognized as a powerful tool for accelerating spatially selective RF pulses and combating the challenges associated with RF inhomogeneity at UHF. We provide a survey of the types of dedicated RF coils used commonly for pTx and the important modeling of the coil behavior by electromagnetic (EM) field simulations. We also discuss the additional safety considerations involved with pTx such as the specific absorption rate (SAR) and how to manage them. We then describe the application of pTx with RF pulse design, including a practical guide to popular methods. Finally, we conclude with a description of the current and future prospects for pTx, particularly its potential for routine clinical use.
Collapse
Affiliation(s)
- Sydney N Williams
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Paul McElhinney
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Shajan Gunamony
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom.,MR CoilTech Limited, Glasgow, United Kingdom
| |
Collapse
|
3
|
Feddersen TV, Poot DHJ, Paulides MM, Salim G, van Rhoon GC, Hernandez-Tamames JA. Multi-echo gradient echo pulse sequences: which is best for PRFS MR thermometry guided hyperthermia? Int J Hyperthermia 2023; 40:2184399. [PMID: 36907223 DOI: 10.1080/02656736.2023.2184399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
PURPOSE MR thermometry (MRT) enables noninvasive temperature monitoring during hyperthermia treatments. MRT is already clinically applied for hyperthermia treatments in the abdomen and extremities, and devices for the head are under development. In order to optimally exploit MRT in all anatomical regions, the best sequence setup and post-processing must be selected, and the accuracy needs to be demonstrated. METHODS MRT performance of the traditionally used double-echo gradient-echo sequence (DE-GRE, 2 echoes, 2D) was compared to multi-echo sequences: a 2D fast gradient-echo (ME-FGRE, 11 echoes) and a 3D fast gradient-echo sequence (3D-ME-FGRE, 11 echoes). The different methods were assessed on a 1.5 T MR scanner (GE Healthcare) using a phantom cooling down from 59 °C to 34 °C and unheated brains of 10 volunteers. In-plane motion of volunteers was compensated by rigid body image registration. For the ME sequences, the off-resonance frequency was calculated using a multi-peak fitting tool. To correct for B0 drift, the internal body fat was selected automatically using water/fat density maps. RESULTS The accuracy of the best performing 3D-ME-FGRE sequence was 0.20 °C in phantom (in the clinical temperature range) and 0.75 °C in volunteers, compared to DE-GRE values of 0.37 °C and 1.96 °C, respectively. CONCLUSION For hyperthermia applications, where accuracy is more important than resolution or scan-time, the 3D-ME-FGRE sequence is deemed the most promising candidate. Beyond its convincing MRT performance, the ME nature enables automatic selection of internal body fat for B0 drift correction, an important feature for clinical application.
Collapse
Affiliation(s)
- Theresa V Feddersen
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dirk H J Poot
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Margarethus M Paulides
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Electromagnetics for Care & Cure Research Lab, Center for Care and Cure Technologies Eindhoven (C3Te), Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ghassan Salim
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gerard C van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Applied Radiation and Isotopes, Reactor Institute Delft, Delft University of Technology, Delft, The Netherlands
| | - Juan A Hernandez-Tamames
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Imaging Physics, Applied Physics Faculty, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
4
|
Daval-Frérot G, Massire A, Mailhe B, Nadar M, Vignaud A, Ciuciu P. Iterative static field map estimation for off-resonance correction in non-Cartesian susceptibility weighted imaging. Magn Reson Med 2022; 88:1592-1607. [PMID: 35735217 PMCID: PMC9545844 DOI: 10.1002/mrm.29297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022]
Abstract
Purpose Patient‐induced inhomogeneities in the magnetic field cause distortions and blurring during acquisitions with long readouts such as in susceptibility‐weighted imaging (SWI). Most correction methods require collecting an additional ΔB0 field map to remove these artifacts. Theory The static ΔB0 field map can be approximated with an acceptable error directly from a single echo acquisition in SWI. The main component of the observed phase is linearly related to ΔB0 and the echo time (TE), and the relative impact of non‐ ΔB0 terms becomes insignificant with TE >20 ms at 3 T for a well‐tuned system. Methods The main step is to combine and unfold the multi‐channel phase maps wrapped many times, and several competing algorithms are compared for this purpose. Four in vivo brain data sets collected using the recently proposed 3D spreading projection algorithm for rapid k‐space sampling (SPARKLING) readouts are used to assess the proposed method. Results The estimated 3D field maps generated with a 0.6 mm isotropic spatial resolution provide overall similar off‐resonance corrections compared to reference corrections based on an external ΔB0 acquisitions, and even improved for 2 of 4 individuals. Although a small estimation error is expected, no aftermath was observed in the proposed corrections, whereas degradations were observed in the references. Conclusion A static ΔB0 field map estimation method was proposed to take advantage of acquisitions with long echo times, and outperformed the reference technique based on an external field map. The difference can be attributed to an inherent robustness to mismatches between volumes and external ΔB0 maps, and diverse other sources investigated. Click here for author‐reader discussions
Collapse
Affiliation(s)
- Guillaume Daval-Frérot
- Siemens Healthcare SAS, Saint-Denis, France.,CEA, NeuroSpin, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.,Inria, Palaiseau, France
| | | | - Boris Mailhe
- Siemens Healthineers, Digital Technology & Innovation, Princeton, New Jersey, USA
| | - Mariappan Nadar
- Siemens Healthineers, Digital Technology & Innovation, Princeton, New Jersey, USA
| | - Alexandre Vignaud
- CEA, NeuroSpin, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Ciuciu
- CEA, NeuroSpin, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.,Inria, Palaiseau, France
| |
Collapse
|
5
|
Boehm C, Goeger-Neff M, Mulder HT, Zilles B, Lindner LH, van Rhoon GC, Karampinos DC, Wu M. Susceptibility artifact correction in MR thermometry for monitoring of mild radiofrequency hyperthermia using total field inversion. Magn Reson Med 2022; 88:120-132. [PMID: 35313384 DOI: 10.1002/mrm.29191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/28/2022]
Abstract
PURPOSE MR temperature monitoring of mild radiofrequency hyperthermia (RF-HT) of cancer exploits the linear resonance frequency shift of water with temperature. Motion-induced susceptibility distribution changes cause artifacts that we correct here using the total field inversion (TFI) approach. METHODS The performance of TFI was compared to two background field removal (BFR) methods: Laplacian boundary value (LBV) and projection onto dipole fields (PDF). Data sets with spatial susceptibility change and B 0 -drift were simulated, phantom heating experiments were performed, four volunteer data sets at thermoneutral conditions as well as data from one cervical cancer, two sarcoma, and one seroma patients undergoing mild RF-HT were corrected using the proposed methods. RESULTS Simulations and phantom heating experiments revealed that using BFR or TFI preserves temperature-induced phase change, while removing susceptibility artifacts and B 0 -drift. TFI resulted in the least cumulative error for all four volunteers. Temperature probe information from four patient data sets were best depicted by TFI-corrected data in terms of accuracy and precision. TFI also performed best in case of the sarcoma treatment without temperature probe. CONCLUSION TFI outperforms previously suggested BFR methods in terms of accuracy and robustness. While PDF consistently overestimates susceptibility contribution, and LBV removes valuable pixel information, TFI is more robust and leads to more accurate temperature estimations.
Collapse
Affiliation(s)
- Christof Boehm
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | | | | | - Benjamin Zilles
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Lars H Lindner
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | | | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Mingming Wu
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
6
|
Le Ster C, Mauconduit F, Mirkes C, Vignaud A, Boulant N. Measuring radiofrequency field-induced temperature variations in brain MRI exams with motion compensated MR thermometry and field monitoring. Magn Reson Med 2021; 87:1390-1400. [PMID: 34687068 DOI: 10.1002/mrm.29058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/23/2021] [Accepted: 10/08/2021] [Indexed: 11/08/2022]
Abstract
PURPOSE An MR thermometry (MRT) method with motion and field fluctuation compensation is proposed to measure non-invasively sub-degree brain temperature variations occurring through radiofrequency (RF) power deposition during MR exams. METHODS MRT at 7T with a multi-slice echo planar imaging (EPI) sequence and concurrent field monitoring was first tested in vitro to assess accuracy in the presence of external field perturbations, an optical probe being used for ground truth. In vivo, this strategy was complemented by a motion compensation scheme based on a dictionary pre-scan, as reported in some previous work, and was adapted to the human brain. Precision reached with this scheme was assessed on eight volunteers with a 5 minute-long low specific absorption rate (SAR) scan. Finally, temperature rise in the brain was measured twice on the same volunteers and with the same strategy, this time by employing a 20-minutes scan at the maximum SAR delivered with a commercial volume head coil. RESULTS In vitro, the root mean square (RMS) error between optical probe and MRT measurements was 0.02°C with field sensor correction. In vivo, the low SAR scan returned a precision in temperature change measurement with field monitoring and motion compensation of 0.05°C. The 20-minutes maximum SAR scan returned a temperature rise throughout the inner-brain in the range of 0-0.2°C. Brain periphery remained too sensitive with respect to motion to lead to equally conclusive results. CONCLUSION Sub-degree temperature rise in the inner human brain was characterized experimentally throughout RF exposure. Potential applications include improvement of human thermal models and revision of safety margins.
Collapse
Affiliation(s)
- Caroline Le Ster
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Franck Mauconduit
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | | | - Alexandre Vignaud
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Nicolas Boulant
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| |
Collapse
|