1
|
Bydder M, Ali F, Condron P, Cornfeld DM, Newburn G, Kwon EE, Tayebi M, Scadeng M, Melzer TR, Holdsworth SJ, Bydder GM. Validation of an ultrahigh contrast divided subtracted inversion recovery technique using a standard T 1 phantom. NMR IN BIOMEDICINE 2024:e5269. [PMID: 39355971 DOI: 10.1002/nbm.5269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024]
Abstract
The divided subtracted inversion recovery (dSIR) is a high T1 contrast technique that shows changes in white matter in patients with traumatic brain injury and hypoxic injury. The changes can be explained by small differences in T1; however, to date, there has been no independent validation of the technique using a standard reference. The present study develops the theory of the dSIR signal and performs validation using the NIST/ISMRM T1 phantom. Non-idealities are explored, including the influence of noise bias and finite repetition time (TR), which leads to the introduction of an optimally efficient TR for inversion recovery acquisitions. Results show excellent agreement with theoretical calculations.
Collapse
Affiliation(s)
- Mark Bydder
- Mātai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
| | - Fadil Ali
- Imaging Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Paul Condron
- Mātai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
- Department of Anatomy & Medical Imaging, Faculty of Medical and Health Sciences & Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Daniel M Cornfeld
- Mātai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
- Department of Anatomy & Medical Imaging, Faculty of Medical and Health Sciences & Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Gil Newburn
- Mātai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
| | - Eryn E Kwon
- Mātai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
- Department of Anatomy & Medical Imaging, Faculty of Medical and Health Sciences & Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, Auckland, New Zealand
| | - Maryam Tayebi
- Mātai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
- Department of Anatomy & Medical Imaging, Faculty of Medical and Health Sciences & Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Miriam Scadeng
- Department of Anatomy & Medical Imaging, Faculty of Medical and Health Sciences & Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, Auckland, New Zealand
| | - Tracy R Melzer
- Department of Medicine, University of Otago, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Samantha J Holdsworth
- Mātai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
- Department of Anatomy & Medical Imaging, Faculty of Medical and Health Sciences & Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Graeme M Bydder
- Mātai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
- Department of Radiology, University of California San Diego, San Diego, California, USA
| |
Collapse
|
2
|
Bapst B, Massire A, Mauconduit F, Gras V, Boulant N, Dufour J, Bodini B, Stankoff B, Luciani A, Vignaud A. Pushing MP2RAGE boundaries: Ultimate time-efficient parameterization combined with exhaustive T 1 synthetic contrasts. Magn Reson Med 2024; 91:1608-1624. [PMID: 38102807 DOI: 10.1002/mrm.29948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 12/17/2023]
Abstract
PURPOSE MP2RAGE parameter optimization is redefined to allow more time-efficient MR acquisitions, whereas the T1 -based synthetic imaging framework is used to obtain on-demand T1 -weighted contrasts. Our aim was to validate this concept on healthy volunteers and patients with multiple sclerosis, using plug-and-play parallel-transmission brain imaging at 7 T. METHODS A "time-efficient" MP2RAGE sequence was designed with optimized parameters including TI and TR set as small as possible. Extended phase graph formalism was used to set flip-angle values to maximize the gray-to-white-matter contrast-to-noise ratio (CNR). Several synthetic contrasts (UNI, EDGE, FGATIR, FLAWSMIN , FLAWSHCO ) were generated online based on the acquired T1 maps. Experimental validation was performed on 4 healthy volunteers at various spatial resolutions. Clinical applicability was evaluated on 6 patients with multiple sclerosis, scanned with both time-efficient and conventional MP2RAGE parameterizations. RESULTS The proposed time-efficient MP2RAGE protocols reduced acquisition time by 40%, 30%, and 19% for brain imaging at (1 mm)3 , (0.80 mm)3 and (0.65 mm)3 , respectively, when compared with conventional parameterizations. They also provided all synthetic contrasts and comparable contrast-to-noise ratio on UNI images. The flexibility in parameter selection allowed us to obtain a whole-brain (0.45 mm)3 acquisition in 19 min 56 s. On patients with multiple sclerosis, a (0.67 mm)3 time-efficient acquisition enhanced cortical lesion visualization compared with a conventional (0.80 mm)3 protocol, while decreasing the scan time by 15%. CONCLUSION The proposed optimization, associated with T1 -based synthetic contrasts, enabled substantial decrease of the acquisition time or higher spatial resolution scans for a given time budget, while generating all typical brain contrasts derived from MP2RAGE.
Collapse
Affiliation(s)
- Blanche Bapst
- University of Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
- Department of Neuroradiology, AP-HP, Henri Mondor University Hospital, Créteil, France
- EA 4391, Université Paris Est Créteil, Créteil, France
| | | | - Franck Mauconduit
- University of Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Vincent Gras
- University of Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Nicolas Boulant
- University of Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Juliette Dufour
- Sorbonne Université, Paris Brain Institute, ICM, CNRS, Inserm, Paris, France
| | - Benedetta Bodini
- Sorbonne Université, Paris Brain Institute, ICM, CNRS, Inserm, Paris, France
| | - Bruno Stankoff
- Sorbonne Université, Paris Brain Institute, ICM, CNRS, Inserm, Paris, France
| | - Alain Luciani
- Department of Medical Imaging, Henri Mondor University Hospital, Créteil, France
| | - Alexandre Vignaud
- University of Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Beaumont J, Fripp J, Raniga P, Acosta O, Ferre JC, McMahon K, Trinder J, Kober T, Gambarota G. Multi T1-weighted contrast imaging and T1 mapping with compressed sensing FLAWS at 3 T. MAGMA (NEW YORK, N.Y.) 2023; 36:823-836. [PMID: 36847989 DOI: 10.1007/s10334-023-01071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 03/01/2023]
Abstract
OBJECTIVE The Fluid And White matter Suppression (FLAWS) MRI sequence provides multiple T1-weighted contrasts of the brain in a single acquisition. However, the FLAWS acquisition time is approximately 8 min with a standard GRAPPA 3 acceleration factor at 3 T. This study aims at reducing the FLAWS acquisition time by providing a new sequence optimization based on a Cartesian phyllotaxis k-space undersampling and a compressed sensing (CS) reconstruction. This study also aims at showing that T1 mapping can be performed with FLAWS at 3 T. MATERIALS AND METHODS The CS FLAWS parameters were determined using a method based on a profit function maximization under constraints. The FLAWS optimization and T1 mapping were assessed with in-silico, in-vitro and in-vivo (10 healthy volunteers) experiments conducted at 3 T. RESULTS In-silico, in-vitro and in-vivo experiments showed that the proposed CS FLAWS optimization allows the acquisition time of a 1 mm-isotropic full-brain scan to be reduced from [Formula: see text] to [Formula: see text] without decreasing image quality. In addition, these experiments demonstrate that T1 mapping can be performed with FLAWS at 3 T. DISCUSSION The results obtained in this study suggest that the recent advances in FLAWS imaging allow to perform multiple T1-weighted contrast imaging and T1 mapping in a single [Formula: see text] sequence acquisition.
Collapse
Affiliation(s)
- Jeremy Beaumont
- Univ Rennes, CRLCC Eugene Marquis, Inserm, LTSI-UMR1099, LTSI, Campus de Beaulieu, Université de Rennes 1, 35042, Rennes, France.
- The Australian e-Health Research Centre, CSIRO, Brisbane, QLD, Australia.
| | - Jurgen Fripp
- The Australian e-Health Research Centre, CSIRO, Brisbane, QLD, Australia
| | - Parnesh Raniga
- The Australian e-Health Research Centre, CSIRO, Brisbane, QLD, Australia
| | - Oscar Acosta
- Univ Rennes, CRLCC Eugene Marquis, Inserm, LTSI-UMR1099, LTSI, Campus de Beaulieu, Université de Rennes 1, 35042, Rennes, France
| | - Jean-Christophe Ferre
- Univ Rennes, Inria, CNRS, Inserm, IRISA, EMPENN ERL U-1228, Rennes, France
- Department of Neuroradiology, CHU Rennes, Rennes, France
| | - Katie McMahon
- School of Clinical Sciences, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Herston Imaging Research Facility, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Julie Trinder
- The Australian e-Health Research Centre, CSIRO, Brisbane, QLD, Australia
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Giulio Gambarota
- Univ Rennes, CRLCC Eugene Marquis, Inserm, LTSI-UMR1099, LTSI, Campus de Beaulieu, Université de Rennes 1, 35042, Rennes, France
| |
Collapse
|
4
|
Martin A, Emorine T, Megdiche I, Créange A, Kober T, Massire A, Bapst B. Accurate Diagnosis of Cortical and Infratentorial Lesions in Multiple Sclerosis Using Accelerated Fluid and White Matter Suppression Imaging. Invest Radiol 2023; 58:337-345. [PMID: 36730698 DOI: 10.1097/rli.0000000000000939] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The precise location of multiple sclerosis (MS) cortical lesions can be very challenging at 3 T, yet distinguishing them from subcortical lesions is essential for the diagnosis and prognosis of the disease. Compressed sensing-accelerated fluid and white matter suppression imaging (CS-FLAWS) is a new magnetic resonance imaging sequence derived from magnetization-prepared 2 rapid acquisition gradient echo with promising features for the detection and classification of MS lesions. The objective of this study was to compare the diagnostic performances of CS-FLAWS (evaluated imaging) and phase sensitive inversion recovery (PSIR; reference imaging) for classification of cortical lesions (primary objective) and infratentorial lesions (secondary objective) in MS, in combination with 3-dimensional (3D) double inversion recovery (DIR). MATERIALS AND METHODS Prospective 3 T scans (MS first diagnosis or follow-up) acquired between March and August 2021 were retrospectively analyzed. All underwent 3D CS-FLAWS, axial 2D PSIR, and 3D DIR. Double-blinded reading sessions exclusively in axial plane and final consensual reading were performed to assess the number of cortical and infratentorial lesions. Wilcoxon test was used to compare the 2 imaging datasets (FLAWS + DIR and PSIR + DIR), and intraobserver and interobserver agreement was assessed using the intraclass correlation coefficient. RESULTS Forty-two patients were analyzed (38 with relapsing-remitting MS, 29 women, 42.7 ± 12.6 years old). Compressed sensing-accelerated FLAWS allowed the identification of 263 cortical lesions versus 251 with PSIR ( P = 0.74) and 123 infratentorial lesions versus 109 with PSIR ( P = 0.63), corresponding to a nonsignificant difference between the 2 sequences. Compressed sensing-accelerated FLAWS exhibited fewer false-negative findings than PSIR either for cortical lesions (1 vs 13; P < 0.01) or infratentorial lesions (1 vs 15; P < 0.01). No false-positive findings were found with any of the 2 sequences. Diagnostic confidence was high for each contrast. CONCLUSION Three-dimensional CS-FLAWS is as accurate as 2D PSIR imaging for classification of cortical and infratentorial MS lesions, with fewer false-negative findings, opening the way to a reliable full brain MS exploration in a clinically acceptable duration (5 minutes 15 seconds).
Collapse
|
5
|
Dokumacı AS, Aitken FR, Sedlacik J, Bridgen P, Tomi‐Tricot R, Mooiweer R, Vecchiato K, Wilkinson T, Casella C, Giles S, Hajnal JV, Malik SJ, O'Muircheartaigh J, Carmichael DW. Simultaneous Optimization of MP2RAGE T 1 -weighted (UNI) and FLuid And White matter Suppression (FLAWS) brain images at 7T using Extended Phase Graph (EPG) Simulations. Magn Reson Med 2023; 89:937-950. [PMID: 36352772 PMCID: PMC10100108 DOI: 10.1002/mrm.29479] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE The MP2RAGE sequence is typically optimized for either T1 -weighted uniform image (UNI) or gray matter-dominant fluid and white matter suppression (FLAWS) contrast images. Here, the purpose was to optimize an MP2RAGE protocol at 7 Tesla to provide UNI and FLAWS images simultaneously in a clinically applicable acquisition time at <0.7 mm isotropic resolution. METHODS Using the extended phase graph formalism, the signal evolution of the MP2RAGE sequence was simulated incorporating T2 relaxation, diffusion, RF spoiling, and B1 + variability. Flip angles and TI were optimized at different TRs (TRMP2RAGE ) to produce an optimal contrast-to-noise ratio for UNI and FLAWS images. Simulation results were validated by comparison to MP2RAGE brain scans of 5 healthy subjects, and a final protocol at TRMP2RAGE = 4000 ms was applied in 19 subjects aged 8-62 years with and without epilepsy. RESULTS FLAWS contrast images could be obtained while maintaining >85% of the optimal UNI contrast-to-noise ratio. Using TI1 /TI2 /TRMP2RAGE of 650/2280/4000 ms, 6/8 partial Fourier in the inner phase-encoding direction, and GRAPPA factor = 4 in the other, images with 0.65 mm isotropic resolution were produced in <7.5 min. The contrast-to-noise ratio was around 20% smaller at TRMP2RAGE = 4000 ms compared to that at TRMP2RAGE = 5000 ms; however, the 20% shorter duration makes TRMP2RAGE = 4000 ms a good candidate for clinical applications example, pediatrics. CONCLUSION FLAWS and UNI images could be obtained in a single scan with 0.65 mm isotropic resolution, providing a set of high-contrast images and full brain coverage in a clinically applicable scan time. Images with excellent anatomical detail were demonstrated over a wide age range using the optimized parameter set.
Collapse
Affiliation(s)
- Ayşe Sıla Dokumacı
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
| | - Fraser R. Aitken
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
| | - Jan Sedlacik
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
- Radiology DepartmentGreat Ormond Street Hospital for ChildrenLondonUnited Kingdom
| | - Pip Bridgen
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
| | - Raphael Tomi‐Tricot
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
- MR Research CollaborationsSiemens Healthcare LimitedCamberleyUnited Kingdom
| | - Ronald Mooiweer
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- MR Research CollaborationsSiemens Healthcare LimitedCamberleyUnited Kingdom
| | - Katy Vecchiato
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
- Department of Forensic and Neurodevelopmental SciencesInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging Sciences, King's College LondonLondonUnited Kingdom
| | - Tom Wilkinson
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
| | - Chiara Casella
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging Sciences, King's College LondonLondonUnited Kingdom
| | - Sharon Giles
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
| | - Joseph V. Hajnal
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
| | - Shaihan J. Malik
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
| | - Jonathan O'Muircheartaigh
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
- Department of Forensic and Neurodevelopmental SciencesInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging Sciences, King's College LondonLondonUnited Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College LondonLondonUnited Kingdom
| | - David W. Carmichael
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
| |
Collapse
|
6
|
Williams SN, McElhinney P, Gunamony S. Ultra-high field MRI: parallel-transmit arrays and RF pulse design. Phys Med Biol 2023; 68. [PMID: 36410046 DOI: 10.1088/1361-6560/aca4b7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
This paper reviews the field of multiple or parallel radiofrequency (RF) transmission for magnetic resonance imaging (MRI). Currently the use of ultra-high field (UHF) MRI at 7 tesla and above is gaining popularity, yet faces challenges with non-uniformity of the RF field and higher RF power deposition. Since its introduction in the early 2000s, parallel transmission (pTx) has been recognized as a powerful tool for accelerating spatially selective RF pulses and combating the challenges associated with RF inhomogeneity at UHF. We provide a survey of the types of dedicated RF coils used commonly for pTx and the important modeling of the coil behavior by electromagnetic (EM) field simulations. We also discuss the additional safety considerations involved with pTx such as the specific absorption rate (SAR) and how to manage them. We then describe the application of pTx with RF pulse design, including a practical guide to popular methods. Finally, we conclude with a description of the current and future prospects for pTx, particularly its potential for routine clinical use.
Collapse
Affiliation(s)
- Sydney N Williams
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Paul McElhinney
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Shajan Gunamony
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom.,MR CoilTech Limited, Glasgow, United Kingdom
| |
Collapse
|
7
|
Müller J, La Rosa F, Beaumont J, Tsagkas C, Rahmanzadeh R, Weigel M, Bach Cuadra M, Gambarota G, Granziera C. Fluid and White Matter Suppression: New Sensitive 3 T Magnetic Resonance Imaging Contrasts for Cortical Lesion Detection in Multiple Sclerosis. Invest Radiol 2022; 57:592-600. [PMID: 35510874 PMCID: PMC10184808 DOI: 10.1097/rli.0000000000000877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/26/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Cortical lesions are common in multiple sclerosis (MS), but their visualization is challenging on conventional magnetic resonance imaging. The uniform image derived from magnetization prepared 2 rapid acquisition gradient echoes (MP2RAGE uni ) detects cortical lesions with a similar rate as the criterion standard sequence, double inversion recovery. Fluid and white matter suppression (FLAWS) provides multiple reconstructed contrasts acquired during a single acquisition. These contrasts include FLAWS minimum image (FLAWS min ), which provides an exquisite sensitivity to the gray matter signal and therefore may facilitate cortical lesion identification, as well as high contrast FLAWS (FLAWS hco ), which gives a contrast that is similar to one of MP2RAGE uni . In this study, we compared the manual detection rate of cortical lesions on MP2RAGE uni , FLAWS min , and FLAWS hco in MS patients. Furthermore, we assessed whether the combined detection rate on FLAWS min and FLAWS hco was superior to MP2RAGE uni for cortical lesions identification. Last, we compared quantitative T1 maps (qT1) provided by both MP2RAGE and FLAWS in MS lesions. MATERIALS AND METHODS We included 30 relapsing-remitting MS patients who underwent MP2RAGE and FLAWS magnetic resonance imaging with isotropic spatial resolution of 1 mm at 3 T. Cortical lesions were manually segmented by consensus of 3 trained raters and classified as intracortical or leukocortical lesions on (1) MP2RAGE uniform/flat images, (2) FLAWS min , and (3) FLAWS hco . In addition, segmented lesions on FLAWS min and FLAWS hco were merged to produce a union lesion map (FLAWS min + hco ). Number and volume of all cortical, intracortical, and leukocortical lesions were compared among MP2RAGE uni , FLAWS min , and FLAWS hco using Friedman test and between MP2RAGE uni and FLAWS min + hco using Wilcoxon signed rank test. The FLAWS T1 maps were then compared with the reference MP2RAGE T1 maps using relative differences in percentage. In an exploratory analysis, individual cortical lesion counts of the 3 raters were compared, and interrater variability was quantified using Fleiss ϰ. RESULTS In total, 633 segmentations were made on the 3 contrasts, corresponding to 355 cortical lesions. The median number and volume of single cortical, intracortical, and leukocortical lesions were comparable among MP2RAGE uni , FLAWS min , and FLAWS hco . In patients with cortical lesions (22/30), median cumulative lesion volume was larger on FLAWS min (587 μL; IQR, 1405 μL) than on MP2RAGE uni (490 μL; IQR, 990 μL; P = 0.04), whereas there was no difference between FLAWS min and FLAWS hco , or FLAWS hco and MP2RAGE uni . FLAWS min + hco showed significantly greater numbers of cortical (median, 4.5; IQR, 15) and leukocortical (median, 3.5; IQR, 12) lesions than MP2RAGE uni (median, 3; IQR, 10; median, 2.5; IQR, 7; both P < 0.001). Interrater agreement was moderate on MP2RAGE uni (ϰ = 0.582) and FLAWS hco (ϰ = 0.584), but substantial on FLAWS min (ϰ = 0.614). qT1 in lesions was similar between MP2RAGE and FLAWS. CONCLUSIONS Cortical lesions identification in FLAWS min and FLAWS hco was comparable to MP2RAGE uni . The combination of FLAWS min and FLAWS hco allowed to identify a higher number of cortical lesions than MP2RAGE uni , whereas qT1 maps did not differ between the 2 acquisition schemes.
Collapse
Affiliation(s)
- Jannis Müller
- From the Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel
| | - Francesco La Rosa
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Jeremy Beaumont
- Univ Rennes, Inserm, LTSI-UMR1099, Rennes, France
- The Australian e-Health Research Centre, CSIRO, Brisbane, Australia
| | - Charidimos Tsagkas
- From the Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel
| | - Reza Rahmanzadeh
- From the Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel
| | - Matthias Weigel
- From the Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel
| | - Meritxell Bach Cuadra
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Radiology Department, Lausanne University and University Hospital, Lausanne, Switzerland
| | | | - Cristina Granziera
- From the Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel
| |
Collapse
|
8
|
3-Dimensional Fluid and White Matter Suppression Magnetic Resonance Imaging Sequence Accelerated With Compressed Sensing Improves Multiple Sclerosis Cervical Spinal Cord Lesion Detection Compared With Standard 2-Dimensional Imaging. Invest Radiol 2022; 57:575-584. [PMID: 35318971 DOI: 10.1097/rli.0000000000000874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Fluid and white matter suppression (FLAWS) is a recently proposed magnetic resonance sequence derived from magnetization-prepared 2 rapid acquisition gradient-echo providing 2 coregistered datasets with white matter- and cerebrospinal fluid-suppressed signal, enabling synthetic imaging with amplified contrast. Although these features are high potential for brain multiple sclerosis (MS) imaging, spinal cord has never been evaluated with this sequence to date. The objective of this work was therefore to assess diagnostic performance and self-confidence provided by compressed-sensing (CS) 3-dimensional (3D) FLAWS for cervical MS lesion detection on a head scan that includes the cervical cord without changing standard procedures. MATERIALS AND METHODS Prospective 3 T scans (MS first diagnosis or follow-up) acquired between 2019 and 2020 were retrospectively analyzed. All patients underwent 3D CS-FLAWS (duration: 5 minutes 40 seconds), axial T2 turbo spin echo covering cervical spine from cervicomedullary junction to the same inferior level as FLAWS, and sagittal cervical T2/short tau inversion recovery imaging. Two readers performed a 2-stage double-blind reading, followed by consensus reading. Wilcoxon tests were used to compare the number of detected spinal cord lesions and the reader's diagnostic self-confidence when using FLAWS versus the reference 2D T2-weighted imaging. RESULTS Fifty-eight patients were included (mean age, 40 ± 13 years, 46 women, 7 ± 6 years mean disease duration). The CS-FLAWS detected significantly more lesions than the reference T2-weighted imaging (197 vs 152 detected lesions, P < 0.001), with a sensitivity of 98% (T2-weighted imaging sensitivity: 90%) after consensual reading. Considering the subgroup of patients who underwent sagittal T2 + short tau inversion recovery imaging (Magnetic Resonance Imaging for Multiple Sclerosis subgroup), +250% lesions were detected with FLAWS (63 vs 25 lesions detected, P < 0.001). Mean reading self-confidence was significantly better with CS-FLAWS (median, 5 [interquartile range, 1] [no doubt for diagnosis] vs 4 [interquartile range, 1] [high confidence]; P < 0.001). CONCLUSIONS Imaging with CS-FLAWS provides an improved cervical spinal cord exploration for MS with increased self-confidence compared with conventional T2-weighted imaging, in a clinically acceptable time.
Collapse
|