1
|
Thiel TA, Valentin B, Ullrich T, Boschheidgen M, Schimmöller L, Benkert T, Al‐Monajjed R, Ljimani A, Antoch G, Jasse J, Bechler E, Wittsack H. Spectral Diffusion Analysis in Patients With High Risk for Prostate Cancer: A Feasibility Study. J Magn Reson Imaging 2025; 61:512-515. [PMID: 38581176 PMCID: PMC11645486 DOI: 10.1002/jmri.29354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/08/2024] Open
Affiliation(s)
- Thomas A. Thiel
- Department of Diagnostic and Interventional RadiologyMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Birte Valentin
- Department of Diagnostic and Interventional RadiologyMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Tim Ullrich
- Department of Diagnostic and Interventional RadiologyMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Matthias Boschheidgen
- Department of Diagnostic and Interventional RadiologyMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Lars Schimmöller
- Department of Diagnostic and Interventional RadiologyMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
- Department of Diagnostic, Interventional Radiology and Nuclear Medicine, Marien Hospital HerneUniversity Hospital of the Ruhr‐University BochumHerneGermany
| | - Thomas Benkert
- MR Application DevelopmentSiemens Healthineers AGErlangenGermany
| | - Rouvier Al‐Monajjed
- Department of Urology, Medical FacultyUniversity of DüsseldorfDüsseldorfGermany
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional RadiologyMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Gerald Antoch
- Department of Diagnostic and Interventional RadiologyMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
- Department of Hematology, Oncology and Clinical OncologyUniversity Hospital Düsseldorf, Center for Integrated Oncology Aachen Bonn Cologne (CIO ABCD)DüsseldorfGermany
| | - Jonas Jasse
- Department of Diagnostic and Interventional RadiologyMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Eric Bechler
- Department of Diagnostic and Interventional RadiologyMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
- Core Facility for Magnetic Resonance ImagingMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Hans‐Jörg Wittsack
- Department of Diagnostic and Interventional RadiologyMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| |
Collapse
|
2
|
Stabinska J, Thiel TA, Zöllner HJ, Benkert T, Wittsack HJ, Ljimani A. Investigation of diffusion time dependence of apparent diffusion coefficient and intravoxel incoherent motion parameters in the human kidney. Magn Reson Med 2024. [PMID: 39641988 DOI: 10.1002/mrm.30396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 10/21/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE To characterize the diffusion time (Δeff) dependence of apparent diffusion coefficient (ADC) and intravoxel incoherent motion-related parameters in the human kidney at 3 T. METHODS Sixteen healthy volunteers underwent an MRI examination at 3 T including diffusion-weighted imaging at different Δeff ranging from 24.1 to 104.1 ms. The extended mono-exponential ADC and intravoxel incoherent motion models were fitted to the data for each Δeff and the medullary and cortical ADC, (pseudo-)diffusion coefficients (D* and D) and flow-related signal fraction (f) were calculated. RESULTS When all the data were used for fitting, a significant trend toward higher ADC with increasing Δeff was observed between 24.1 and 104.1 ms (median and interquartile range: 2.38 [2.19, 2.47] to 2.84 [2.36, 2.90] × 10-3 mm2/s for cortex, and 2.28 [2.18, 2.37] to 2.82 [2.58, 3.11] × 10-3 mm2/s for medulla). In contrast, no significant differences in ADC were found when only the data acquired at b-values higher than 200 s/mm2 were used for fitting. When the intravoxel incoherent motion model was applied, cortical and medullary f increased significantly (cortex: 0.21 [0.15 0.27] to 0.37 [0.32, 0.49] × 10-3 mm2/s; medulla: 0.15 [0.13 0.29] to 0.41 [0.36 0.51] × 10-3 mm2/s). No significant changes in cortical and medullary D and D* were observed as diffusion time increased. CONCLUSION Renal perfusion and tubular flow substantially contribute to the observed increase in ADC over a wide range of Δeff between 24 and 104 ms.
Collapse
Affiliation(s)
- Julia Stabinska
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas Andreas Thiel
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Helge Jörn Zöllner
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthineers AG, Erlangen, Germany
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| |
Collapse
|
3
|
Wittsack HJ, Thiel TA, Valentin B, Stabinska J, Benkert T, Schimmöller L, Antoch G, Ljimani A. Presentation of microstructural diffusion components by color schemes in abdominal organs. Magn Reson Med 2024; 92:2074-2080. [PMID: 38852176 DOI: 10.1002/mrm.30183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/24/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE Development of a color scheme representation to facilitate the interpretation of tri-exponential DWI data from abdominal organs, where multi-exponential behavior is more pronounced. METHODS Multi-exponential analysis of DWI data provides information about the microstructure of the tissue under study. The tri-exponential signal analysis generates numerous parameter images that are difficult to analyze individually. Summarized color images can simplify at-a-glance analysis. A color scheme was developed in which the slow, intermediate, and fast diffusion components were each assigned to a different red, green, and blue color channel. To improve the appearance of the image, histogram equalization, gamma correction, and white balance were used, and the processing parameters were adjusted. Examples of the resulting color maps of the diffusion fractions of healthy and pathological kidney and prostate are shown. RESULTS The color maps obtained by the presented method show the merged information of the slow, intermediate, and fast diffusion components in a single view. A differentiation of the different fractions becomes clearly visible. Fast diffusion regimes, such as in the renal hilus, can be clearly distinguished from slow fractions, such as in dense tumor tissue. CONCLUSION Combining the diffusion information from tri-exponential DWI analysis into a single color image allows for simplified interpretation of the diffusion fractions. In the future, such color images may provide additional information about the microstructural nature of the tissue under study.
Collapse
Affiliation(s)
- Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Thomas Andreas Thiel
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Birte Valentin
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Julia Stabinska
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Thomas Benkert
- MR Applications Predevelopment, Siemens Healthineers AG, Forchheim, Germany
| | - Lars Schimmöller
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Department of Diagnostic, Interventional Radiology and Nuclear Medicine, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Aachen, Bonn, Cologne, Düsseldorf, Germany
| |
Collapse
|
4
|
Stabinska J, Wittsack HJ, Lerman LO, Ljimani A, Sigmund EE. Probing Renal Microstructure and Function with Advanced Diffusion MRI: Concepts, Applications, Challenges, and Future Directions. J Magn Reson Imaging 2024; 60:1259-1277. [PMID: 37991093 PMCID: PMC11117411 DOI: 10.1002/jmri.29127] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023] Open
Abstract
Diffusion measurements in the kidney are affected not only by renal microstructure but also by physiological processes (i.e., glomerular filtration, water reabsorption, and urine formation). Because of the superposition of passive tissue diffusion, blood perfusion, and tubular pre-urine flow, the limitations of the monoexponential apparent diffusion coefficient (ADC) model in assessing pathophysiological changes in renal tissue are becoming apparent and motivate the development of more advanced diffusion-weighted imaging (DWI) variants. These approaches take advantage of the fact that the length scale probed in DWI measurements can be adjusted by experimental parameters, including diffusion-weighting, diffusion gradient directions and diffusion time. This forms the basis by which advanced DWI models can be used to capture not only passive diffusion effects, but also microcirculation, compartmentalization, tissue anisotropy. In this review, we provide a comprehensive overview of the recent advancements in the field of renal DWI. Following a short introduction on renal structure and physiology, we present the key methodological approaches for the acquisition and analysis of renal DWI data, including intravoxel incoherent motion (IVIM), diffusion tensor imaging (DTI), non-Gaussian diffusion, and hybrid IVIM-DTI. We then briefly summarize the applications of these methods in chronic kidney disease and renal allograft dysfunction. Finally, we discuss the challenges and potential avenues for further development of renal DWI. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Julia Stabinska
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension and Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Eric E. Sigmund
- Bernard and Irene Schwartz Center for Biomedical Imaging Center for Advanced Imaging Innovation and Research (CAI2R), New York University Langone Health, New York City, New York, USA
| |
Collapse
|
5
|
Niendorf T, Gladytz T, Cantow K, Klein T, Tasbihi E, Velasquez Vides JR, Zhao K, Millward JM, Waiczies S, Seeliger E. MRI of kidney size matters. MAGMA (NEW YORK, N.Y.) 2024; 37:651-669. [PMID: 38960988 PMCID: PMC11417087 DOI: 10.1007/s10334-024-01168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE To highlight progress and opportunities of measuring kidney size with MRI, and to inspire research into resolving the remaining methodological gaps and unanswered questions relating to kidney size assessment. MATERIALS AND METHODS This work is not a comprehensive review of the literature but highlights valuable recent developments of MRI of kidney size. RESULTS The links between renal (patho)physiology and kidney size are outlined. Common methodological approaches for MRI of kidney size are reviewed. Techniques tailored for renal segmentation and quantification of kidney size are discussed. Frontier applications of kidney size monitoring in preclinical models and human studies are reviewed. Future directions of MRI of kidney size are explored. CONCLUSION MRI of kidney size matters. It will facilitate a growing range of (pre)clinical applications, and provide a springboard for new insights into renal (patho)physiology. As kidney size can be easily obtained from already established renal MRI protocols without the need for additional scans, this measurement should always accompany diagnostic MRI exams. Reconciling global kidney size changes with alterations in the size of specific renal layers is an important topic for further research. Acute kidney size measurements alone cannot distinguish between changes induced by alterations in the blood or the tubular volume fractions-this distinction requires further research into cartography of the renal blood and the tubular volumes.
Collapse
Affiliation(s)
- Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany.
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| | - Thomas Gladytz
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Kathleen Cantow
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Tobias Klein
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Digital Health-Machine Learning Research Group, Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany
| | - Ehsan Tasbihi
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jose Raul Velasquez Vides
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Institute for Medical Engineering, Otto Von Guericke University, Magdeburg, Germany
| | - Kaixuan Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jason M Millward
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| |
Collapse
|
6
|
Gilani N, Mikheev A, Brinkmann IM, Kumbella M, Babb JS, Basukala D, Wetscherek A, Benkert T, Chandarana H, Sigmund EE. Spatial profiling of in vivo diffusion-weighted MRI parameters in the healthy human kidney. MAGMA (NEW YORK, N.Y.) 2024:10.1007/s10334-024-01159-6. [PMID: 38703246 DOI: 10.1007/s10334-024-01159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/17/2024] [Accepted: 03/26/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVE Diffusion-weighted MRI is a technique that can infer microstructural and microcirculatory features from biological tissue, with particular application to renal tissue. There is extensive literature on diffusion tensor imaging (DTI) of anisotropy in the renal medulla, intravoxel incoherent motion (IVIM) measurements separating microstructural from microcirculation effects, and combinations of the two. However, interpretation of these features and adaptation of more specific models remains an ongoing challenge. One input to this process is a whole organ distillation of corticomedullary contrast of diffusion metrics, as has been explored for other renal biomarkers. MATERIALS AND METHODS In this work, we probe the spatial dependence of diffusion MRI metrics with concentrically layered segmentation in 11 healthy kidneys at 3 T. The metrics include those from DTI, IVIM, a combined approach titled "REnal Flow and Microstructure AnisotroPy (REFMAP)", and a multiply encoded model titled "FC-IVIM" providing estimates of fluid velocity and branching length. RESULTS Fractional anisotropy decreased from the inner kidney to the outer kidney with the strongest layer correlation in both parenchyma (including cortex and medulla) and medulla with Spearman correlation coefficients and p-values (r, p) of (0.42, <0.001) and (0.37, <0.001), respectively. Also, dynamic parameters derived from the three models significantly decreased with a high correlation from the inner to the outer parenchyma or medulla with (r, p) ranges of (0.46-0.55, <0.001). CONCLUSIONS These spatial trends might find implications for indirect assessments of kidney physiology and microstructure using diffusion MRI.
Collapse
Affiliation(s)
- Nima Gilani
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA.
| | - Artem Mikheev
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA
| | | | - Malika Kumbella
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA
| | - James S Babb
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA
| | - Dibash Basukala
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA
| | - Andreas Wetscherek
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Hersh Chandarana
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA
| | - Eric E Sigmund
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA
| |
Collapse
|
7
|
Zhao K, Seeliger E, Niendorf T, Liu Z. Noninvasive Assessment of Diabetic Kidney Disease With MRI: Hype or Hope? J Magn Reson Imaging 2024; 59:1494-1513. [PMID: 37675919 DOI: 10.1002/jmri.29000] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Owing to the increasing prevalence of diabetic mellitus, diabetic kidney disease (DKD) is presently the leading cause of chronic kidney disease and end-stage renal disease worldwide. Early identification and disease interception is of paramount clinical importance for DKD management. However, current diagnostic, disease monitoring and prognostic tools are not satisfactory, due to their low sensitivity, low specificity, or invasiveness. Magnetic resonance imaging (MRI) is noninvasive and offers a host of contrast mechanisms that are sensitive to pathophysiological changes and risk factors associated with DKD. MRI tissue characterization involves structural and functional information including renal morphology (kidney volume (TKV) and parenchyma thickness using T1- or T2-weighted MRI), renal microstructure (diffusion weighted imaging, DWI), renal tissue oxygenation (blood oxygenation level dependent MRI, BOLD), renal hemodynamics (arterial spin labeling and phase contrast MRI), fibrosis (DWI) and abdominal or perirenal fat fraction (Dixon MRI). Recent (pre)clinical studies demonstrated the feasibility and potential value of DKD evaluation with MRI. Recognizing this opportunity, this review outlines key concepts and current trends in renal MRI technology for furthering our understanding of the mechanisms underlying DKD and for supplementing clinical decision-making in DKD. Progress in preclinical MRI of DKD is surveyed, and challenges for clinical translation of renal MRI are discussed. Future directions of DKD assessment and renal tissue characterization with (multi)parametric MRI are explored. Opportunities for discovery and clinical break-through are discussed including biological validation of the MRI findings, large-scale population studies, standardization of DKD protocols, the synergistic connection with data science to advance comprehensive texture analysis, and the development of smart and automatic data analysis and data visualization tools to further the concepts of virtual biopsy and personalized DKD precision medicine. We hope that this review will convey this vision and inspire the reader to become pioneers in noninvasive assessment and management of DKD with MRI. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Kaixuan Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
8
|
Wu M, Zhang JL. MR Perfusion Imaging for Kidney Disease. Magn Reson Imaging Clin N Am 2024; 32:161-170. [PMID: 38007278 DOI: 10.1016/j.mric.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Renal perfusion reflects overall function of a kidney. As an important indicator of kidney diseases, renal perfusion can be noninvasively measured by multiple methods of MR imaging, such as dynamic contrast-enhanced MR imaging, intravoxel incoherent motion analysis, and arterial spin labeling method. In this article we introduce the principle of the methods, review their recent technical improvements, and then focus on summarizing recent applications of the methods in assessing various renal diseases. By this review, we demonstrate the capability and clinical potential of the imaging methods, with the hope of accelerating their adoption to clinical practice.
Collapse
Affiliation(s)
- Mingyan Wu
- Central Research Institute, UIH Group, Shanghai, China; School of Biomedical Engineering Building, Room 409, 393 Huaxia Middle Road, Shanghai 201210, China
| | - Jeff L Zhang
- School of Biomedical Engineering, ShanghaiTech University, Room 409, School of Biomedical Engineering Building, 393 Huaxia Middle Road, Shanghai 201210, China.
| |
Collapse
|
9
|
Bane O, Seeliger E, Cox E, Stabinska J, Bechler E, Lewis S, Hickson LJ, Francis S, Sigmund E, Niendorf T. Renal MRI: From Nephron to NMR Signal. J Magn Reson Imaging 2023; 58:1660-1679. [PMID: 37243378 PMCID: PMC11025392 DOI: 10.1002/jmri.28828] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Renal diseases pose a significant socio-economic burden on healthcare systems. The development of better diagnostics and prognostics is well-recognized as a key strategy to resolve these challenges. Central to these developments are MRI biomarkers, due to their potential for monitoring of early pathophysiological changes, renal disease progression or treatment effects. The surge in renal MRI involves major cross-domain initiatives, large clinical studies, and educational programs. In parallel with these translational efforts, the need for greater (patho)physiological specificity remains, to enable engagement with clinical nephrologists and increase the associated health impact. The ISMRM 2022 Member Initiated Symposium (MIS) on renal MRI spotlighted this issue with the goal of inspiring more solutions from the ISMRM community. This work is a summary of the MIS presentations devoted to: 1) educating imaging scientists and clinicians on renal (patho)physiology and demands from clinical nephrologists, 2) elucidating the connection of MRI parameters with renal physiology, 3) presenting the current state of leading MR surrogates in assessing renal structure and functions as well as their next generation of innovation, and 4) describing the potential of these imaging markers for providing clinically meaningful renal characterization to guide or supplement clinical decision making. We hope to continue momentum of recent years and introduce new entrants to the development process, connecting (patho)physiology with (bio)physics, and conceiving new clinical applications. We envision this process to benefit from cross-disciplinary collaboration and analogous efforts in other body organs, but also to maximally leverage the unique opportunities of renal physiology. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Octavia Bane
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Icahn School of Medicine at Mount Sinai, BioMedical Engineering and Imaging Institute, New York City, New York, USA
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Eleanor Cox
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Julia Stabinska
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric Bechler
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sara Lewis
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida, USA
| | - Sue Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Eric Sigmund
- Bernard and Irene Schwartz Center for Biomedical Imaging Center for Advanced Imaging Innovation and Research (CAI2R), New York University Langone Health, New York City, New York, USA
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
10
|
Sigmund EE, Mikheev A, Brinkmann IM, Gilani N, Babb JS, Basukala D, Benkert T, Veraart J, Chandarana H. Cardiac Phase and Flow Compensation Effects on REnal Flow and Microstructure AnisotroPy MRI in Healthy Human Kidney. J Magn Reson Imaging 2023; 58:210-220. [PMID: 36399101 PMCID: PMC10192459 DOI: 10.1002/jmri.28517] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Renal diffusion-weighted imaging (DWI) involves microstructure and microcirculation, quantified with diffusion tensor imaging (DTI), intravoxel incoherent motion (IVIM), and hybrid models. A better understanding of their contrast may increase specificity. PURPOSE To measure modulation of DWI with cardiac phase and flow-compensated (FC) diffusion gradient waveforms. STUDY TYPE Prospective. POPULATION Six healthy volunteers (ages: 22-48 years, five females), water phantom. FIELD STRENGTH/SEQUENCE 3-T, prototype DWI sequence with 2D echo-planar imaging, and bipolar (BP) or FC gradients. 2D Half-Fourier Single-shot Turbo-spin-Echo (HASTE). Multiple-phase 2D spoiled gradient-echo phase contrast (PC) MRI. ASSESSMENT BP and FC water signal decays were qualitatively compared. Renal arteries and velocities were visualized on PC-MRI. Systolic (peak velocity), diastolic (end stable velocity), and pre-systolic (before peak velocity) phases were identified. Following mutual information-based retrospective self-registration of DWI within each kidney, and Marchenko-Pastur Principal Component Analysis (MPPCA) denoising, combined IVIM-DTI analysis estimated mean diffusivity (MD), fractional anisotropy (FA), and eigenvalues (λi) from tissue diffusivity (Dt ), perfusion fraction (fp ), and pseudodiffusivity (Dp , Dp,axial , Dp,radial ), for each tissue (cortex/medulla, segmented on b0/FA respectively), phase, and waveform (BP, FC). Monte Carlo water diffusion simulations aided data interpretation. STATISTICAL TESTS Mixed model regression probed differences between tissue types and pulse sequences. Univariate general linear model analysis probed variations among cardiac phases. Spearman correlations were measured between diffusion metrics and renal artery velocities. Statistical significance level was set at P < 0.05. RESULTS Water BP and FC signal decays showed no differences. Significant pulse sequence dependence occurred for λ1 , λ3 , FA, Dp , fp , Dp,axial , Dp,radial in cortex and medulla, and medullary λ2 . Significant cortex/medulla differences occurred with BP for all metrics except MD (systole [P = 0.224]; diastole [P = 0.556]). Significant phase dependence occurred for Dp , Dp,axial , Dp,radial for BP and medullary λ1 , λ2 , λ3 , MD for FC. FA correlated significantly with velocity. Monte Carlo simulations indicated medullary measurements were consistent with a 34 μm tubule diameter. DATA CONCLUSION Cardiac gating and flow compensation modulate of measurements of renal diffusion. EVIDENCE LEVEL 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Eric E Sigmund
- Center for Advanced Imaging and Innovation (CAI2R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Artem Mikheev
- Center for Advanced Imaging and Innovation (CAI2R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | | | - Nima Gilani
- Center for Advanced Imaging and Innovation (CAI2R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - James S Babb
- Center for Advanced Imaging and Innovation (CAI2R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Dibash Basukala
- Center for Advanced Imaging and Innovation (CAI2R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Thomas Benkert
- Siemens Medical Solutions USA Inc., Malvern, Pennsylvania, USA
| | - Jelle Veraart
- Center for Advanced Imaging and Innovation (CAI2R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Hersh Chandarana
- Center for Advanced Imaging and Innovation (CAI2R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| |
Collapse
|
11
|
Stabinska J, Zöllner HJ, Thiel TA, Wittsack HJ, Ljimani A. Image downsampling expedited adaptive least-squares (IDEAL) fitting improves intravoxel incoherent motion (IVIM) analysis in the human kidney. Magn Reson Med 2023; 89:1055-1067. [PMID: 36416075 DOI: 10.1002/mrm.29517] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE To improve the reliability of intravoxel incoherent motion (IVIM) model parameter estimation for the DWI in the kidney using a novel image downsampling expedited adaptive least-squares (IDEAL) approach. METHODS The robustness of IDEAL was investigated using simulated DW-MRI data corrupted with different levels of Rician noise. Subsequently, the performance of the proposed method was tested by fitting bi- and triexponential IVIM model to in vivo renal DWI data acquired on a clinical 3 Tesla MRI scanner and compared to conventional approaches (fixed D* and segmented fitting). RESULTS The numerical simulations demonstrated that the IDEAL algorithm provides robust estimates of the IVIM parameters in the presence of noise (SNR of 20) as indicated by relatively low absolute percentage bias (maximal sMdPB <20%) and normalized RMSE (maximal RMSE <28%). The analysis of the in vivo data showed that the IDEAL-based IVIM parameter maps were less noisy and more visually appealing than those obtained using the fixed D* and segmented methods. Further, coefficients of variation for nearly all IVIM parameters were significantly reduced in cortex and medulla for IDEAL-based biexponential (coefficients of variation: 4%-50%) and triexponential (coefficients of variation: 7.5%-75%) IVIM modelling compared to the segmented (coefficients of variation: 4%-120%) and fixed D* (coefficients of variation: 17%-174%) methods, reflecting greater accuracy of this method. CONCLUSION The proposed fitting algorithm yields more robust IVIM parameter estimates and is less susceptible to poor SNR than the conventional fitting approaches. Thus, the IDEAL approach has the potential to improve the reliability of renal DW-MRI analysis for clinical applications.
Collapse
Affiliation(s)
- Julia Stabinska
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Helge J Zöllner
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Thomas A Thiel
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| |
Collapse
|
12
|
Simchick G, Hernando D. Precision of region of interest-based tri-exponential intravoxel incoherent motion quantification and the role of the Intervoxel spatial distribution of flow velocities. Magn Reson Med 2022; 88:2662-2678. [PMID: 35968580 PMCID: PMC9529845 DOI: 10.1002/mrm.29406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE The purpose of this work was to obtain precise tri-exponential intravoxel incoherent motion (IVIM) quantification in the liver using 2D (b-value and first-order motion moment [M1 ]) IVIM-DWI acquisitions and region of interest (ROI)-based fitting techniques. METHODS Diffusion MRI of the liver was performed in 10 healthy volunteers using three IVIM-DWI acquisitions: conventional monopolar, optimized monopolar, and optimized 2D (b-M1 ). For each acquisition, bi-exponential and tri-exponential full, segmented, and over-segmented ROI-based fitting and a newly proposed blood velocity SDdistribution (BVD) fitting technique were performed to obtain IVIM estimates in the right and left liver lobes. Fitting quality was evaluated using corrected Akaike information criterion. Precision metrics (test-retest repeatability, inter-reader reproducibility, and inter-lobar agreement) were evaluated using Bland-Altman analysis, repeatability/reproducibility coefficients (RPCs), and paired sample t-tests. Precision was compared across acquisitions and fitting methods. RESULTS High repeatability and reproducibility was observed in the estimations of the diffusion coefficient (Dtri = [1.03 ± 0.11] × 10-3 mm2 /s; RPCs ≤ 1.34 × 10-4 mm2 /s), perfusion fractions (F1 = 3.19 ± 1.89% and F2 = 16.4 ± 2.07%; RPCs ≤ 2.51%), and blood velocity SDs (Vb,1 = 1.44 ± 0.14 mm/s and Vb,2 = 3.62 ± 0.13 mm/s; RPCs ≤ 0.41 mm/s) in the right liver lobe using the 2D (b-M1 ) acquisition in conjunction with BVD fitting. Using these methods, significantly larger (p < 0.01) estimates of Dtri and F1 were observed in the left lobe in comparison to the right lobe, while estimates of Vb,1 and Vb,2 demonstrated high interlobar agreement (RPCs ≤ 0.45 mm/s). CONCLUSIONS The 2D (b-M1 ) IVIM-DWI data acquisition in conjunction with BVD fitting enables highly precise tri-exponential IVIM quantification in the right liver lobe.
Collapse
Affiliation(s)
- Gregory Simchick
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Diego Hernando
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
13
|
Simchick G, Geng R, Zhang Y, Hernando D. b value and first-order motion moment optimized data acquisition for repeatable quantitative intravoxel incoherent motion DWI. Magn Reson Med 2022; 87:2724-2740. [PMID: 35092092 PMCID: PMC9275352 DOI: 10.1002/mrm.29165] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE To design a b value and first-order motion moment (M1 ) optimized data acquisition for repeatable intravoxel incoherent motion (IVIM) quantification in the liver. METHODS Cramer-Rao lower bound optimization was performed to determine optimal monopolar and optimal 2D samplings of the b-M1 space based on noise performance. Monte Carlo simulations were used to evaluate the bias and variability in estimates obtained using the proposed optimal samplings and conventional monopolar sampling. Diffusion MRI of the liver was performed in 10 volunteers using 3 IVIM acquisitions: conventional monopolar, optimized monopolar, and b-M1 -optimized gradient waveforms (designed based on the optimal 2D sampling). IVIM parameter maps of diffusion coefficient, perfusion fraction, and blood velocity SD were obtained using nonlinear least squares fitting. Noise performance (SDs), stability (outlier percentage), and test-retest or scan-rescan repeatability (intraclass correlation coefficients) were evaluated and compared across acquisitions. RESULTS Cramer-Rao lower bound and Monte Carlo simulations demonstrated improved noise performance of the optimal 2D sampling in comparison to monopolar samplings. Evaluating the designed b-M1 -optimized waveforms in healthy volunteers, significant decreases (p < 0.05) in the SDs and outlier percentages were observed for measurements of diffusion coefficient, perfusion fraction, and blood velocity SD in comparison to measurements obtained using monopolar samplings. Good-to-excellent repeatability (intraclass correlation coefficients ≥ 0.77) was observed for all 3 parameters in both the right and left liver lobes using the b-M1 -optimized waveforms. CONCLUSIONS 2D b-M1 -optimized data acquisition enables repeatable IVIM quantification with improved noise performance. 2D acquisitions may advance the establishment of IVIM quantitative biomarkers for liver diseases.
Collapse
Affiliation(s)
- Gregory Simchick
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Ruiqi Geng
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Yuxin Zhang
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Diego Hernando
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
14
|
Führes T, Riexinger AJ, Loh M, Martin J, Wetscherek A, Kuder TA, Uder M, Hensel B, Laun FB. Echo time dependence of biexponential and triexponential intravoxel incoherent motion parameters in the liver. Magn Reson Med 2021; 87:859-871. [PMID: 34453445 DOI: 10.1002/mrm.28996] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE Intravoxel incoherent motion (IVIM) studies are performed with different acquisition protocols. Comparing them requires knowledge of echo time (TE) dependencies. The TE-dependence of the biexponential perfusion fraction f is well-documented, unlike that of its triexponential counterparts f1 and f2 and the biexponential and triexponential pseudodiffusion coefficients D* , D 1 ∗ , and D 2 ∗ . The purpose was to investigate the TE-dependence of these parameters and to check whether the triexponential pseudodiffusion compartments are associated with arterial and venous blood. METHODS Fifteen healthy volunteers (19-58 y; mean: 24.7 y) underwent diffusion-weighted imaging of the abdomen with 24 b-values (0.2-800 s/mm2 ) at TEs of 45, 60, 75, and 90 ms. Regions of interest (ROIs) were manually drawn in the liver. One set of bi- and triexponential IVIM parameters per volunteer and TE was determined. The TE-dependence was assessed with the Kruskal-Wallis test. RESULTS TE-dependence was observed for f (P < .001), f1 (P = .001), and f2 (P < .001). Their median values at the four measured TEs were: f: 0.198/0.240/0.274/0.359, f1 : 0.113/0.139/0.146/0.205, f2 : 0.115/0.155/0.182/0.194. D, D* , D 1 ∗ , and D 2 ∗ showed no significant TE-dependence. Their values were: diffusion coefficient D (10-4 mm2 /s): 9.45/9.63/9.75/9.41, biexponential D* (10-2 mm2 /s): 5.26/5.52/6.13/5.82, triexponential D 1 ∗ (10-2 mm2 /s): 1.73/2.91/2.25/2.51, triexponential D 2 ∗ (mm2 /s): 0.478/1.385/0.616/0.846. CONCLUSION f1 and f2 show similar TE-dependence as f, ie, increase with rising TE; an effect that must be accounted for when comparing different studies. The diffusion and pseudodiffusion coefficients might be compared without TE correction. Because of the similar TE-dependence of f1 and f2 , the triexponential pseudodiffusion compartments are most probably not associated to venous and arterial blood.
Collapse
Affiliation(s)
- Tobit Führes
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Julian Riexinger
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Loh
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Andreas Wetscherek
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Tristan Anselm Kuder
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Bernhard Hensel
- Center for Medical Physics and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frederik Bernd Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|