1
|
Ouyang T, Tang Y, Klimes F, Vogel-Claussen J, Voskrebenzev A, Yang Q. Phase-resolved Functional Lung (PREFUL) MRI May Reveal Distinct Pulmonary Perfusion Defects in Postacute COVID-19 Syndrome: Sex, Hospitalization, and Dyspnea Heterogeneity. J Magn Reson Imaging 2025; 61:851-862. [PMID: 38887850 DOI: 10.1002/jmri.29458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Pulmonary perfusion defects have been observed in patients with coronavirus disease 2019 (COVID-19). Currently, there is a need for further data on non-contrast-enhanced MRI in COVID patients. The early identification of heterogeneity in pulmonary perfusion defects among COVID-19 patients is beneficial for their timely clinical intervention and management. PURPOSE To investigate the utility of phase-resolved functional lung (PREFUL) MRI in detecting pulmonary perfusion disturbances in individuals with postacute COVID-19 syndrome (PACS). STUDY TYPE Prospective. SUBJECTS Forty-four participants (19 females, mean age 64.1 years) with PACS and 44 healthy subjects (19 females, mean age 59.5 years). Moreover, among the 44 patients, there were 19 inpatients and 25 outpatients; 19 were female and 25 were male; 18 with non-dyspnea and 26 with dyspnea. FIELD STRENGTH/SEQUENCE 3-T, two-dimensional (2D) spoiled gradient-echo sequence. ASSESSMENT Ventilation and perfusion-weighted maps were extracted from five coronal slices using PREFUL analysis. Subsequently, perfusion defect percentage (QDP), ventilation defect percentage (VDP), and ventilation-perfusion match healthy (VQM) were calculated based on segmented lung parenchyma ventilation and perfusion-weighted maps. Additionally, clinical features, including demographic data (such as sex and age) and serum biomarkers (such as D-dimer levels), were evaluated. STATISTICAL TESTS Spearman correlation coefficients to explore relationships between clinical features and QDP, VDP, and VQM. Propensity score matching analysis to reduce the confounding bias between patients with PACS and healthy controls. The Mann-Whitney U tests and Chi-squared tests to detect differences between groups. Multivariable linear regression analyses to identify factors related to QDP, VDP, and VQM. A P-value <0.05 was considered statistically significant. RESULTS QDP significantly exceeded that of healthy controls in individuals with PACS (39.8% ± 15.0% vs. 11.0% ± 4.9%) and was significantly higher in inpatients than in outpatients (46.8% ± 17.0% vs. 34.5% ± 10.8%). Moreover, males exhibited pulmonary perfusion defects significantly more frequently than females (43.9% ± 16.8% vs. 34.4% ± 10.2%), and dyspneic participants displayed significantly higher perfusion defects than non-dyspneic patients (44.8% ± 15.8% vs. 32.6% ± 10.3%). QDP showed a significant positive relationship with age (β = 0.50) and D-dimer level (β = 0.72). DATA CONCLUSION PREFUL MRI may show pulmonary perfusion defects in patients with PACS. Furthermore, perfusion impairments may be more pronounced in males, inpatients, and dyspneic patients. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Tao Ouyang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Key Lab. of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Yichen Tang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Key Lab. of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Filip Klimes
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - Jens Vogel-Claussen
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - Andreas Voskrebenzev
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Key Lab. of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Peggs ZJ, Brooke JP, Bolton CE, Hall IP, Francis ST, Gowland PA. Free-Breathing Functional Pulmonary Proton MRI: A Novel Approach Using Voxel-Wise Lung Ventilation (VOLVE) Assessment in Healthy Volunteers and Patients With Chronic Obstructive Pulmonary Disease. J Magn Reson Imaging 2025; 61:663-675. [PMID: 38819593 PMCID: PMC11706312 DOI: 10.1002/jmri.29444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND In respiratory medicine, there is a need for sensitive measures of regional lung function that can be performed using standard imaging technology, without the need for inhaled or intravenous contrast agents. PURPOSE To describe VOxel-wise Lung VEntilation (VOLVE), a new method for quantifying regional lung ventilation (V) and perfusion (Q) using free-breathing proton MRI, and to evaluate VOLVE in healthy never-smokers, healthy people with smoking history, and people with chronic obstructive pulmonary disease (COPD). STUDY TYPE Prospective pilot. POPULATION Twelve healthy never-smoker participants (age 30.3 ± 12.5 years, five male), four healthy participants with smoking history (>10 pack-years) (age 42.5 ± 18.3 years, one male), and 12 participants with COPD (age 62.8 ± 11.1 years, seven male). FIELD STRENGTH/SEQUENCE Single-slice free-breathing two-dimensional fast field echo sequence at 3 T. ASSESSMENT A novel postprocessing was developed to evaluate the MR signal changes in the lung parenchyma using a linear regression-based approach, which makes use of all the data in the time series for maximum sensitivity. V/Q-weighted maps were produced by computing the cross-correlation, lag and gradient between the respiratory/cardiac phase time course and lung parenchyma signal time courses. A comparison of histogram median and skewness values and spirometry was performed. STATISTICAL TESTS Kruskal-Wallis tests with Dunn's multiple comparison tests to compare VOLVE metrics between groups; Spearman correlation to assess the correlation between MRI and spirometry-derived parameters; and Bland-Altman analysis and coefficient of variation to evaluate repeatability were used. A P-value <0.05 was considered significant. RESULTS Significant differences between the groups were found for ventilation between healthy never-smoker and COPD groups (median XCCV, LagV, and GradV) and perfusion (median XCCQ, LagQ, and GradQ). Minimal bias and no significant differences between intravisit scans were found (P range = 0.12-0.97). DATA CONCLUSION This preliminary study showed that VOLVE has potential to provide metrics of function quantification. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Zachary J.T. Peggs
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
- Centre for Respiratory ResearchNIHR Nottingham Biomedical Research CentreNottinghamUK
- Centre for Respiratory Research, Translational Medical Sciences, School of MedicineUniversity of NottinghamNottinghamUK
| | - Jonathan P. Brooke
- Centre for Respiratory ResearchNIHR Nottingham Biomedical Research CentreNottinghamUK
- Centre for Respiratory Research, Translational Medical Sciences, School of MedicineUniversity of NottinghamNottinghamUK
- Department of Respiratory MedicineNottingham University Hospitals NHS TrustNottinghamUK
| | - Charlotte E. Bolton
- Centre for Respiratory ResearchNIHR Nottingham Biomedical Research CentreNottinghamUK
- Centre for Respiratory Research, Translational Medical Sciences, School of MedicineUniversity of NottinghamNottinghamUK
- Department of Respiratory MedicineNottingham University Hospitals NHS TrustNottinghamUK
| | - Ian P. Hall
- Centre for Respiratory ResearchNIHR Nottingham Biomedical Research CentreNottinghamUK
- Centre for Respiratory Research, Translational Medical Sciences, School of MedicineUniversity of NottinghamNottinghamUK
- Department of Respiratory MedicineNottingham University Hospitals NHS TrustNottinghamUK
| | - Susan T. Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
- Centre for Respiratory ResearchNIHR Nottingham Biomedical Research CentreNottinghamUK
| | - Penny A. Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
- Centre for Respiratory ResearchNIHR Nottingham Biomedical Research CentreNottinghamUK
| |
Collapse
|
3
|
Pöhler GH, Voskrebenzev A, Heinze ML, Skeries V, Klimeš F, Glandorf J, Eckstein J, Babazade N, Wernz M, Pfeil A, Hansen G, Wacker FK, Vogel-Claussen J, Wetzke M, Renz DM, Saleh J. Phase-resolved Functional Lung MRI Reveals Distinct Lung Perfusion Phenotype in Children and Adolescents with Post-COVID-19 Condition. Radiology 2025; 314:e241596. [PMID: 39998374 PMCID: PMC11868851 DOI: 10.1148/radiol.241596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 02/26/2025]
Abstract
Background Although measurable organic dysfunctions are frequently absent in pediatric patients with post-COVID-19 condition (PCC), this condition adversely affects quality of life. Free-breathing phase-resolved functional lung (PREFUL) MRI may be useful for assessing lung function in pediatric patients with PCC. Purpose To detect lung changes in children and adolescents with PCC compared with healthy control participants using PREFUL MRI. Materials and Methods In this single-center, prospective, cross-sectional study conducted between April 2022 and April 2023, children and adolescents (age ≤17 years) with PCC and age- and sex-matched healthy participants underwent MRI. Subgroup analysis was performed in participants with PCC who had cardiopulmonary symptoms. Regional ventilation, flow-volume loop correlation metric (FVL-CM), quantified perfusion, ventilation and perfusion defect percentages, and ventilation-perfusion ratios were compared between participants with PCC and controls using the Wilcoxon signed rank test. Correlation of imaging parameters with spirometry, heart rate, respiratory rate, and Bell score (fatigue severity) in participants with PCC was assessed using the Spearman rank correlation coefficient. Results The final study sample included 54 participants (27 participants with PCC and 27 matched control participants; median age, 15 years [IQR, 11-17 years]; 14 male participants). Twenty-one participants had cardiopulmonary symptoms. Participants with PCC had lower regional ventilation (median, 0.2 mL/mL [IQR, 0.1-0.2 mL/mL] vs 0.2 mL/mL [IQR, 0.2-0.2 mL/mL]; P = .047) and quantified perfusion (49 mL/min per 100 mL [IQR, 33-60 mL/min per 100 mL] vs 78 mL/min per 100 mL [IQR, 59-89 mL/min per 100 mL]; P < .001). Participants with PCC and cardiopulmonary symptoms had lower FVL-CMs (median, 0.99 arbitrary units [au] [IQR, 0.98-0.99 au] vs 0.99 au [IQR, 0.99-0.99 au]; P = .01) and higher ventilation defect (median, 7.6% [IQR, 4.5%-15.1%] vs 5.4% [IQR, 2.7%-7.1%]; P = .047) and perfusion defect percentage (median, 3.2% [IQR, 2.4%-4.2%] vs 2.3% [IQR, 1.8%-3.5%]; P = .02) compared with matched control participants. In participants with PCC, greater lung perfusion correlated with increased chronic fatigue severity (ρ = 0.48; P = .009) and higher ventilation-perfusion mismatch correlated with increased heart rate (ρ = 0.44; P = .02). Conclusion Free-breathing phase-resolved functional lung MRI-derived parameters helped identify a distinct phenotype of lung perfusion in children and adolescents with PCC and were correlated with heart rate and chronic fatigue severity. Clinical trial registration no. DRKS00028963 © RSNA, 2025 Supplemental material is available for this article. See also the editorial by Parraga and Svenningsen in this issue.
Collapse
Affiliation(s)
- Gesa H. Pöhler
- From the Department of Diagnostic and Interventional Radiology,
Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany (G.H.P.,
A.V., M.L.H., F.K., J.G., J.E., N.B., M. Wernz, F.K.W., J.V.C., D.M.R.); German
Center for Lung Research, Partner Site Hannover, BREATH, Hannover, Germany
(G.H.P., A.V., F.K., J.G., M. Wernz, J.V.C.); Clinic of Pediatric Pneumology,
Allergology, and Neonatology, Hannover Medical School, Hannover, Germany (V.S.,
G.H., M. Wetzke); and Department of Internal Medicine III, University Hospital
Jena, Jena, Germany (A.P.)
| | - Andreas Voskrebenzev
- From the Department of Diagnostic and Interventional Radiology,
Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany (G.H.P.,
A.V., M.L.H., F.K., J.G., J.E., N.B., M. Wernz, F.K.W., J.V.C., D.M.R.); German
Center for Lung Research, Partner Site Hannover, BREATH, Hannover, Germany
(G.H.P., A.V., F.K., J.G., M. Wernz, J.V.C.); Clinic of Pediatric Pneumology,
Allergology, and Neonatology, Hannover Medical School, Hannover, Germany (V.S.,
G.H., M. Wetzke); and Department of Internal Medicine III, University Hospital
Jena, Jena, Germany (A.P.)
| | - Marc-Luca Heinze
- From the Department of Diagnostic and Interventional Radiology,
Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany (G.H.P.,
A.V., M.L.H., F.K., J.G., J.E., N.B., M. Wernz, F.K.W., J.V.C., D.M.R.); German
Center for Lung Research, Partner Site Hannover, BREATH, Hannover, Germany
(G.H.P., A.V., F.K., J.G., M. Wernz, J.V.C.); Clinic of Pediatric Pneumology,
Allergology, and Neonatology, Hannover Medical School, Hannover, Germany (V.S.,
G.H., M. Wetzke); and Department of Internal Medicine III, University Hospital
Jena, Jena, Germany (A.P.)
| | - Valentina Skeries
- From the Department of Diagnostic and Interventional Radiology,
Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany (G.H.P.,
A.V., M.L.H., F.K., J.G., J.E., N.B., M. Wernz, F.K.W., J.V.C., D.M.R.); German
Center for Lung Research, Partner Site Hannover, BREATH, Hannover, Germany
(G.H.P., A.V., F.K., J.G., M. Wernz, J.V.C.); Clinic of Pediatric Pneumology,
Allergology, and Neonatology, Hannover Medical School, Hannover, Germany (V.S.,
G.H., M. Wetzke); and Department of Internal Medicine III, University Hospital
Jena, Jena, Germany (A.P.)
| | - Filip Klimeš
- From the Department of Diagnostic and Interventional Radiology,
Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany (G.H.P.,
A.V., M.L.H., F.K., J.G., J.E., N.B., M. Wernz, F.K.W., J.V.C., D.M.R.); German
Center for Lung Research, Partner Site Hannover, BREATH, Hannover, Germany
(G.H.P., A.V., F.K., J.G., M. Wernz, J.V.C.); Clinic of Pediatric Pneumology,
Allergology, and Neonatology, Hannover Medical School, Hannover, Germany (V.S.,
G.H., M. Wetzke); and Department of Internal Medicine III, University Hospital
Jena, Jena, Germany (A.P.)
| | - Julian Glandorf
- From the Department of Diagnostic and Interventional Radiology,
Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany (G.H.P.,
A.V., M.L.H., F.K., J.G., J.E., N.B., M. Wernz, F.K.W., J.V.C., D.M.R.); German
Center for Lung Research, Partner Site Hannover, BREATH, Hannover, Germany
(G.H.P., A.V., F.K., J.G., M. Wernz, J.V.C.); Clinic of Pediatric Pneumology,
Allergology, and Neonatology, Hannover Medical School, Hannover, Germany (V.S.,
G.H., M. Wetzke); and Department of Internal Medicine III, University Hospital
Jena, Jena, Germany (A.P.)
| | - Jan Eckstein
- From the Department of Diagnostic and Interventional Radiology,
Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany (G.H.P.,
A.V., M.L.H., F.K., J.G., J.E., N.B., M. Wernz, F.K.W., J.V.C., D.M.R.); German
Center for Lung Research, Partner Site Hannover, BREATH, Hannover, Germany
(G.H.P., A.V., F.K., J.G., M. Wernz, J.V.C.); Clinic of Pediatric Pneumology,
Allergology, and Neonatology, Hannover Medical School, Hannover, Germany (V.S.,
G.H., M. Wetzke); and Department of Internal Medicine III, University Hospital
Jena, Jena, Germany (A.P.)
| | - Nigar Babazade
- From the Department of Diagnostic and Interventional Radiology,
Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany (G.H.P.,
A.V., M.L.H., F.K., J.G., J.E., N.B., M. Wernz, F.K.W., J.V.C., D.M.R.); German
Center for Lung Research, Partner Site Hannover, BREATH, Hannover, Germany
(G.H.P., A.V., F.K., J.G., M. Wernz, J.V.C.); Clinic of Pediatric Pneumology,
Allergology, and Neonatology, Hannover Medical School, Hannover, Germany (V.S.,
G.H., M. Wetzke); and Department of Internal Medicine III, University Hospital
Jena, Jena, Germany (A.P.)
| | - Marius Wernz
- From the Department of Diagnostic and Interventional Radiology,
Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany (G.H.P.,
A.V., M.L.H., F.K., J.G., J.E., N.B., M. Wernz, F.K.W., J.V.C., D.M.R.); German
Center for Lung Research, Partner Site Hannover, BREATH, Hannover, Germany
(G.H.P., A.V., F.K., J.G., M. Wernz, J.V.C.); Clinic of Pediatric Pneumology,
Allergology, and Neonatology, Hannover Medical School, Hannover, Germany (V.S.,
G.H., M. Wetzke); and Department of Internal Medicine III, University Hospital
Jena, Jena, Germany (A.P.)
| | - Alexander Pfeil
- From the Department of Diagnostic and Interventional Radiology,
Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany (G.H.P.,
A.V., M.L.H., F.K., J.G., J.E., N.B., M. Wernz, F.K.W., J.V.C., D.M.R.); German
Center for Lung Research, Partner Site Hannover, BREATH, Hannover, Germany
(G.H.P., A.V., F.K., J.G., M. Wernz, J.V.C.); Clinic of Pediatric Pneumology,
Allergology, and Neonatology, Hannover Medical School, Hannover, Germany (V.S.,
G.H., M. Wetzke); and Department of Internal Medicine III, University Hospital
Jena, Jena, Germany (A.P.)
| | - Gesine Hansen
- From the Department of Diagnostic and Interventional Radiology,
Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany (G.H.P.,
A.V., M.L.H., F.K., J.G., J.E., N.B., M. Wernz, F.K.W., J.V.C., D.M.R.); German
Center for Lung Research, Partner Site Hannover, BREATH, Hannover, Germany
(G.H.P., A.V., F.K., J.G., M. Wernz, J.V.C.); Clinic of Pediatric Pneumology,
Allergology, and Neonatology, Hannover Medical School, Hannover, Germany (V.S.,
G.H., M. Wetzke); and Department of Internal Medicine III, University Hospital
Jena, Jena, Germany (A.P.)
| | - Frank K. Wacker
- From the Department of Diagnostic and Interventional Radiology,
Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany (G.H.P.,
A.V., M.L.H., F.K., J.G., J.E., N.B., M. Wernz, F.K.W., J.V.C., D.M.R.); German
Center for Lung Research, Partner Site Hannover, BREATH, Hannover, Germany
(G.H.P., A.V., F.K., J.G., M. Wernz, J.V.C.); Clinic of Pediatric Pneumology,
Allergology, and Neonatology, Hannover Medical School, Hannover, Germany (V.S.,
G.H., M. Wetzke); and Department of Internal Medicine III, University Hospital
Jena, Jena, Germany (A.P.)
| | - Jens Vogel-Claussen
- From the Department of Diagnostic and Interventional Radiology,
Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany (G.H.P.,
A.V., M.L.H., F.K., J.G., J.E., N.B., M. Wernz, F.K.W., J.V.C., D.M.R.); German
Center for Lung Research, Partner Site Hannover, BREATH, Hannover, Germany
(G.H.P., A.V., F.K., J.G., M. Wernz, J.V.C.); Clinic of Pediatric Pneumology,
Allergology, and Neonatology, Hannover Medical School, Hannover, Germany (V.S.,
G.H., M. Wetzke); and Department of Internal Medicine III, University Hospital
Jena, Jena, Germany (A.P.)
| | | | | | - Jenna Saleh
- From the Department of Diagnostic and Interventional Radiology,
Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany (G.H.P.,
A.V., M.L.H., F.K., J.G., J.E., N.B., M. Wernz, F.K.W., J.V.C., D.M.R.); German
Center for Lung Research, Partner Site Hannover, BREATH, Hannover, Germany
(G.H.P., A.V., F.K., J.G., M. Wernz, J.V.C.); Clinic of Pediatric Pneumology,
Allergology, and Neonatology, Hannover Medical School, Hannover, Germany (V.S.,
G.H., M. Wetzke); and Department of Internal Medicine III, University Hospital
Jena, Jena, Germany (A.P.)
| |
Collapse
|
4
|
Hahn JJ, Voskrebenzev A, Behrendt L, Klimeš F, Pöhler GH, Wacker F, Vogel-Claussen J. Sequence comparison of spoiled gradient echo and balanced steady-state free precession for pulmonary free-breathing proton MRI in patients and healthy volunteers: Correspondence, repeatability, and validation with dynamic contrast-enhanced MRI. NMR IN BIOMEDICINE 2024; 37:e5209. [PMID: 38994704 DOI: 10.1002/nbm.5209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024]
Abstract
Phase-resolved functional lung (PREFUL) MRI is a proton-based, contrast agent-free technique derived from the Fourier decomposition approach to measure regional ventilation and perfusion dynamics during free-breathing. Besides the necessity of extensive PREFUL postprocessing, the utilized MRI sequence must fulfill specific requirements. This study investigates the impact of sequence selection on PREFUL-MRI-derived functional parameters by comparing the standard spoiled gradient echo (SPGRE) sequence with a lung-optimized balanced steady-state free precession (bSSFP) sequence, thereby facilitating PREFULs clinical application in pulmonary disease assessment. This study comprised a prospective dataset of healthy volunteers and a retrospective dataset of patients with suspected chronic thromboembolic pulmonary hypertension. Both cohorts underwent PREFUL-MRI with both sequences to assess the correspondence of PREFUL ventilation and perfusion parameters (A). Additionally, healthy subjects were scanned a second time to evaluate repeatability (B), whereas patients received dynamic contrast-enhanced (DCE)-MRI, considered the perfusion gold standard for comparison with PREFUL-MRI (C). Signal-to-noise ratio (SNR), calculated from the unprocessed images, was compared alongside median differences of PREFUL-MRI-derived parameters using a paired Wilcoxon signed rank test. Further evaluations included calculation of the Pearson correlation, intraclass-correlation coefficient for repeatability assessment, and spatial overlap (SO) for regional comparison of PREFUL-MRI and DCE-MRI. bSSFP showed a clear SNR advantage over SPGRE (median: 23 vs. 9, p < 0.001). (A) Despite significant differences, parameter values were strongly correlated (r ≥ 0.75). After thresholding, binary maps showed high healthy overlap across both cohorts (SOHealthy > 86%) and high defect overlap in the patient cohort (SODefect ≥ 48%). (B) bSSFP demonstrated slightly higher repeatability across most parameters. (C) Both sequences demonstrated comparable correspondence to DCE-MRI, with SPGRE excelling in absolute quantification and bSSFP in spatial agreement. Although bSSFP showed superior SNR results, both sequences displayed spatial defect concordance and highly correlated PREFUL parameters with deviations regarding repeatability and alignment with DCE-MRI.
Collapse
Affiliation(s)
- Jonah J Hahn
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
| | - Andreas Voskrebenzev
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - Lea Behrendt
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - Filip Klimeš
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - Gesa H Pöhler
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - Frank Wacker
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - Jens Vogel-Claussen
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| |
Collapse
|
5
|
Voskrebenzev A, Gutberlet M, Klimeš F, Kaireit TF, Shin HO, Kauczor HU, Welte T, Wacker F, Vogel-Claussen J. A synthetic lung model (ASYLUM) for validation of functional lung imaging methods shows significant differences between signal-based and deformation-field-based ventilation measurements. Front Med (Lausanne) 2024; 11:1418052. [PMID: 39296894 PMCID: PMC11409849 DOI: 10.3389/fmed.2024.1418052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/30/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction Validation of functional free-breathing MRI involves a comparison to more established or more direct measurements. This procedure is cost-intensive, as it requires access to patient cohorts, lengthy protocols, expenses for consumables, and binds working time. Therefore, the purpose of this study is to introduce a synthetic lung model (ASYLUM), which mimics dynamic MRI acquisition and includes predefined lung abnormalities for an alternative validation approach. The model is evaluated with different registration and quantification methods and compared with real data. Methods A combination of trigonometric functions, deformation fields, and signal combinations were used to create 20 synthetic image time series. Lung voxels were assigned either to normal or one of six abnormality classes. The images were registered with three registration algorithms. The registered images were further analyzed with three quantification methods: deformation-based or signal-based regional ventilation (JVent/RVent) analysis and perfusion amplitude (QA). The registration results were compared with predefined deformations. Quantification methods were evaluated regarding predefined amplitudes and with respect to sensitivity, specificity, and spatial overlap of defects. In addition, 36 patients with chronic obstructive pulmonary disease were included for verification of model interpretations using CT as the gold standard. Results One registration method showed considerably lower quality results (76% correlation vs. 92/97%, p ≤ 0.0001). Most ventilation defects were correctly detected with RVent and QA (e.g., one registration variant with sensitivity ≥78%, specificity ≥88). Contrary to this, JVent showed very low sensitivity for lower lung quadrants (0-16%) and also very low specificity (1-29%) for upper lung quadrants. Similar patterns of defect detection differences between RVent and JVent were also observable in patient data: Firstly, RVent was more aligned with CT than JVent for all quadrants (p ≤ 0.01) except for one registration variant in the lower left region. Secondly, stronger differences in overlap were observed for the upper quadrants, suggesting a defect bias in the JVent measurements in the upper lung regions. Conclusion The feasibility of a validation framework for free-breathing functional lung imaging using synthetic time series was demonstrated. Evaluating different ventilation measurements, important differences were detected in synthetic and real data, with signal-based regional ventilation assessment being a more reliable method in the investigated setting.
Collapse
Affiliation(s)
- Andreas Voskrebenzev
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Filip Klimeš
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Till F Kaireit
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Hoen-Oh Shin
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany
| | - Tobias Welte
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
- Clinic of Pneumology, Hannover Medical School, Hannover, Germany
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| |
Collapse
|
6
|
Moher Alsady T, Ruschepaul J, Voskrebenzev A, Klimes F, Poehler GH, Vogel-Claussen J. Estimating ventilation correlation coefficients in the lungs using PREFUL-MRI in chronic obstructive pulmonary disease patients and healthy adults. Magn Reson Med 2024; 91:2142-2152. [PMID: 38217450 DOI: 10.1002/mrm.29982] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/14/2023] [Accepted: 12/01/2023] [Indexed: 01/15/2024]
Abstract
PURPOSE Various parameters of regional lung ventilation can be estimated using phase-resolved functional lung (PREFUL)-MRI. The parameter "ventilation correlation coefficient (Vent-CC)" was shown advantageous because it assesses the dynamics of regional air flow. Calculating Vent-CC depends on a voxel-wise comparison to a healthy reference flow curve. This work examines the effect of placing a reference region of interest (ROI) in various lung quadrants or in different coronal slices. Furthermore, algorithms for automated ROI selection are presented and compared in terms of test-retest repeatability. METHODS Twenty-eight healthy subjects and 32 chronic obstructive pulmonary disease (COPD) patients were scanned twice using PREFUL-MRI. Retrospective analyses examined the homogeneity of air flow curves of various reference ROIs using cross-correlation. Vent-CC and ventilation defect percentage (VDP) calculated using various reference ROIs were compared using one-way analysis of variance (ANOVA). The coefficient of variation was calculated for Vent-CC and VDP when using different reference selection algorithms. RESULTS Flow-volume curves were highly correlated between ROIs placed at various lung quadrants in the same coronal slice (r > 0.97) with no differences in Vent-CC and VDP (ANOVA: p > 0.5). However, ROIs placed at different coronal slices showed lower correlation coefficients and resulted in significantly different Vent-CC and VDP values (ANOVA: p < 0.001). Vent-CC and VDP showed higher repeatability when calculated using the presented new algorithm. CONCLUSION In COPD and healthy cohorts, assessing regional ventilation dynamics using PREFUL-MRI in terms of the Vent-CC metric showed higher repeatability using a new algorithm for selecting a homogenous reference ROI from the same slice.
Collapse
Affiliation(s)
- Tawfik Moher Alsady
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Lower Saxony, Germany
| | - Jakob Ruschepaul
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Lower Saxony, Germany
| | - Andreas Voskrebenzev
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Lower Saxony, Germany
| | - Filip Klimes
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Lower Saxony, Germany
| | - Gesa Helen Poehler
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Lower Saxony, Germany
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Lower Saxony, Germany
| |
Collapse
|
7
|
Dohna M, Voskrebenzev A, Klimeš F, Kaireit TF, Glandorf J, Pallenberg ST, Ringshausen FC, Hansen G, Renz DM, Wacker F, Dittrich AM, Vogel-Claussen J. PREFUL MRI for Monitoring Perfusion and Ventilation Changes after Elexacaftor-Tezacaftor-Ivacaftor Therapy for Cystic Fibrosis: A Feasibility Study. Radiol Cardiothorac Imaging 2024; 6:e230104. [PMID: 38573129 PMCID: PMC11056757 DOI: 10.1148/ryct.230104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 01/18/2024] [Accepted: 02/07/2024] [Indexed: 04/05/2024]
Abstract
Purpose To assess the feasibility of monitoring the effects of elexacaftor-tezacaftor-ivacaftor (ETI) therapy on lung ventilation and perfusion in people with cystic fibrosis (CF), using phase-resolved functional lung (PREFUL) MRI. Materials and Methods This secondary analysis of a multicenter prospective study was carried out between August 2020 and March 2021 and included participants 12 years or older with CF who underwent PREFUL MRI, spirometry, sweat chloride test, and lung clearance index assessment before and 8-16 weeks after ETI therapy. For PREFUL-derived ventilation and perfusion parameter extraction, two-dimensional coronal dynamic gradient-echo MR images were evaluated with an automated quantitative pipeline. T1- and T2-weighted MR images and PREFUL perfusion maps were visually assessed for semiquantitative Eichinger scores. Wilcoxon signed rank test compared clinical parameters and PREFUL values before and after ETI therapy. Correlation of parameters was calculated as Spearman ρ correlation coefficient. Results Twenty-three participants (median age, 18 years [IQR: 14-24.5 years]; 13 female) were included. Quantitative PREFUL parameters, Eichinger score, and clinical parameters (lung clearance index = 21) showed significant improvement after ETI therapy. Ventilation defect percentage of regional ventilation decreased from 18% (IQR: 14%-25%) to 9% (IQR: 6%-17%) (P = .003) and perfusion defect percentage from 26% (IQR: 18%-36%) to 19% (IQR: 13%-24%) (P = .002). Areas of matching normal (healthy) ventilation and perfusion increased from 52% (IQR: 47%-68%) to 73% (IQR: 61%-83%). Visually assessed perfusion scores did not correlate with PREFUL perfusion (P = .11) nor with ventilation-perfusion match values (P = .38). Conclusion The study demonstrates the feasibility of PREFUL MRI for semiautomated quantitative assessment of perfusion and ventilation changes in response to ETI therapy in people with CF. Keywords: Pediatrics, MR-Functional Imaging, Pulmonary, Lung, Comparative Studies, Cystic Fibrosis, Elexacaftor-Tezacaftor-Ivacaftor Therapy, Fourier Decomposition, PREFUL, Free-Breathing Proton MRI, Pulmonary MRI, Perfusion, Functional MRI, CFTR, Modulator Therapy, Kaftrio Clinical trial registration no. NCT04732910 Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
- Martha Dohna
- From the Department of Diagnostic and Interventional Radiology (M.D.,
A.V., F.K., T.F.K., J.G., D.M.R., F.W., J.V.C.), German Center for Lung Research
(DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)
(A.V., F.K., T.F.K., J.G., S.T.P., F.C.R., G.H., F.W., A.M.D., J.V.C.),
Department for Pediatric Pneumology, Allergology and Neonatology (S.T.P., G.H.,
A.M.D., J.V.C.), and Department of Respiratory Medicine (F.C.R.), Hannover
Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; and European
Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG),
Frankfurt, Germany (F.C.R.)
| | - Andreas Voskrebenzev
- From the Department of Diagnostic and Interventional Radiology (M.D.,
A.V., F.K., T.F.K., J.G., D.M.R., F.W., J.V.C.), German Center for Lung Research
(DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)
(A.V., F.K., T.F.K., J.G., S.T.P., F.C.R., G.H., F.W., A.M.D., J.V.C.),
Department for Pediatric Pneumology, Allergology and Neonatology (S.T.P., G.H.,
A.M.D., J.V.C.), and Department of Respiratory Medicine (F.C.R.), Hannover
Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; and European
Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG),
Frankfurt, Germany (F.C.R.)
| | - Filip Klimeš
- From the Department of Diagnostic and Interventional Radiology (M.D.,
A.V., F.K., T.F.K., J.G., D.M.R., F.W., J.V.C.), German Center for Lung Research
(DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)
(A.V., F.K., T.F.K., J.G., S.T.P., F.C.R., G.H., F.W., A.M.D., J.V.C.),
Department for Pediatric Pneumology, Allergology and Neonatology (S.T.P., G.H.,
A.M.D., J.V.C.), and Department of Respiratory Medicine (F.C.R.), Hannover
Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; and European
Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG),
Frankfurt, Germany (F.C.R.)
| | - Till F. Kaireit
- From the Department of Diagnostic and Interventional Radiology (M.D.,
A.V., F.K., T.F.K., J.G., D.M.R., F.W., J.V.C.), German Center for Lung Research
(DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)
(A.V., F.K., T.F.K., J.G., S.T.P., F.C.R., G.H., F.W., A.M.D., J.V.C.),
Department for Pediatric Pneumology, Allergology and Neonatology (S.T.P., G.H.,
A.M.D., J.V.C.), and Department of Respiratory Medicine (F.C.R.), Hannover
Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; and European
Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG),
Frankfurt, Germany (F.C.R.)
| | - Julian Glandorf
- From the Department of Diagnostic and Interventional Radiology (M.D.,
A.V., F.K., T.F.K., J.G., D.M.R., F.W., J.V.C.), German Center for Lung Research
(DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)
(A.V., F.K., T.F.K., J.G., S.T.P., F.C.R., G.H., F.W., A.M.D., J.V.C.),
Department for Pediatric Pneumology, Allergology and Neonatology (S.T.P., G.H.,
A.M.D., J.V.C.), and Department of Respiratory Medicine (F.C.R.), Hannover
Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; and European
Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG),
Frankfurt, Germany (F.C.R.)
| | - Sophia T. Pallenberg
- From the Department of Diagnostic and Interventional Radiology (M.D.,
A.V., F.K., T.F.K., J.G., D.M.R., F.W., J.V.C.), German Center for Lung Research
(DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)
(A.V., F.K., T.F.K., J.G., S.T.P., F.C.R., G.H., F.W., A.M.D., J.V.C.),
Department for Pediatric Pneumology, Allergology and Neonatology (S.T.P., G.H.,
A.M.D., J.V.C.), and Department of Respiratory Medicine (F.C.R.), Hannover
Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; and European
Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG),
Frankfurt, Germany (F.C.R.)
| | - Felix C. Ringshausen
- From the Department of Diagnostic and Interventional Radiology (M.D.,
A.V., F.K., T.F.K., J.G., D.M.R., F.W., J.V.C.), German Center for Lung Research
(DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)
(A.V., F.K., T.F.K., J.G., S.T.P., F.C.R., G.H., F.W., A.M.D., J.V.C.),
Department for Pediatric Pneumology, Allergology and Neonatology (S.T.P., G.H.,
A.M.D., J.V.C.), and Department of Respiratory Medicine (F.C.R.), Hannover
Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; and European
Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG),
Frankfurt, Germany (F.C.R.)
| | - Gesine Hansen
- From the Department of Diagnostic and Interventional Radiology (M.D.,
A.V., F.K., T.F.K., J.G., D.M.R., F.W., J.V.C.), German Center for Lung Research
(DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)
(A.V., F.K., T.F.K., J.G., S.T.P., F.C.R., G.H., F.W., A.M.D., J.V.C.),
Department for Pediatric Pneumology, Allergology and Neonatology (S.T.P., G.H.,
A.M.D., J.V.C.), and Department of Respiratory Medicine (F.C.R.), Hannover
Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; and European
Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG),
Frankfurt, Germany (F.C.R.)
| | - Diane Miriam Renz
- From the Department of Diagnostic and Interventional Radiology (M.D.,
A.V., F.K., T.F.K., J.G., D.M.R., F.W., J.V.C.), German Center for Lung Research
(DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)
(A.V., F.K., T.F.K., J.G., S.T.P., F.C.R., G.H., F.W., A.M.D., J.V.C.),
Department for Pediatric Pneumology, Allergology and Neonatology (S.T.P., G.H.,
A.M.D., J.V.C.), and Department of Respiratory Medicine (F.C.R.), Hannover
Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; and European
Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG),
Frankfurt, Germany (F.C.R.)
| | - Frank Wacker
- From the Department of Diagnostic and Interventional Radiology (M.D.,
A.V., F.K., T.F.K., J.G., D.M.R., F.W., J.V.C.), German Center for Lung Research
(DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)
(A.V., F.K., T.F.K., J.G., S.T.P., F.C.R., G.H., F.W., A.M.D., J.V.C.),
Department for Pediatric Pneumology, Allergology and Neonatology (S.T.P., G.H.,
A.M.D., J.V.C.), and Department of Respiratory Medicine (F.C.R.), Hannover
Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany; and European
Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG),
Frankfurt, Germany (F.C.R.)
| | | | | |
Collapse
|
8
|
Triphan SMF, Bauman G, Konietzke P, Konietzke M, Wielpütz MO. Magnetic Resonance Imaging of Lung Perfusion. J Magn Reson Imaging 2024; 59:784-796. [PMID: 37466278 DOI: 10.1002/jmri.28912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
"Lung perfusion" in the context of imaging conventionally refers to the delivery of blood to the pulmonary capillary bed through the pulmonary arteries originating from the right ventricle required for oxygenation. The most important physiological mechanism in the context of imaging is the so-called hypoxic pulmonary vasoconstriction (HPV, also known as "Euler-Liljestrand-Reflex"), which couples lung perfusion to lung ventilation. In obstructive airway diseases such as asthma, chronic-obstructive pulmonary disease (COPD), cystic fibrosis (CF), and asthma, HPV downregulates pulmonary perfusion in order to redistribute blood flow to functional lung areas in order to conserve optimal oxygenation. Imaging of lung perfusion can be seen as a reflection of lung ventilation in obstructive airway diseases. Other conditions that primarily affect lung perfusion are pulmonary vascular diseases, pulmonary hypertension, or (chronic) pulmonary embolism, which also lead to inhomogeneity in pulmonary capillary blood distribution. Several magnetic resonance imaging (MRI) techniques either dependent on exogenous contrast materials, exploiting periodical lung signal variations with cardiac action, or relying on intrinsic lung voxel attributes have been demonstrated to visualize lung perfusion. Additional post-processing may add temporal information and provide quantitative information related to blood flow. The most widely used and robust technique, dynamic-contrast enhanced MRI, is available in clinical routine assessment of COPD, CF, and pulmonary vascular disease. Non-contrast techniques are important research tools currently requiring clinical validation and cross-correlation in the absence of a viable standard of reference. First data on many of these techniques in the context of observational studies assessing therapy effects have just become available. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Simon M F Triphan
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Grzegorz Bauman
- Division of Radiological Physics, Department of Radiology, University Hospital of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Philip Konietzke
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Marilisa Konietzke
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Mark O Wielpütz
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
9
|
Glandorf J, Brunzema F, Klimeš F, Behrendt L, Voskrebenzev A, Gutberlet M, Wernz MM, Grimm R, Wacker F, Vogel-Claussen J. Influence of gadolinium, field-strength and sequence type on quantified perfusion values in phase-resolved functional lung MRI. PLoS One 2023; 18:e0288744. [PMID: 37527251 PMCID: PMC10393130 DOI: 10.1371/journal.pone.0288744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/04/2023] [Indexed: 08/03/2023] Open
Abstract
PURPOSE The purpose of this study is to evaluate the influences of gadolinium-based contrast agents, field-strength and different sequences on perfusion quantification in Phase-Resolved Functional Lung (PREFUL) MRI. MATERIALS AND METHODS Four cohorts of different subjects were imaged to analyze influences on the quantified perfusion maps: 1) at baseline and after 2 weeks to obtain the reproducibility (26 COPD patients), 2) before and after the administration of gadobutrol (11 COPD, 2 PAH and 1 asthma), 3) at 1.5T and 3T (12 healthy, 4 CF), and 4) with different acquisition sequences spoiled gradient echo (SPGR) and balanced steady-state free precession (bSSFP) (11 COPD, 7 healthy). Wilcoxon-signed rank test, Bland-Altman plots, voxelwise Pearson correlations, normalized histogram analyses with skewness and kurtosis and two-sample Kolmogorov-Smirnov tests were performed. P value ≤ 0.05 was considered statistically significant. RESULTS In all cohorts, linear correlations of the perfusion values were significant with correlation coefficients of at least 0.7 considering the entire lung (P<0.01). The reproducibility cohort revealed stable results with a similar distribution. In the gadolinium cohort, the quantified perfusion increased significantly (P<0.01), and no significant change was detected in the histogram analysis. In the field-strength cohort, no significant change of the quantified perfusion was shown, but a significant increase of skewness and kurtosis at 3T (P = 0.01). In the sequence cohort, the quantified perfusion decreased significantly in the bSSFP sequence (P<0.01) together with a significant decrease of skewness and kurtosis (P = 0.02). The field-strength and sequence cohorts had differing probability distribution in the two-sample Kolmogorov-Smirnov tests. CONCLUSION We observed a high susceptibility of perfusion quantification to gadolinium, field-strength or MRI sequence leading to distortion and deviation of the perfusion values. Future multicenter studies should strictly adhere to the identical study protocols to generate comparable results.
Collapse
Affiliation(s)
- Julian Glandorf
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Fynn Brunzema
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Filip Klimeš
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Lea Behrendt
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Andreas Voskrebenzev
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Marius M Wernz
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Robert Grimm
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
10
|
Munidasa S, Zanette B, Couch M, Grimm R, Seethamraju R, Dumas MP, Wee W, Au J, Braganza S, Li D, Woods J, Ratjen F, Santyr G. Inter- and intravisit repeatability of free-breathing MRI in pediatric cystic fibrosis lung disease. Magn Reson Med 2023; 89:2048-2061. [PMID: 36576212 DOI: 10.1002/mrm.29566] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE The purpose of this study is to assess the intra- and interscan repeatability of free-breathing phase-resolved functional lung (PREFUL) MRI in stable pediatric cystic fibrosis (CF) lung disease in comparison to static breath-hold hyperpolarized 129-xenon MRI (Xe-MRI) and pulmonary function tests. METHODS Free-breathing 1-hydrogen MRI and Xe-MRI were acquired from 15 stable pediatric CF patients and seven healthy age-matched participants on two visits, 1 month apart. Same-visit MRI scans were also performed on a subgroup of the CF patients. Following the PREFUL algorithm, regional ventilation (RVent) and regional flow volume loop cross-correlation maps were determined from the free-breathing data. Ventilation defect percentage (VDP) was determined from RVent maps (VDPRVent ), regional flow volume loop cross-correlation maps (VDPCC ), VDPRVent ∪ VDPCC , and multi-slice Xe-MRI. Repeatability was evaluated using Bland-Altman analysis, coefficient of repeatability (CR), and intraclass correlation. RESULTS Minimal bias and no significant differences were reported for all PREFUL MRI and Xe-MRI VDP parameters between intra- and intervisits (all P > 0.05). Repeatability of VDPRVent , VDPCC , VDPRVent ∪ VDPCC , and multi-slice Xe-MRI were lower between the two-visit scans (CR = 14.81%, 15.36%, 16.19%, and 9.32%, respectively) in comparison to the same-day scans (CR = 3.38%, 2.90%, 1.90%, and 3.92%, respectively). pulmonary function tests showed high interscan repeatability relative to PREFUL MRI and Xe-MRI. CONCLUSION PREFUL MRI, similar to Xe-MRI, showed high intravisit repeatability but moderate intervisit repeatability in CF, which may be due to inherent disease instability, even in stable patients. Thus, PREFUL MRI may be considered a suitable outcome measure for future treatment response studies.
Collapse
Affiliation(s)
- Samal Munidasa
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Brandon Zanette
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marcus Couch
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Siemens Healthcare Limited, Montreal, Quebec, Canada
| | - Robert Grimm
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Ravi Seethamraju
- MR Collaborations North East, Siemens Healthineers, Malvern, Pennsylvania, USA
| | - Marie-Pier Dumas
- Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wallace Wee
- Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jacky Au
- Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sharon Braganza
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Daniel Li
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason Woods
- Center for Pulmonary Imaging Research, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Felix Ratjen
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Giles Santyr
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Edwards L, Waterton JC, Naish J, Short C, Semple T, Jm Parker G, Tibiletti M. Imaging human lung perfusion with contrast media: A meta-analysis. Eur J Radiol 2023; 164:110850. [PMID: 37178490 DOI: 10.1016/j.ejrad.2023.110850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
PURPOSE To pool and summarise published data of pulmonary blood flow (PBF), pulmonary blood volume (PBV) and mean transit time (MTT) of the human lung, obtained with perfusion MRI or CT to provide reliable reference values of healthy lung tissue. In addition, the available data regarding diseased lung was investigated. METHODS PubMed was systematically searched to identify studies that quantified PBF/PBV/MTT in the human lung by injection of contrast agent, imaged by MRI or CT. Only data analysed by 'indicator dilution theory' were considered numerically. Weighted mean (wM), weighted standard deviation (wSD) and weighted coefficient of variance (wCoV) were obtained for healthy volunteers (HV), weighted according to the size of the datasets. Signal to concentration conversion method, breath holding method and presence of 'pre-bolus' were noted. RESULTS PBV was obtained from 313 measurements from 14 publications (wM: 13.97 ml/100 ml, wSD: 4.21 ml/100 ml, wCoV 0.30). MTT was obtained from 188 measurements from 10 publications (wM: 5.91 s, wSD: 1.84 s wCoV 0.31). PBF was obtained from 349 measurements from 14 publications (wM: 246.26 ml/100 ml ml/min, wSD: 93.13 ml/100 ml ml/min, wCoV 0.38). PBV and PBF were higher when the signal was normalised than when it was not. No significant differences were found for PBV and PBF between breathing states or between pre-bolus and no pre-bolus. Data for diseased lung were insufficient for meta-analysis. CONCLUSION Reference values for PBF, MTT and PBV were obtained in HV. The literature data are insufficient to draw strong conclusions regarding disease reference values.
Collapse
Affiliation(s)
- Lucy Edwards
- Bioxydyn Limited, St James Tower, 7 Charlotte Street, Manchester, M1 4DZ, UK
| | - John C Waterton
- Bioxydyn Limited, St James Tower, 7 Charlotte Street, Manchester, M1 4DZ, UK; Centre for Imaging Sciences, University of Manchester, Manchester, UK
| | - Josephine Naish
- Bioxydyn Limited, St James Tower, 7 Charlotte Street, Manchester, M1 4DZ, UK; MCMR, Manchester University NHS Foundation Trust, Wythenshawe, Manchester, UK
| | - Christopher Short
- ECFS CTN - LCI Core Facility, Imperial College London, London, UK; Departments of Imaging, Royal Brompton Hospital, Sydney Street, London SW3 6NP, London, UK
| | - Thomas Semple
- Department of Radiology, The Royal Brompton Hospital, London, UK; National Heart and Lung Institute, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Geoff Jm Parker
- Bioxydyn Limited, St James Tower, 7 Charlotte Street, Manchester, M1 4DZ, UK; Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| | - Marta Tibiletti
- Bioxydyn Limited, St James Tower, 7 Charlotte Street, Manchester, M1 4DZ, UK
| |
Collapse
|
12
|
Foo CT, Langton D, Thompson BR, Thien F. Functional lung imaging using novel and emerging MRI techniques. Front Med (Lausanne) 2023; 10:1060940. [PMID: 37181360 PMCID: PMC10166823 DOI: 10.3389/fmed.2023.1060940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Respiratory diseases are leading causes of death and disability in the world. While early diagnosis is key, this has proven difficult due to the lack of sensitive and non-invasive tools. Computed tomography is regarded as the gold standard for structural lung imaging but lacks functional information and involves significant radiation exposure. Lung magnetic resonance imaging (MRI) has historically been challenging due to its short T2 and low proton density. Hyperpolarised gas MRI is an emerging technique that is able to overcome these difficulties, permitting the functional and microstructural evaluation of the lung. Other novel imaging techniques such as fluorinated gas MRI, oxygen-enhanced MRI, Fourier decomposition MRI and phase-resolved functional lung imaging can also be used to interrogate lung function though they are currently at varying stages of development. This article provides a clinically focused review of these contrast and non-contrast MR imaging techniques and their current applications in lung disease.
Collapse
Affiliation(s)
- Chuan T. Foo
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - David Langton
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- Department of Thoracic Medicine, Peninsula Health, Frankston, VIC, Australia
| | - Bruce R. Thompson
- Melbourne School of Health Science, Melbourne University, Melbourne, VIC, Australia
| | - Francis Thien
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Ciet P, Bertolo S, Ros M, Casciaro R, Cipolli M, Colagrande S, Costa S, Galici V, Gramegna A, Lanza C, Lucca F, Macconi L, Majo F, Paciaroni A, Parisi GF, Rizzo F, Salamone I, Santangelo T, Scudeller L, Saba L, Tomà P, Morana G. State-of-the-art review of lung imaging in cystic fibrosis with recommendations for pulmonologists and radiologists from the "iMAging managEment of cySTic fibROsis" (MAESTRO) consortium. Eur Respir Rev 2022; 31:31/163/210173. [PMID: 35321929 DOI: 10.1183/16000617.0173-2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Imaging represents an important noninvasive means to assess cystic fibrosis (CF) lung disease, which remains the main cause of morbidity and mortality in CF patients. While the development of new imaging techniques has revolutionised clinical practice, advances have posed diagnostic and monitoring challenges. The authors aim to summarise these challenges and make evidence-based recommendations regarding imaging assessment for both clinicians and radiologists. STUDY DESIGN A committee of 21 experts in CF from the 10 largest specialist centres in Italy was convened, including a radiologist and a pulmonologist from each centre, with the overall aim of developing clear and actionable recommendations for lung imaging in CF. An a priori threshold of at least 80% of the votes was required for acceptance of each statement of recommendation. RESULTS After a systematic review of the relevant literature, the committee convened to evaluate 167 articles. Following five RAND conferences, consensus statements were developed by an executive subcommittee. The entire consensus committee voted and approved 28 main statements. CONCLUSIONS There is a need for international guidelines regarding the appropriate timing and selection of imaging modality for patients with CF lung disease; timing and selection depends upon the clinical scenario, the patient's age, lung function and type of treatment. Despite its ubiquity, the use of the chest radiograph remains controversial. Both computed tomography and magnetic resonance imaging should be routinely used to monitor CF lung disease. Future studies should focus on imaging protocol harmonisation both for computed tomography and for magnetic resonance imaging. The introduction of artificial intelligence imaging analysis may further revolutionise clinical practice by providing fast and reliable quantitative outcomes to assess disease status. To date, there is no evidence supporting the use of lung ultrasound to monitor CF lung disease.
Collapse
Affiliation(s)
- Pierluigi Ciet
- Radiology and Nuclear Medicine Dept, Erasmus MC, Rotterdam, The Netherlands .,Pediatric Pulmonology and Allergology Dept, Erasmus MC, Sophia Children's Hospital, Rotterdam, The Netherlands.,Depts of Radiology and Medical Science, University of Cagliari, Cagliari, Italy
| | - Silvia Bertolo
- Radiology Dept, Ca'Foncello S. Maria Hospital, Treviso, Italy
| | - Mirco Ros
- Dept of Pediatrics, Ca'Foncello S. Maria Hospital, Treviso, Italy
| | - Rosaria Casciaro
- Dept of Pediatrics, IRCCS Institute "Giannina Gaslini", Cystic Fibrosis Centre, Genoa, Italy
| | - Marco Cipolli
- Regional Reference Cystic Fibrosis center, University hospital of Verona, Verona, Italy
| | - Stefano Colagrande
- Dept of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence- Careggi Hospital, Florence, Italy
| | - Stefano Costa
- Dept of Pediatrics, Gaetano Martino Hospital, Messina, Italy
| | - Valeria Galici
- Cystic Fibrosis Centre, Dept of Paediatric Medicine, Anna Meyer Children's University Hospital, Florence, Italy
| | - Andrea Gramegna
- Respiratory Disease and Adult Cystic Fibrosis Centre, Internal Medicine Dept, IRCCS Ca' Granda, Milan, Italy.,Dept of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Cecilia Lanza
- Radiology Dept, University Hospital Ospedali Riuniti, Ancona, Italy
| | - Francesca Lucca
- Regional Reference Cystic Fibrosis center, University hospital of Verona, Verona, Italy
| | - Letizia Macconi
- Radiology Dept, Tuscany Reference Cystic Fibrosis Centre, Meyer Children's Hospital, Florence, Italy
| | - Fabio Majo
- Dept of Pediatrics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Giuseppe Fabio Parisi
- Pediatric Pulmonology Unit, Dept of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesca Rizzo
- Radiology Dept, IRCCS Institute "Giannina Gaslini", Cystic Fibrosis Center, Genoa, Italy
| | | | - Teresa Santangelo
- Dept of Radiology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Luigia Scudeller
- Clinical Epidemiology, IRCCS Azienda Ospedaliera Universitaria di Bologna, Bologna, Italy
| | - Luca Saba
- Depts of Radiology and Medical Science, University of Cagliari, Cagliari, Italy
| | - Paolo Tomà
- Dept of Radiology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giovanni Morana
- Radiology Dept, Ca'Foncello S. Maria Hospital, Treviso, Italy
| |
Collapse
|
14
|
Zhang Z, Xu X, Kang L. Editorial for "Validation of Phase-Resolved Functional Lung (PREFUL) Magnetic Resonance Imaging Pulse Wave Transit Time in Healthy Subjects and Chronic Obstructive Pulmonary Disease". J Magn Reson Imaging 2021; 56:616-617. [PMID: 34953161 DOI: 10.1002/jmri.28041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/07/2022] Open
Affiliation(s)
- Zhan Zhang
- Department of Radiology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Xiangfeng Xu
- Department of Radiology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Liqing Kang
- Medical Imaging Department, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| |
Collapse
|