1
|
Allen TJ, van der Heijden RA, Simchick G, Hernando D. Reproducibility of liver ADC measurements using first moment optimized diffusion imaging. Magn Reson Med 2024. [PMID: 39529300 DOI: 10.1002/mrm.30372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Cardiac-induced liver motion can bias liver ADC measurements and compromise reproducibility. The purpose of this work was to enable motion-robust DWI on multiple MR scanners and assess reproducibility of the resulting liver ADC measurements. METHODS First moment-optimized diffusion imaging (MODI) was implemented on three MR scanners with various gradient performances and field strengths. MODI-DWI and conventional Stejskal-Tanner monopolar (MONO) DWI were acquired in eight (N = 8) healthy volunteers on each scanner, and DWI repetitions were combined using three different averaging methods. For each combination of scanner, acquisition, and averaging method, ADC measurements from each liver segment were collected. Systematic differences in ADC values between scanners and methods were assessed with linear mixed effects modeling, and reproducibility was quantified via reproducibility coefficients. RESULTS MODI reduced left-right liver lobe ADC bias from 0.43 × 10-3 mm2/s (MONO) to 0.19 × 10-3 mm2/s (MODI) when simple (unweighted) repetition averaging was used. The bias was reduced from 0.23 × 10-3 mm2/s to 0.06 × 10-3 mm2/s using weighted averaging, and 0.14 × 10-3 mm2/s to 0.01 × 10-3 mm2/s using squared weighted averaging. There was no significant difference in ADC measurements between field strengths or scanner gradient performance. MODI improved reproducibility coefficients compared to MONO: 0.84 × 10-3 mm2/s vs. 0.63 × 10-3 mm2/s (MODI vs. MONO) for simple averaging, 0.66 × 10-3 mm2/s vs. 0.50 × 10-3 mm2/s for weighted averaging, and 0.61 × 10-3 mm2/s vs. 0.47 × 10-3 mm2/s for squared weighted averaging. CONCLUSION The feasibility of motion-robust liver DWI using MODI was demonstrated on multiple MR scanners. MODI improved interlobar agreement and reproducibility of ADC measurements in a healthy cohort.
Collapse
Affiliation(s)
- Timothy J Allen
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rianne A van der Heijden
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gregory Simchick
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Diego Hernando
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Stabinska J, Wittsack HJ, Lerman LO, Ljimani A, Sigmund EE. Probing Renal Microstructure and Function with Advanced Diffusion MRI: Concepts, Applications, Challenges, and Future Directions. J Magn Reson Imaging 2024; 60:1259-1277. [PMID: 37991093 PMCID: PMC11117411 DOI: 10.1002/jmri.29127] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023] Open
Abstract
Diffusion measurements in the kidney are affected not only by renal microstructure but also by physiological processes (i.e., glomerular filtration, water reabsorption, and urine formation). Because of the superposition of passive tissue diffusion, blood perfusion, and tubular pre-urine flow, the limitations of the monoexponential apparent diffusion coefficient (ADC) model in assessing pathophysiological changes in renal tissue are becoming apparent and motivate the development of more advanced diffusion-weighted imaging (DWI) variants. These approaches take advantage of the fact that the length scale probed in DWI measurements can be adjusted by experimental parameters, including diffusion-weighting, diffusion gradient directions and diffusion time. This forms the basis by which advanced DWI models can be used to capture not only passive diffusion effects, but also microcirculation, compartmentalization, tissue anisotropy. In this review, we provide a comprehensive overview of the recent advancements in the field of renal DWI. Following a short introduction on renal structure and physiology, we present the key methodological approaches for the acquisition and analysis of renal DWI data, including intravoxel incoherent motion (IVIM), diffusion tensor imaging (DTI), non-Gaussian diffusion, and hybrid IVIM-DTI. We then briefly summarize the applications of these methods in chronic kidney disease and renal allograft dysfunction. Finally, we discuss the challenges and potential avenues for further development of renal DWI. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Julia Stabinska
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension and Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Eric E. Sigmund
- Bernard and Irene Schwartz Center for Biomedical Imaging Center for Advanced Imaging Innovation and Research (CAI2R), New York University Langone Health, New York City, New York, USA
| |
Collapse
|
3
|
Van AT, McTavish S, Peeters JM, Weiss K, Makowski MR, Braren RF, Karampinos DC. Motion-induced phase-corrected homodyne reconstruction for partial Fourier single-shot diffusion-weighted echo planar imaging of the liver. NMR IN BIOMEDICINE 2024; 37:e5147. [PMID: 38561247 DOI: 10.1002/nbm.5147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
Partial Fourier encoding is popular in single-shot (ss) diffusion-weighted (DW) echo planar imaging (EPI) because it enables a shorter echo time (TE) and, hence, improves the signal-to-noise-ratio. Motion during diffusion encoding causes k-space shifting and dispersion, which compromises the quality of the homodyne reconstruction. This work provides a comprehensive understanding of the artifacts in homodyne reconstruction of partial Fourier ss-DW-EPI data in the presence of motion-induced phase and proposes the motion-induced phase-corrected homodyne (mpc-hdyne) reconstruction method to ameliorate these artifacts. Simulations with different types of motion-induced phase were performed to provide an understanding of the potential artifacts that occur in the homodyne reconstruction of partial Fourier ss-DW-EPI data. To correct for the artifacts, the mpc-hdyne reconstruction is proposed. The algorithm recenters k-space, updates the partial Fourier factor according to detected global k-space shifts, and removes low-resolution nonlinear phase before the conventional homodyne reconstruction. The mpc-hdyne reconstruction is tested on both simulation and in vivo data. Motion-induced phase can cause signal overestimation, worm artifacts, and signal loss in partial Fourier ss-DW-EPI data with the conventional homodyne reconstruction. Simulation and in vivo data showed that the proposed mpc-hdyne reconstruction ameliorated artifacts, yielding higher quality DW images compared with conventional homodyne reconstruction. Based on the understanding of the artifacts in homodyne reconstruction of partial Fourier ss-DW-EPI data, the mpc-hdyne reconstruction was proposed and showed superior performance compared with the conventional homodyne reconstruction on both simulation and in vivo data.
Collapse
Affiliation(s)
- Anh T Van
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Sean McTavish
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | | | | | - Marcus R Makowski
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Rickmer F Braren
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| |
Collapse
|
4
|
Lee PK, Zhou X, Wang N, Syed AB, Brunsing RL, Vasanawala SS, Hargreaves BA. Distortionless, free-breathing, and respiratory resolved 3D diffusion weighted imaging of the abdomen. Magn Reson Med 2024; 92:586-604. [PMID: 38688875 DOI: 10.1002/mrm.30067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE Abdominal imaging is frequently performed with breath holds or respiratory triggering to reduce the effects of respiratory motion. Diffusion weighted sequences provide a useful clinical contrast but have prolonged scan times due to low signal-to-noise ratio (SNR), and cannot be completed in a single breath hold. Echo-planar imaging (EPI) is the most commonly used trajectory for diffusion weighted imaging but it is susceptible to off-resonance artifacts. A respiratory resolved, three-dimensional (3D) diffusion prepared sequence that obtains distortionless diffusion weighted images during free-breathing is presented. Techniques to address the myriad of challenges including: 3D shot-to-shot phase correction, respiratory binning, diffusion encoding during free-breathing, and robustness to off-resonance are described. METHODS A twice-refocused, M1-nulled diffusion preparation was combined with an RF-spoiled gradient echo readout and respiratory resolved reconstruction to obtain free-breathing diffusion weighted images in the abdomen. Cartesian sampling permits a sampling density that enables 3D shot-to-shot phase navigation and reduction of transient fat artifacts. Theoretical properties of a region-based shot rejection are described. The region-based shot rejection method was evaluated with free-breathing (normal and exaggerated breathing), and respiratory triggering. The proposed sequence was compared in vivo with multishot DW-EPI. RESULTS The proposed sequence exhibits no evident distortion in vivo when compared to multishot DW-EPI, robustness to B0 and B1 field inhomogeneities, and robustness to motion from different respiratory patterns. CONCLUSION Acquisition of distortionless, diffusion weighted images is feasible during free-breathing with a b-value of 500 s/mm2, scan time of 6 min, and a clinically viable reconstruction time.
Collapse
Affiliation(s)
- Philip K Lee
- Radiology, Stanford University, Stanford, California, USA
| | - Xuetong Zhou
- Radiology, Stanford University, Stanford, California, USA
- Bioengineering, Stanford University, Stanford, California, USA
| | - Nan Wang
- Radiology, Stanford University, Stanford, California, USA
| | - Ali B Syed
- Radiology, Stanford University, Stanford, California, USA
| | | | | | - Brian A Hargreaves
- Radiology, Stanford University, Stanford, California, USA
- Bioengineering, Stanford University, Stanford, California, USA
- Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
5
|
McTavish S, Van AT, Peeters JM, Weiss K, Harder FN, Makowski MR, Braren RF, Karampinos DC. Partial Fourier in the presence of respiratory motion in prostate diffusion-weighted echo planar imaging. MAGMA (NEW YORK, N.Y.) 2024; 37:621-636. [PMID: 38743376 PMCID: PMC11417066 DOI: 10.1007/s10334-024-01162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE To investigate the effect of respiratory motion in terms of signal loss in prostate diffusion-weighted imaging (DWI), and to evaluate the usage of partial Fourier in a free-breathing protocol in a clinically relevant b-value range using both single-shot and multi-shot acquisitions. METHODS A controlled breathing DWI acquisition was first employed at 3 T to measure signal loss from deep breathing patterns. Single-shot and multi-shot (2-shot) acquisitions without partial Fourier (no pF) and with partial Fourier (pF) factors of 0.75 and 0.65 were employed in a free-breathing protocol. The apparent SNR and ADC values were evaluated in 10 healthy subjects to measure if low pF factors caused low apparent SNR or overestimated ADC. RESULTS Controlled breathing experiments showed a difference in signal coefficient of variation between shallow and deep breathing. In free-breathing single-shot acquisitions, the pF 0.65 scan showed a significantly (p < 0.05) higher apparent SNR than pF 0.75 and no pF in the peripheral zone (PZ) of the prostate. In the multi-shot acquisitions in the PZ, pF 0.75 had a significantly higher apparent SNR than 0.65 pF and no pF. The single-shot pF 0.65 scan had a significantly lower ADC than single-shot no pF. CONCLUSION Deep breathing patterns can cause intravoxel dephasing in prostate DWI. For single-shot acquisitions at a b-value of 800 s/mm2, any potential risks of motion-related artefacts at low pF factors (pF 0.65) were outweighed by the increase in signal from a lower TE, as shown by the increase in apparent SNR. In multi-shot acquisitions however, the minimum pF factor should be larger, as shown by the lower apparent SNR at low pF factors.
Collapse
Affiliation(s)
- Sean McTavish
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Anh T Van
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | | | | | - Felix N Harder
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Marcus R Makowski
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Rickmer F Braren
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
6
|
Keenan KE, Jordanova KV, Ogier SE, Tamada D, Bruhwiler N, Starekova J, Riek J, McCracken PJ, Hernando D. Phantoms for Quantitative Body MRI: a review and discussion of the phantom value. MAGMA (NEW YORK, N.Y.) 2024; 37:535-549. [PMID: 38896407 PMCID: PMC11417080 DOI: 10.1007/s10334-024-01181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/18/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
In this paper, we review the value of phantoms for body MRI in the context of their uses for quantitative MRI methods research, clinical trials, and clinical imaging. Certain uses of phantoms are common throughout the body MRI community, including measuring bias, assessing reproducibility, and training. In addition to these uses, phantoms in body MRI methods research are used for novel methods development and the design of motion compensation and mitigation techniques. For clinical trials, phantoms are an essential part of quality management strategies, facilitating the conduct of ethically sound, reliable, and regulatorily compliant clinical research of both novel MRI methods and therapeutic agents. In the clinic, phantoms are used for development of protocols, mitigation of cost, quality control, and radiotherapy. We briefly review phantoms developed for quantitative body MRI, and finally, we review open questions regarding the most effective use of a phantom for body MRI.
Collapse
Affiliation(s)
- Kathryn E Keenan
- Physical Measurement Laboratory, National Institute of Standards and Technology, NIST, 325 Broadway, Boulder, CO, 80305, USA.
| | - Kalina V Jordanova
- Physical Measurement Laboratory, National Institute of Standards and Technology, NIST, 325 Broadway, Boulder, CO, 80305, USA
| | - Stephen E Ogier
- Physical Measurement Laboratory, National Institute of Standards and Technology, NIST, 325 Broadway, Boulder, CO, 80305, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA
| | | | - Natalie Bruhwiler
- Physical Measurement Laboratory, National Institute of Standards and Technology, NIST, 325 Broadway, Boulder, CO, 80305, USA
| | | | | | | | | |
Collapse
|
7
|
Lee PK, Zhou X, Hargreaves BA. Robust multishot diffusion-weighted imaging of the abdomen with region-based shot rejection. Magn Reson Med 2024; 92:519-531. [PMID: 38623901 DOI: 10.1002/mrm.30102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/18/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE Diffusion-weighted (DW) imaging provides a useful clinical contrast, but is susceptible to motion-induced dephasing caused by the application of strong diffusion gradients. Phase navigators are commonly used to resolve shot-to-shot motion-induced phase in multishot reconstructions, but poor phase estimates result in signal dropout and Apparent Diffusion Coefficient (ADC) overestimation. These artifacts are prominent in the abdomen, a region prone to involuntary cardiac and respiratory motion. To improve the robustness of DW imaging in the abdomen, region-based shot rejection schemes that selectively weight regions where the shot-to-shot phase is poorly estimated were evaluated. METHODS Spatially varying weights for each shot, reflecting both the accuracy of the estimated phase and the degree of subvoxel dephasing, were estimated from the phase navigator magnitude images. The weighting was integrated into a multishot reconstruction using different formulations and phase navigator resolutions and tested with different phase navigator resolutions in multishot DW-echo Planar Imaging acquisitions of the liver and pancreas, using conventional monopolar and velocity-compensated diffusion encoding. Reconstructed images and ADC estimates were compared qualitatively. RESULTS The proposed region-based shot rejection reduces banding and signal dropout artifacts caused by physiological motion in the liver and pancreas. Shot rejection allows conventional monopolar diffusion encoding to achieve median ADCs in the pancreas comparable to motion-compensated diffusion encoding, albeit with a greater spread of ADCs. CONCLUSION Region-based shot rejection is a linear reconstruction that improves the motion robustness of multi-shot DWI and requires no sequence modifications.
Collapse
Affiliation(s)
- Philip K Lee
- Radiology, Stanford University, Stanford, California, USA
| | - Xuetong Zhou
- Radiology, Stanford University, Stanford, California, USA
- Bioengineering, Stanford University, Stanford, California, USA
| | - Brian A Hargreaves
- Radiology, Stanford University, Stanford, California, USA
- Bioengineering, Stanford University, Stanford, California, USA
- Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
8
|
Michael ES, Hennel F, Pruessmann KP. Motion-compensated diffusion encoding in multi-shot human brain acquisitions: Insights using high-performance gradients. Magn Reson Med 2024; 92:556-572. [PMID: 38441339 DOI: 10.1002/mrm.30069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/12/2023] [Accepted: 02/09/2024] [Indexed: 06/02/2024]
Abstract
PURPOSE To evaluate the utility of up to second-order motion-compensated diffusion encoding in multi-shot human brain acquisitions. METHODS Experiments were performed with high-performance gradients using three forms of diffusion encoding motion-compensated through different orders: conventional zeroth-order-compensated pulsed gradients (PG), first-order-compensated gradients (MC1), and second-order-compensated gradients (MC2). Single-shot acquisitions were conducted to correlate the order of motion compensation with resultant phase variability. Then, multi-shot acquisitions were performed at varying interleaving factors. Multi-shot images were reconstructed using three levels of shot-to-shot phase correction: no correction, channel-wise phase correction based on FID navigation, and correction based on explicit phase mapping (MUSE). RESULTS In single-shot acquisitions, MC2 diffusion encoding most effectively suppressed phase variability and sensitivity to brain pulsation, yielding residual variations of about 10° and of low spatial order. Consequently, multi-shot MC2 images were largely satisfactory without phase correction and consistently improved with the navigator correction, which yielded repeatable high-quality images; contrarily, PG and MC1 images were inadequately corrected using the navigator approach. With respect to MUSE reconstructions, the MC2 navigator-corrected images were in close agreement for a standard interleaving factor and considerably more reliable for higher interleaving factors, for which MUSE images were corrupted. Finally, owing to the advanced gradient hardware, the relative SNR penalty of motion-compensated diffusion sensitization was substantially more tolerable than that faced previously. CONCLUSION Second-order motion-compensated diffusion encoding mitigates and simplifies shot-to-shot phase variability in the human brain, rendering the multi-shot acquisition strategy an effective means to circumvent limitations of retrospective phase correction methods.
Collapse
Affiliation(s)
- Eric Seth Michael
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Franciszek Hennel
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Klaas Paul Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Starekova J, Geng R, Wang Z, Zhang Y, Uboha NV, Pirasteh A, Hernando D. Precision of liver and pancreas apparent diffusion coefficients using motion-compensated gradient waveforms in DWI. Magn Reson Imaging 2024; 110:161-169. [PMID: 38641212 PMCID: PMC11098682 DOI: 10.1016/j.mri.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Diffusion weighted imaging (DWI) with optimized motion-compensated gradient waveforms reduces signal dropouts in the liver and pancreas caused by cardiovascular-associated motion, however its precision is unknown. We hypothesized that DWI with motion-compensated DW gradient waveforms would improve apparent diffusion coefficient (ADC)-repeatability and inter-reader reproducibility compared to conventional DWI in these organs. METHODS In this IRB-approved, prospective, single center study, subjects recruited between October 2019 and March 2020 were scanned twice on a 3 T scanner, with repositioning between test and retest. Each scan included two respiratory-triggered DWI series with comparable acquisition time: 1) conventional (monopolar) 2) motion- compensated diffusion gradients. Three readers measured ADC values. One-way ANOVA, Bland-Altman analysis were used for statistical analysis. RESULTS Eight healthy participants (4 male/4 female), with a mean age of 29 ± 4 years, underwent the liver and pancreas MRI protocol. Four patients with liver metastases (2 male/2 female) with a mean age of 58 ± 5 years underwent the liver MRI protocol. In healthy participants, motion-compensated DWI outperformed conventional DWI with mean repeatability coefficient of 0.14 × 10-3 (CI:0.12-0.17) vs. 0.31 × 10-3 (CI:0.27-0.37) mm2/s for liver, and 0.11 × 10-3 (CI:0.08-0.15) vs. 0.34 × 10-3 (CI:0.27-0.49) mm2/s for pancreas; and with mean reproducibility coefficient of 0.20 × 10-3 (CI:0.18-0.23) vs. 0.51 × 10-3 (CI:0.46-0.58) mm2/s for liver, and 0.16 × 10-3 (CI:0.13-0.20) vs. 0.42 × 10-3 (CI:0.34-0.52) mm2/s for pancreas. In patients, improved repeatability was observed for motion-compensated DWI in comparison to conventional with repeatability coefficient of 0.51 × 10- 3 mm2/s (CI:0.35-0.89) vs. 0.70 × 10-3 mm2/s (CI:0.49-1.20). CONCLUSION Motion-compensated DWI enhances the precision of ADC measurements in the liver and pancreas compared to conventional DWI.
Collapse
Affiliation(s)
- Jitka Starekova
- Department of Radiology, University of Wisconsin, Madison, WI, USA.
| | - Ruiqi Geng
- Department of Radiology, University of Wisconsin, Madison, WI, USA; Department of Medical Physics, University of Wisconsin, Madison, WI, USA.
| | - Zihan Wang
- Department of Radiology, University of Wisconsin, Madison, WI, USA.
| | - Yuxin Zhang
- Department of Radiology, University of Wisconsin, Madison, WI, USA; Department of Medical Physics, University of Wisconsin, Madison, WI, USA.
| | - Nataliya V Uboha
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin, School of Medcine and Public Health, Madison, WI, USA; Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
| | - Ali Pirasteh
- Department of Radiology, University of Wisconsin, Madison, WI, USA; Department of Medical Physics, University of Wisconsin, Madison, WI, USA.
| | - Diego Hernando
- Department of Radiology, University of Wisconsin, Madison, WI, USA; Department of Medical Physics, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
10
|
Bilreiro C, Andrade L, Marques RM, Matos C. Diffusion-weighted imaging for determining response to neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis. Eur Radiol 2024; 34:3238-3248. [PMID: 37907761 PMCID: PMC11126427 DOI: 10.1007/s00330-023-10381-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/15/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
OBJECTIVES To determine the role of diffusion-weighted imaging (DWI) for predicting response to neoadjuvant therapy (NAT) in pancreatic cancer. MATERIALS AND METHODS MEDLINE, EMBASE, and Cochrane Library databases were searched for studies evaluating the performance of apparent diffusion coefficient (ADC) to assess response to NAT. Data extracted included ADC pre- and post-NAT, for predicting response as defined by imaging, histopathology, or clinical reference standards. ADC values were compared with standardized mean differences. Risk of bias was assessed using the Quality Assessment of Diagnostic Studies (QUADAS-2). RESULTS Of 337 studies, 7 were included in the analysis (161 patients). ADC values reported for the pre- and post-NAT assessments overlapped between responders and non-responders. One study reported inability of ADC increase after NAT for distinguishing responders and non-responders. A correlation with histopathological response was reported for pre- and post-NAT ADC in 4 studies. DWI's diagnostic performance was reported to be high in three studies, with a 91.6-100% sensitivity and 62.5-94.7% specificity. Finally, heterogeneity and high risk of bias were identified across studies, affecting the domains of patient selection, index test, reference standard, and flow and timing. CONCLUSION DWI might be useful for determining response to NAT in pancreatic cancer. However, there are still too few studies on this matter, which are also heterogeneous and at high risk for bias. Further studies with standardized procedures for data acquisition and accurate reference standards are needed. CLINICAL RELEVANCE STATEMENT Diffusion-weighted MRI might be useful for assessing response to neoadjuvant therapy in pancreatic cancer. However, further studies with robust data are needed to provide specific recommendations for clinical practice. KEY POINTS •The role of DWI with ADC measurements for assessing response to neoadjuvant therapy in pancreatic cancer is still unclear. •Pre- and post-neoadjuvant therapy ADC values overlap between responders and non-responders. •DWI has a reported high diagnostic performance for determining response when using histopathological or clinical reference standards; however, studies are still few and at high risk for bias.
Collapse
Affiliation(s)
- Carlos Bilreiro
- Radiology Department, Champalimaud Foundation, Lisbon, Portugal.
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
- Nova Medical School, Lisbon, Portugal.
| | - Luísa Andrade
- Radiology Department, Champalimaud Foundation, Lisbon, Portugal
| | - Rui Mateus Marques
- Nova Medical School, Lisbon, Portugal
- Radiology Department, Hospital de S. José, Lisbon, Portugal
| | - Celso Matos
- Radiology Department, Champalimaud Foundation, Lisbon, Portugal
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
11
|
Geng R, Zhang Y, Rice J, Muehler MR, Starekova J, Rutkowski DR, Uboha NV, Pirasteh A, Roldán-Alzate A, Guidon A, Hernando D. Motion-robust, blood-suppressed, reduced-distortion diffusion MRI of the liver. Magn Reson Med 2023; 89:908-921. [PMID: 36404637 PMCID: PMC9792444 DOI: 10.1002/mrm.29531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE To evaluate feasibility and reproducibility of liver diffusion-weighted (DW) MRI using cardiac-motion-robust, blood-suppressed, reduced-distortion techniques. METHODS DW-MRI data were acquired at 3T in an anatomically accurate liver phantom including controlled pulsatile motion, in eight healthy volunteers and four patients with known or suspected liver metastases. Standard monopolar and motion-robust (M1-nulled, and M1-optimized) DW gradient waveforms were each acquired with single-shot echo-planar imaging (ssEPI) and multishot EPI (msEPI). In the motion phantom, apparent diffusion coefficient (ADC) was measured in the motion-affected volume. In healthy volunteers, ADC was measured in the left and right liver lobes separately to evaluate ADC reproducibility between the two lobes. Image distortions were quantified using the normalized cross-correlation coefficient, with an undistorted T2-weighted reference. RESULTS In the motion phantom, ADC mean and SD in motion-affected volumes substantially increased with increasing motion for monopolar waveforms. ADC remained stable in the presence of increasing motion when using motion-robust waveforms. M1-optimized waveforms suppressed slow flow signal present with M1-nulled waveforms. In healthy volunteers, monopolar waveforms generated significantly different ADC measurements between left and right liver lobes ( p = 0 . 0078 $$ p=0.0078 $$ , reproducibility coefficients (RPC) = 470 × 1 0 - 6 $$ 470\times 1{0}^{-6} $$ mm 2 $$ {}^2 $$ /s for monopolar-msEPI), while M1-optimized waveforms showed more reproducible ADC values ( p = 0 . 29 $$ p=0.29 $$ , RPC = 220 × 1 0 - 6 $$ \mathrm{RPC}=220\times 1{0}^{-6} $$ mm 2 $$ {}^2 $$ /s for M1-optimized-msEPI). In phantom and healthy volunteer studies, motion-robust acquisitions with msEPI showed significantly reduced image distortion ( p < 0 . 001 $$ p<0.001 $$ ) compared to ssEPI. Patient scans showed reduction of wormhole artifacts when combining M1-optimized waveforms with msEPI. CONCLUSION Synergistic effects of combined M1-optimized diffusion waveforms and msEPI acquisitions enable reproducible liver DWI with motion robustness, blood signal suppression, and reduced distortion.
Collapse
Affiliation(s)
- Ruiqi Geng
- Department of Radiology, University of Wisconsin-Madison, WI, USA,Department of Medical Physics, University of Wisconsin-Madison, WI, USA
| | - Yuxin Zhang
- Department of Radiology, University of Wisconsin-Madison, WI, USA,Department of Medical Physics, University of Wisconsin-Madison, WI, USA
| | - James Rice
- Department of Radiology, University of Wisconsin-Madison, WI, USA,Department of Mechanical Engineering, University of Wisconsin-Madison, WI, USA
| | | | - Jitka Starekova
- Department of Radiology, University of Wisconsin-Madison, WI, USA
| | - David R. Rutkowski
- Department of Radiology, University of Wisconsin-Madison, WI, USA,Department of Mechanical Engineering, University of Wisconsin-Madison, WI, USA
| | - Nataliya V. Uboha
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, WI, USA,UW Carbone Cancer Center, WI, USA
| | - Ali Pirasteh
- Department of Radiology, University of Wisconsin-Madison, WI, USA,Department of Medical Physics, University of Wisconsin-Madison, WI, USA
| | - Alejandro Roldán-Alzate
- Department of Radiology, University of Wisconsin-Madison, WI, USA,Department of Mechanical Engineering, University of Wisconsin-Madison, WI, USA
| | | | - Diego Hernando
- Department of Radiology, University of Wisconsin-Madison, WI, USA,Department of Medical Physics, University of Wisconsin-Madison, WI, USA,Department of Electrical and Computer Engineering, University of Wisconsin-Madison, WI, USA,Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
12
|
Yang T, Li Y, Ye Z, Yao S, Li Q, Yuan Y, Song B. Diffusion Weighted Imaging of the Abdomen and Pelvis: Recent Technical Advances and Clinical Applications. Acad Radiol 2023; 30:470-482. [PMID: 36038417 DOI: 10.1016/j.acra.2022.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 01/25/2023]
Abstract
Diffusion weighted imaging (DWI) serves as one of the most important functional magnetic resonance imaging techniques in abdominal and pelvic imaging. It is designed to reflect the diffusion of water molecules and is particularly sensitive to the malignancies. Yet, the limitations of image distortion and artifacts in single-shot DWI may hamper its widespread use in clinical practice. With recent technical advances in DWI, such as simultaneous multi-slice excitation, computed or reduced field-of-view techniques, as well as advanced shimming methods, it is possible to achieve shorter acquisition time, better image quality, and higher robustness in abdominopelvic DWI. This review discussed the recent advances of each DWI approach, and highlighted its future perspectives in abdominal and pelvic imaging, hoping to familiarize physicians and radiologists with the technical improvements in this field and provide future research directions.
Collapse
Affiliation(s)
- Ting Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Ye
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Yao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Li
- MR Collaborations, Siemens Healthcare, Shanghai, China
| | - Yuan Yuan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China; Department of Radiology, Sanya People's Hospital, Sanya, Hainan, China.
| |
Collapse
|
13
|
McTavish S, Van AT, Peeters JM, Weiss K, Makowski MR, Braren RF, Karampinos DC. Motion compensated renal diffusion weighted imaging. Magn Reson Med 2022; 89:144-160. [PMID: 36098347 DOI: 10.1002/mrm.29433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To assess the effect of respiratory motion and cardiac driven pulsation in renal DWI and to examine asymmetrical velocity-compensated diffusion encoding waveforms for robust ADC mapping in the kidneys. METHODS The standard monopolar Stejskal-Tanner pulsed gradient spin echo (pgse) and the asymmetric bipolar velocity-compensated (asym-vc) diffusion encoding waveforms were used for coronal renal DWI at 3T. The robustness of the ADC quantification in the kidneys was tested with the aforementioned waveforms in respiratory-triggered and breath-held cardiac-triggered scans at different trigger delays in 10 healthy subjects. RESULTS The pgse waveform showed higher ADC values in the right kidney at short trigger delays in comparison to longer trigger delays in the respiratory triggered scans when the diffusion gradient was applied in the feet-head (FH) direction. The coefficient of variation over all respiratory trigger delays, averaged over all subjects was 0.15 for the pgse waveform in the right kidney when diffusion was measured in the FH direction; the corresponding coefficient of variation for the asym-vc waveform was 0.06. The effect of cardiac driven pulsation was found to be small in comparison to the effect of respiratory motion. CONCLUSION Short trigger delays in respiratory-triggered scans can cause higher ADC values in comparison to longer trigger delays in renal DWI, especially in the right kidney when diffusion is measured in the FH direction. The asym-vc waveform can reduce ADC variation due to respiratory motion in respiratory-triggered scans at the cost of reduced SNR compared to the pgse waveform.
Collapse
Affiliation(s)
- Sean McTavish
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Anh T Van
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | | | | | - Marcus R Makowski
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Rickmer F Braren
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
14
|
Tavakoli AA, Dreher C, Mlynarska A, Kuder TA, Gnirs R, Schlemmer HP, Bickelhaupt S. Pancreatic imaging using diffusivity mapping - Influence of sequence technique on qualitative and quantitative analysis. Clin Imaging 2021; 83:33-40. [PMID: 34953309 DOI: 10.1016/j.clinimag.2021.11.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE To compare image quality of an optimized diffusion weighted imaging (DWI) sequence with advanced post-processing and motion correction (advanced-EPI) to a standard DWI protocol (standard-EPI) in pancreatic imaging. MATERIALS AND METHODS 62 consecutive patients underwent abdominal MRI at 1.5 T were included in this retrospective analysis of data collected as part of an IRB approved study. All patients received a standard-EPI and an advanced-EPI DWI with advanced post-processing and motion correction. Two blinded radiologists evaluated the parameters image quality, detail of parenchyma, sharpness of boundaries and discernibility from adjacent structures on b = 900 s/mm2 images using a Likert-like scale. Segmentation of pancreatic head, body and tail were obtained and apparent diffusion coefficient (ADC) was calculated separately for each region. Apparent tissue-to-background ratio (TBR) was calculated at b = 50 s/mm2 and at b = 900 s/mm2. RESULTS The advanced-EPI yielded significantly higher scores for pancreatic parameters of image quality, detail level of parenchyma, sharpness of boundaries and discernibility from adjacent structures in comparison to standard-EPI (p < 0.001 for all, kappa = [0.46,0.71]) and was preferred in 96% of the cases when directly compared. ADC of the pancreas was 7% lower in advanced-EPI (1.236 ± 0.152 vs. 1.146 ± 0.126 μm2/ms, p < 0.001). ADC in the pancreatic tail was significantly lower for both sequences compared to head and body (all p < 0.001). There was comparable TBR for both sequences at b = 50 s/mm2 (standard-EPI: 19.0 ± 5.9 vs. advanced-EPI: 19.0 ± 6.4, p = 0.96), whereas at b = 900 s/mm2, TBR was 51% higher for advanced-EPI (standard-EPI: 7.1 ± 2.5 vs. advanced-EPI: 10.8 ± 5.1, p < 0.001). CONCLUSION An advanced DWI sequence might increase image quality for focused imaging of the pancreas and providing improved parenchymal detail levels compared to a standard DWI.
Collapse
Affiliation(s)
- Anoshirwan Andrej Tavakoli
- German Cancer Research Center (DKFZ), Department of Radiology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Constantin Dreher
- German Cancer Research Center (DKFZ), Department of Radiology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Radiation Oncology, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Anna Mlynarska
- German Cancer Research Center (DKFZ), Department of Radiology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Tristan Anselm Kuder
- German Cancer Research Center (DKFZ), Medical Physics in Radiology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Regula Gnirs
- German Cancer Research Center (DKFZ), Department of Radiology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Heinz-Peter Schlemmer
- German Cancer Research Center (DKFZ), Department of Radiology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Sebastian Bickelhaupt
- German Cancer Research Center (DKFZ), Medical Imaging and Radiology - Cancer Prevention, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; University Hospital Erlangen, Institute of Radiology, Maximiliansplatz 3, 91054 Erlangen, Germany.
| |
Collapse
|