1
|
Arianpouya M, Yang B, Tam F, McElcheran CE, Graham SJ. Optimized radiofrequency shimming using low-heating B1+-mapping in the presence of deep brain stimulation implants: Proof of concept. PLoS One 2024; 19:e0316002. [PMID: 39693369 DOI: 10.1371/journal.pone.0316002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
MRI of patients with Deep Brain Stimulation (DBS) implants is constrained due to radiofrequency (RF) heating of the implant lead. However, "RF-shimming" parallel transmission (PTX) has the potential to reduce DBS heating during MRI. As part of using PTX in such a "safe mode", maps of the RF transmission field (B1+) are typically acquired for calibration purposes, with each transmit coil excited individually. These maps often have large zones of low signal intensity distant from the specific coil that is being excited, raising concerns that low signal-to-noise ratio (SNR) in these zones might negatively impact the ability of the optimized RF shim settings to suppress heating in safe mode. One way to improve SNR would be to increase RF transmission power during B1+ mapping, but this also raises heating concerns especially for coil elements proximal to the implant. Acting with an abundance of caution, it would be useful to investigate methods that permit B1+ mapping with low localized heating while producing high SNR measurements that lead to safe PTX RF shim settings. The present work addresses this issue in proof of concept using electromagnetic simulations and experimental PTX MRI. A two-step optimization algorithm is proposed and examined for a cylindrical phantom with an implanted wire to enable 1) robust B1+ mapping with low localized heating; and 2) robust RF shimming PTX with low localized heating and good B1+ homogeneity over a large imaging volume. Simulation and experimental outcomes were compared with those obtained using an existing simulation-driven workflow for obtaining safe mode RF shim settings, and for quadrature RF transmission using a circularly polarized (CP) birdcage head coil. Experimental results showed that although both existing and proposed safe-mode workflows effectively suppressed localized heating at the wire tip in comparison to the CP coil results, the proposed workflow produced much smaller temperature elevations and much improved signal uniformity. These promising results support continued investigation and refinement of the proposed workflow, involving more realistic scenarios toward ultimate implementations in DBS patients.
Collapse
Affiliation(s)
- Maryam Arianpouya
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Benson Yang
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Fred Tam
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Clare E McElcheran
- TECHNA Institute for the Advancement of Technology for Health, Toronto, ON, Canada
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Kent JL, de Buck MHS, Dragonu I, Chiew M, Valkovič L, Hess AT. Accelerated 3D multi-channel B 1 + mapping at 7 T for the brain and heart. Magn Reson Med 2024; 92:2007-2020. [PMID: 38934380 DOI: 10.1002/mrm.30201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE To acquire accurate volumetric multi-channelB 1 + $$ {\mathrm{B}}_1^{+} $$ maps in under 14 s whole-brain or 23 heartbeats whole-heart for parallel transmit (pTx) applications at 7 T. THEORY AND METHODS We evaluate the combination of three recently proposed techniques. The acquisition of multi-channel transmit arrayB 1 + $$ {\mathrm{B}}_1^{+} $$ maps is accelerated using transmit low rank (TxLR) with absoluteB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping (Sandwich) acquired in aB 1 + $$ {\mathrm{B}}_1^{+} $$ time-interleaved acquisition of modes (B1TIAMO) fashion. Simulations using synthetic body images derived from Sim4Life were used to test the achievable acceleration for small scan matrices of 24 × 24. Next, we evaluated the method by retrospectively undersampling a fully sampledB 1 + $$ {\mathrm{B}}_1^{+} $$ library of nine subjects in the brain. Finally, Cartesian undersampled phantom and in vivo images were acquired in both the brain of three subjects (8Tx/32 receive [Rx]) and the heart of another three subjects (8Tx/8Rx) at 7 T. RESULTS Simulation and in vivo results show that volumetric multi-channelB 1 + $$ {\mathrm{B}}_1^{+} $$ maps can be acquired using acceleration factors of 4 in the body, reducing the acquisition time to within 23 heartbeats, which was previously not possible. In silico heart simulations demonstrated a RMS error to the fully sampled native resolution ground truth of 4.2° when combined in first-order circularly polarized mode (mean flip angle 66°) at an acceleration factor of 4. The 14 s 3DB 1 + $$ {\mathrm{B}}_1^{+} $$ maps acquired in the brain have a RMS error of 1.9° to the fully sampled (mean flip angle 86°). CONCLUSION The proposed method is demonstrated as a fast pTx calibration technique in the brain and a promising method for pTx calibration in the body.
Collapse
Affiliation(s)
- James L Kent
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Matthijs H S de Buck
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, KNAW, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Iulius Dragonu
- Research & Collaborations GB&I, Siemens Healthcare Ltd, Camberley, UK
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ladislav Valkovič
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Oxford, UK
- Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Aaron T Hess
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Egger N, Nagelstraßer S, Wildenberg S, Bitz A, Ruck L, Herrler J, Meixner CR, Kimmlingen R, Lanz T, Schmitter S, Uder M, Nagel AM. Accelerated B 1 + $$ {\mathrm{B}}_1^{+} $$ mapping and robust parallel transmit pulse design for heart and prostate imaging at 7 T. Magn Reson Med 2024; 92:1933-1951. [PMID: 38888143 DOI: 10.1002/mrm.30185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE To investigate the impact of reduced k-space sampling onB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping and the resulting impact on phase shimming and dynamic/universal parallel transmit (pTx) RF pulse design. METHODS Channel-wise 3DB 1 + $$ {\mathrm{B}}_1^{+} $$ maps were measured at 7 T in 35 and 23 healthy subjects for the heart and prostate region, respectively. With theseB 1 + $$ {\mathrm{B}}_1^{+} $$ maps, universal phase shims optimizing homogeneity andB 1 + $$ {\mathrm{B}}_1^{+} $$ efficiency were designed for heart and prostate imaging. In addition, universal 4kT-point pulses were designed for the heart. Subsequently, individual phase shims and individual 4kT-pulses were designed based onB 1 + $$ {\mathrm{B}}_1^{+} $$ maps with different acceleration factors and tested on the original maps. The performance of the pulses was compared by evaluating their coefficients of variation (CoV),B 1 + $$ {\mathrm{B}}_1^{+} $$ efficiencies and specific energy doses (SED). Furthermore, validation measurements were carried out for one heart and one prostate subject. RESULTS For both organs, the universal phase shims showed significantly higherB 1 + $$ {\mathrm{B}}_1^{+} $$ efficiencies and lower CoVs compared to the vendor provided default shim, but could still be improved with individual phase shims based on acceleratedB 1 + $$ {\mathrm{B}}_1^{+} $$ maps (acquisition time = 30 s). In the heart, the universal 4kT-pulse achieved significantly lower CoVs than tailored phase shims. Tailored 4kT-pulses based on acceleratedB 1 + $$ {\mathrm{B}}_1^{+} $$ maps resulted in even further reduced CoVs or a 2.5-fold reduction in SED at the same CoVs as the universal 4kT-pulse. CONCLUSION AcceleratedB 1 + $$ {\mathrm{B}}_1^{+} $$ maps can be used for the design of tailored pTx pulses for prostate and cardiac imaging at 7 T, which further improve homogeneity,B 1 + $$ {\mathrm{B}}_1^{+} $$ efficiency, or SED compared to universal pulses.
Collapse
Affiliation(s)
- Nico Egger
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sophia Nagelstraßer
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Saskia Wildenberg
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Electrical Engineering and Information Technology, University of Applied Sciences - FH Aachen, Aachen, Germany
| | - Andreas Bitz
- Electrical Engineering and Information Technology, University of Applied Sciences - FH Aachen, Aachen, Germany
| | - Laurent Ruck
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | | | | | | | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin Michael Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Karakuzu A, Boudreau M, Stikov N. Reproducible Research Practices in Magnetic Resonance Neuroimaging: A Review Informed by Advanced Language Models. Magn Reson Med Sci 2024; 23:252-267. [PMID: 38897936 PMCID: PMC11234949 DOI: 10.2463/mrms.rev.2023-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
MRI has progressed significantly with the introduction of advanced computational methods and novel imaging techniques, but their wider adoption hinges on their reproducibility. This concise review synthesizes reproducible research insights from recent MRI articles to examine the current state of reproducibility in neuroimaging, highlighting key trends and challenges. It also provides a custom generative pretrained transformer (GPT) model, designed specifically for aiding in an automated analysis and synthesis of information pertaining to the reproducibility insights associated with the articles at the core of this review.
Collapse
Affiliation(s)
- Agah Karakuzu
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
- Montréal Heart Institute, Montréal, Quebec, Canada
| | - Mathieu Boudreau
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Nikola Stikov
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
- Montréal Heart Institute, Montréal, Quebec, Canada
- Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius University, Skopje, North Macedonia
| |
Collapse
|
5
|
Runderkamp BA, Roos T, van der Zwaag W, Strijkers GJ, Caan MWA, Nederveen AJ. Whole-liver flip-angle shimming at 7 T using parallel-transmit k T -point pulses and Fourier phase-encoded DREAM B 1 + mapping. Magn Reson Med 2024; 91:75-90. [PMID: 37799015 DOI: 10.1002/mrm.29819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/18/2023] [Accepted: 07/13/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE To obtain homogeneous signal throughout the human liver at 7 T. Flip angle (FA) shimming in 7T whole-liver imaging was performed through parallel-transmit kT -point pulses based on subject-specific multichannel absoluteB 1 + $$ {\mathrm{B}}_1^{+} $$ maps from Fourier phase-encoded dual refocusing echo acquisition mode (PE-DREAM). METHODS The optimal number of Fourier phase-encoding steps for PE-DREAMB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping was determined for a 7T eight-channel parallel-transmission system. FA shimming experiments were performed in the liver of 7 healthy subjects with varying body mass index. In these subjects, firstB 0 $$ {\mathrm{B}}_0 $$ shimming and Fourier PE-DREAMB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping were performed. Subsequently, three small-flip-angle 3D gradient-echo scans were acquired, comparing a circularly polarized (CP) mode, a phase shim, and a kT -point pulse. Resulting homogeneity was assessed and compared with estimated FA maps and distributions. RESULTS Fourier PE-DREAM with 13 phase-encoding steps resulted in a good tradeoff betweenB 1 + $$ {\mathrm{B}}_1^{+} $$ accuracy and scan time. Lower coefficient of variation values (average [min-max] across subjects) of the estimated FA in the volume of interest were observed using kT -points (7.4 [6.6%-8.0%]), compared with phase shimming (18.8 [12.9%-23.4%], p < 0.001) and CP (43.2 [39.4%-47.1%], p < 0.001). kT -points delivered whole-liver images with the nominal FA and the highest degree of homogeneity. CP and phase shimming resulted in either inaccurate or imprecise FA distributions. Here, locations having suboptimal FA in the estimated FA maps corresponded to liver areas suffering from inconsistent signal intensity and T1 -weighting in the gradient-echo scans. CONCLUSION Homogeneous whole-liver 3D gradient-echo acquisitions at 7 T can be obtained with eight-channel kT -point pulses calculated based on subject-specific multichannel absolute Fourier PE-DREAMB 1 + $$ {\mathrm{B}}_1^{+} $$ maps.
Collapse
Affiliation(s)
- Bobby A Runderkamp
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Thomas Roos
- Spinoza Centre for Neuroimaging, Royal Netherlands Academy for Arts and Sciences (KNAW), Amsterdam, the Netherlands
- High-Field Research Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wietske van der Zwaag
- Spinoza Centre for Neuroimaging, Royal Netherlands Academy for Arts and Sciences (KNAW), Amsterdam, the Netherlands
- Computational and Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, KNAW, Amsterdam, the Netherlands
| | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Matthan W A Caan
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Herrler J, Williams SN, Liebig P, Ding B, McElhinney P, Allwood-Spiers S, Meixner CR, Gunamony S, Maier A, Dörfler A, Gumbrecht R, Porter DA, Nagel AM. The effects of RF coils and SAR supervision strategies for clinically applicable nonselective parallel-transmit pulses at 7 T. Magn Reson Med 2023; 89:1888-1900. [PMID: 36622945 DOI: 10.1002/mrm.29569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE To investigate the effects of using different parallel-transmit (pTx) head coils and specific absorption rate (SAR) supervision strategies on pTx pulse design for ultrahigh-field MRI using a 3D-MPRAGE sequence. METHODS The PTx universal pulses (UPs) and fast online-customized (FOCUS) pulses were designed with pre-acquired data sets (B0 , B1 + maps, specific absorption rate [SAR] supervision data) from two different 8 transmit/32 receive head coils on two 7T whole-body MR systems. For one coil, the SAR supervision model consisted of per-channel RF power limits. In the other coil, SAR estimations were done with both per-channel RF power limits as well as virtual observation points (VOPs) derived from electromagnetic field (EMF) simulations using three virtual human body models at three different positions. All pulses were made for nonselective excitation and inversion and evaluated on 132 B0 , B1 + , and SAR supervision datasets obtained with one coil and 12 from the other. At both sites, 3 subjects were examined using MPRAGE sequences that used UP/FOCUS pulses generated for both coils. RESULTS For some subjects, the UPs underperformed when simulated on a different coil from which they were derived, whereas FOCUS pulses still showed acceptable performance in that case. FOCUS inversion pulses outperformed adiabatic pulses when scaled to the same local SAR level. For the self-built coil, the use of VOPs showed reliable overestimation compared with the ground-truth EMF simulations, predicting about 52% lower local SAR for inversion pulses compared with per-channel power limits. CONCLUSION FOCUS inversion pulses offer a low-SAR alternative to adiabatic pulses and benefit from using EMF-based VOPs for SAR estimation.
Collapse
Affiliation(s)
- Jürgen Herrler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Siemens Healthcare, Erlangen, Germany
| | | | | | | | - Paul McElhinney
- Imaging Center of Excellence, University of Glasgow, Glasgow, UK
| | | | - Christian R Meixner
- Siemens Healthcare, Erlangen, Germany.,Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Shajan Gunamony
- Imaging Center of Excellence, University of Glasgow, Glasgow, UK.,MR CoilTech, Glasgow, UK
| | - Andreas Maier
- Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - David A Porter
- Imaging Center of Excellence, University of Glasgow, Glasgow, UK
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
7
|
Kent JL, Dragonu I, Valkovič L, Hess AT. Rapid 3D absolute B 1 + mapping using a sandwiched train presaturated TurboFLASH sequence at 7 T for the brain and heart. Magn Reson Med 2023; 89:964-976. [PMID: 36336893 PMCID: PMC10099228 DOI: 10.1002/mrm.29497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To shorten the acquisition time of magnetization-prepared absolute transmit field (B1 + ) mapping known as presaturation TurboFLASH, or satTFL, to enable single breath-hold whole-heart 3D B1 + mapping. METHODS SatTFL is modified to remove the delay between the reference and prepared images (typically 5 T1 ), with matching transmit configurations for excitation and preparation RF pulses. The new method, called Sandwich, is evaluated as a 3D sequence, measuring whole-brain and gated whole-heart B1 + maps in a single breath-hold. We evaluate the sensitivity to B1 + and T1 using numerical Bloch, extended phase graph, and Monte Carlo simulations. Phantom and in vivo images were acquired in both the brain and heart using an 8-channel transmit 7 Tesla MRI system to support the simulations. A segmented satTFL with a short readout train was used as a reference. RESULTS The method significantly reduces acquisition times of 3D measurements from 360 s to 20 s, in the brain, while simultaneously reducing bias in the measured B1 + due to T1 and magnetization history. The mean coefficient of variation was reduced by 81% for T1 s of 0.5-3 s compared to conventional satTFL. In vivo, the reproducibility coefficient for flip angles in the range 0-130° was 4.5° for satTFL and 4.7° for our scheme, significantly smaller than for a short TR satTFL sequence, which was 12°. The 3D sequence measured B1 + maps of the whole thorax in 26 heartbeats. CONCLUSION Our adaptations enable faster B1 + mapping, with minimal T1 sensitivity and lower sensitivity to magnetization history, enabling single breath-hold whole-heart absolute B1 + mapping.
Collapse
Affiliation(s)
- James L Kent
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Ladislav Valkovič
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Oxford, UK.,Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Aaron T Hess
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Krueger F, Aigner CS, Hammernik K, Dietrich S, Lutz M, Schulz-Menger J, Schaeffter T, Schmitter S. Rapid estimation of 2D relative B 1 + -maps from localizers in the human heart at 7T using deep learning. Magn Reson Med 2023; 89:1002-1015. [PMID: 36336877 DOI: 10.1002/mrm.29510] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Subject-tailored parallel transmission pulses for ultra-high fields body applications are typically calculated based on subject-specific B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps of all transmit channels, which require lengthy adjustment times. This study investigates the feasibility of using deep learning to estimate complex, channel-wise, relative 2D B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps from a single gradient echo localizer to overcome long calibration times. METHODS 126 channel-wise, complex, relative 2D B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps of the human heart from 44 subjects were acquired at 7T using a Cartesian, cardiac gradient-echo sequence obtained under breath-hold to create a library for network training and cross-validation. The deep learning predicted maps were qualitatively compared to the ground truth. Phase-only B 1 + $$ {\mathrm{B}}_1^{+} $$ -shimming was subsequently performed on the estimated B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps for a region of interest covering the heart. The proposed network was applied at 7T to 3 unseen test subjects. RESULTS The deep learning-based B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps, derived in approximately 0.2 seconds, match the ground truth for the magnitude and phase. The static, phase-only pulse design performs best when maximizing the mean transmission efficiency. In-vivo application of the proposed network to unseen subjects demonstrates the feasibility of this approach: the network yields predicted B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps comparable to the acquired ground truth and anatomical scans reflect the resulting B 1 + $$ {\mathrm{B}}_1^{+} $$ -pattern using the deep learning-based maps. CONCLUSION The feasibility of estimating 2D relative B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps from initial localizer scans of the human heart at 7T using deep learning is successfully demonstrated. Because the technique requires only sub-seconds to derive channel-wise B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps, it offers high potential for advancing clinical body imaging at ultra-high fields.
Collapse
Affiliation(s)
- Felix Krueger
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany.,Technische Universität Berlin, Biomedical Engineering, Berlin, Germany
| | | | - Kerstin Hammernik
- Technical University of Munich, Munich, Germany.,Imperial College London, London, United Kingdom
| | | | - Max Lutz
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Jeanette Schulz-Menger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Experimental Clinical Research Center, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Cardiology and Nephrology, HELIOS Hospital Berlin-Buch, Berlin, Germany
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany.,Technische Universität Berlin, Biomedical Engineering, Berlin, Germany.,Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA.,Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
9
|
Chen X, Wu W, Chiew M. Improving robustness of 3D multi-shot EPI by structured low-rank reconstruction of segmented CAIPI sampling for fMRI at 7T. Neuroimage 2023; 267:119827. [PMID: 36572131 PMCID: PMC10933751 DOI: 10.1016/j.neuroimage.2022.119827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional (3D) encoding methods are increasingly being explored as alternatives to two-dimensional (2D) multi-slice acquisitions in fMRI, particularly in cases where high isotropic resolution is needed. 3D multi-shot EPI acquisition, as the workhorse of 3D fMRI imaging, is susceptible to physiological fluctuations which can induce inter-shot phase variations, and thus reducing the achievable tSNR, negating some of the benefit of 3D encoding. This issue can be particularly problematic at ultra-high fields like 7T, which have more severe off-resonance effects. In this work, we aim to improve the temporal stability of 3D multi-shot EPI at 7T by improving its robustness to inter-shot phase variations. We presented a 3D segmented CAIPI sampling trajectory ("seg-CAIPI") and an improved reconstruction method based on Hankel structured low-rank matrix recovery. Simulation and in-vivo results demonstrate that the combination of the seg-CAIPI sampling scheme and the proposed structured low-rank reconstruction is a promising way to effectively reduce the unwanted temporal variance induced by inter-shot physiological fluctuations, and thus improve the robustness of 3D multi-shot EPI for fMRI.
Collapse
Affiliation(s)
- Xi Chen
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| | - Wenchuan Wu
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Physical Sciences, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|