1
|
McGrory MJB, Versteeg E, Sbrizzi A, van den Berg CAT, Klomp D, Siero JCW. Fast and silent MRI using nonlinear gradient fields at the ultrasonic gradient switching frequency of 20 kHz with a Point Spread Function framework reconstruction. Magn Reson Med 2024; 92:2734-2748. [PMID: 39099149 DOI: 10.1002/mrm.30230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/16/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE To demonstrate the feasibility of using a nonlinear gradient field for spatial encoding at the ultrasonic switching frequency of 20 kHz and present a framework to reconstruct data acquired in this way. METHODS Nonlinear encoding at 20 kHz was realized by using a single-axis silent gradient insert for imaging in the periphery, that, is the nonlinear region, of the gradient field. The gradient insert induces a rapidly oscillating gradient field in the phase-encode direction, which enables nonlinear encoding when combined with a Cartesian readout from the linear whole-body gradients. Data from a 2D gradient echo sequence were reconstructed using a point spread function (PSF) framework. Accelerated scans were also simulated via retrospective undersampling (R = 1 to R = 8) to determine the effectiveness of the PSF-framework for accelerated imaging. RESULTS Using a nonlinear gradient field switched at 20 kHz and the PSF-framework resulted in images of comparable quality to images from conventional Cartesian linear encoding. At increased acceleration factors (R ≤ 8), the PSF-framework outperformed linear SENSE reconstructions by improved controlling of aliasing artifacts. CONCLUSION Using the PSF-framework, images of comparable quality to conventional SENSE reconstructions are possible via combining traditional linear and ultrasonic oscillating nonlinear encoding fields. Using nonlinear gradient fields relaxes the demand for strictly linear gradient fields, enabling much higher slew rates with a reduced risk of peripheral nerve stimulation or cardiac stimulation, which could aid in extension to ultrasonic whole-body MRI. The lack of aliasing artifacts also highlights the potential of accelerated imaging using the PSF-framework.
Collapse
Affiliation(s)
- Michael J B McGrory
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Edwin Versteeg
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alessandro Sbrizzi
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis A T van den Berg
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis Klomp
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen C W Siero
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
- Spinoza Center for Neuroimaging Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Boulant N, Ma S, Walker E, Beckett A, Vu AT, Gunamony S, Feinberg DA. Acoustic noise reduction in the NexGen 7 T scanner. Magn Reson Med 2024; 92:2261-2270. [PMID: 39004827 DOI: 10.1002/mrm.30211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE Driven by the Lorentz force, acoustic noise may arguably be the next physiological challenge associated with ultra-high field MRI scanners and powerful gradient coils. This work consisted of isolating and mitigating the main sound pathway in the NexGen 7 T scanner equipped with the investigational Impulse head gradient coil. METHODS Sound pressure level (SPL) measurements were performed with and without the RF coil to assess its acoustic impact. Vibration measurements were carried out on the gradient coil, the RF coil, and on the patient table to distinguish the different vibration mechanisms and pathways. Vibrations of the RF coil were modified by either making contact with the patient bore liner with padding material or by changing directly the RF shield with phosphor bronze mesh material. RESULTS SPL and vibration measurements demonstrated that eddy-currents induced in the RF shield were the primary cause of acoustic noise. Replacing the conventional solid copper shield with phosphor bronze mesh material altered the vibrations of the RF shield and decreased SPL by 6 to 8 dB at the highest frequencies in EPI, depending on the gradient axis, while boosting the transmit B1 + field by 15%. Padding led to slightly less sound reduction on the X and Z gradient axes, but with minimal impact for the Y axis. CONCLUSION This study demonstrates the potential importance of eddy-current induced vibrations in the RF coil in terms of acoustic noise and opens new horizons for mitigation measures.
Collapse
Affiliation(s)
- Nicolas Boulant
- CEA, CNRS, BAOBAB, NeuroSpin, University of Paris-Saclay, Gif sur Yvette, France
- Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
- Advanced MRI technologies, Sebastopol, California, USA
| | - Samantha Ma
- Siemens Healthcare, Malvern, Pennsylvania, USA
| | - Erica Walker
- Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
- Advanced MRI technologies, Sebastopol, California, USA
| | - Alexander Beckett
- Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
- Advanced MRI technologies, Sebastopol, California, USA
| | - An T Vu
- University of California, San Francisco, California, USA
- San Francisco VA Health Care System, San Francisco, California, USA
| | - Shajan Gunamony
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - David A Feinberg
- Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
- Advanced MRI technologies, Sebastopol, California, USA
| |
Collapse
|
3
|
Barksdale AC, Ferris NG, Mattingly E, Śliwiak M, Guerin B, Wald LL, Davids M, Klein V. Measurement of peripheral nerve magnetostimulation thresholds of a head solenoid coil between 200 Hz and 88.1 kHz. RESEARCH SQUARE 2024:rs.3.rs-4864083. [PMID: 39483914 PMCID: PMC11527250 DOI: 10.21203/rs.3.rs-4864083/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Magnetic fields switching at kilohertz frequencies induce electric fields in the body that can cause peripheral nerve stimulation (PNS). Magnetically induced PNS, i.e. magnetostimulation, has been extensively studied below 10 kHz. It is widely characterized using a hyperbolic strength-duration curve (SDC), where the PNS thresholds monotonically decrease with frequency. The very few studies performed at higher frequencies found significant deviations from the hyperbolic SDC above ~ 25 kHz, however, those measurements are sparse and show large variability. We fill the gap in the data by measuring PNS in the head of 8 volunteers using a solenoidal coil at 16 frequencies between 200 Hz and 88.1 kHz. Contrary to the hyperbolic SDC, PNS thresholds did not decrease monotonically with frequency, but reached a minimum ~ 25 kHz. The thresholds then increased by 39% from 25 kHz to 88.1 kHz on average across subjects. Our measurements can be used for guidance and validation of neurodynamic models and to inform PNS limits of magnetic resonance imaging (MRI) gradient coils and magnetic particle imaging (MPI) systems. The observed deviation of the experimentally measured thresholds from the hyperbolic SDC calls for further study of the underlying biological mechanisms of magnetostimulation beyond 25 kHz.
Collapse
|
4
|
Versteeg E, Nam KM, Klomp DWJ, Bhogal AA, Siero JCW, Wijnen JP. A silent echo-planar spectroscopic imaging readout with high spectral bandwidth MRSI using an ultrasonic gradient axis. Magn Reson Med 2024; 91:2247-2256. [PMID: 38205917 DOI: 10.1002/mrm.30008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
PURPOSE We present a novel silent echo-planar spectroscopic imaging (EPSI) readout, which uses an ultrasonic gradient insert to accelerate MRSI while producing a high spectral bandwidth (20 kHz) and a low sound level. METHODS The ultrasonic gradient insert consisted of a single-axis (z-direction) plug-and-play gradient coil, powered by an audio amplifier, and produced 40 mT/m at 20 kHz. The silent EPSI readout was implemented in a phase-encoded MRSI acquisition. Here, the additional spatial encoding provided by this silent EPSI readout was used to reduce the number of phase-encoding steps. Spectroscopic acquisitions using phase-encoded MRSI, a conventional EPSI-readout, and the silent EPSI readout were performed on a phantom containing metabolites with resonance frequencies in the ppm range of brain metabolites (0-4 ppm). These acquisitions were used to determine sound levels, showcase the high spectral bandwidth of the silent EPSI readout, and determine the SNR efficiency and the scan efficiency. RESULTS The silent EPSI readout featured a 19-dB lower sound level than a conventional EPSI readout while featuring a high spectral bandwidth of 20 kHz without spectral ghosting artifacts. Compared with phase-encoded MRSI, the silent EPSI readout provided a 4.5-fold reduction in scan time. In addition, the scan efficiency of the silent EPSI readout was higher (82.5% vs. 51.5%) than the conventional EPSI readout. CONCLUSIONS We have for the first time demonstrated a silent spectroscopic imaging readout with a high spectral bandwidth and low sound level. This sound reduction provided by the silent readout is expected to have applications in sound-sensitive patient groups, whereas the high spectral bandwidth could benefit ultrahigh-field MR systems.
Collapse
Affiliation(s)
- Edwin Versteeg
- Center for Image Sciences, Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kyung Min Nam
- Center for Image Sciences, Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Center for Image Sciences, Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alex A Bhogal
- Center for Image Sciences, Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen C W Siero
- Center for Image Sciences, Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
| | - Jannie P Wijnen
- Center for Image Sciences, Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
5
|
Tian R, Uecker M, Davids M, Thielscher A, Buckenmaier K, Holder O, Steffen T, Scheffler K. Accelerated 2D Cartesian MRI with an 8-channel local B 0 coil array combined with parallel imaging. Magn Reson Med 2024; 91:443-465. [PMID: 37867407 DOI: 10.1002/mrm.29799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE In MRI, the magnetization of nuclear spins is spatially encoded with linear gradients and radiofrequency receivers sensitivity profiles to produce images, which inherently leads to a long scan time. Cartesian MRI, as widely adopted for clinical scans, can be accelerated with parallel imaging and rapid magnetic field modulation during signal readout. Here, by using an 8-channel localB 0 $$ {\mathrm{B}}_0 $$ coil array, the modulation scheme optimized for sampling efficiency is investigated to speed up 2D Cartesian scans. THEORY AND METHODS An 8-channel localB 0 $$ {\mathrm{B}}_0 $$ coil array is made to carry sinusoidal currents during signal readout to accelerate 2D Cartesian scans. An MRI sampling theory based on reproducing kernel Hilbert space is exploited to visualize the efficiency of nonlinear encoding in arbitrary sampling duration. A field calibration method using current monitors for localB 0 $$ {\mathrm{B}}_0 $$ coils and the ESPIRiT algorithm is proposed to facilitate image reconstruction. Image acceleration with various modulation field shapes, aliasing control, and distinct modulation frequencies are scrutinized to find an optimized modulation scheme. A safety evaluation is conducted. In vivo 2D Cartesian scans are accelerated by the localB 0 $$ {\mathrm{B}}_0 $$ coils. RESULTS For 2D Cartesian MRI, the optimal modulation field by this localB 0 $$ {\mathrm{B}}_0 $$ array converges to a nearly linear gradient field. With the field calibration technique, it accelerates the in vivo scans (i.e., proved safe) by threefold and eightfold free of visible artifacts, without and with SENSE, respectively. CONCLUSION The nonlinear encoding analysis tool, the field calibration method, the safety evaluation procedures, and the in vivo reconstructed scans make significant steps to push MRI speed further with the localB 0 $$ {\mathrm{B}}_0 $$ coil array.
Collapse
Affiliation(s)
- Rui Tian
- High-Field MR center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Martin Uecker
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- BioTechMed-Graz, Graz, Austria
| | - Mathias Davids
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Axel Thielscher
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Kai Buckenmaier
- High-Field MR center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Oliver Holder
- High-Field MR center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Theodor Steffen
- High-Field MR center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- High-Field MR center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Ladd ME, Quick HH, Speck O, Bock M, Doerfler A, Forsting M, Hennig J, Ittermann B, Möller HE, Nagel AM, Niendorf T, Remy S, Schaeffter T, Scheffler K, Schlemmer HP, Schmitter S, Schreiber L, Shah NJ, Stöcker T, Uder M, Villringer A, Weiskopf N, Zaiss M, Zaitsev M. Germany's journey toward 14 Tesla human magnetic resonance. MAGMA (NEW YORK, N.Y.) 2023; 36:191-210. [PMID: 37029886 PMCID: PMC10140098 DOI: 10.1007/s10334-023-01085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023]
Abstract
Multiple sites within Germany operate human MRI systems with magnetic fields either at 7 Tesla or 9.4 Tesla. In 2013, these sites formed a network to facilitate and harmonize the research being conducted at the different sites and make this technology available to a larger community of researchers and clinicians not only within Germany, but also worldwide. The German Ultrahigh Field Imaging (GUFI) network has defined a strategic goal to establish a 14 Tesla whole-body human MRI system as a national research resource in Germany as the next progression in magnetic field strength. This paper summarizes the history of this initiative, the current status, the motivation for pursuing MR imaging and spectroscopy at such a high magnetic field strength, and the technical and funding challenges involved. It focuses on the scientific and science policy process from the perspective in Germany, and is not intended to be a comprehensive systematic review of the benefits and technical challenges of higher field strengths.
Collapse
Affiliation(s)
- Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany.
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Harald H Quick
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioural Brain Sciences, Magdeburg, Germany
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Michael Bock
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Jürgen Hennig
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Bernd Ittermann
- Medical Physics and Metrological Information Technology, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Harald E Möller
- Methods and Development Group Nuclear Magnetic Resonance, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Armin M Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Stefan Remy
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Tobias Schaeffter
- Medical Physics and Metrological Information Technology, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Klaus Scheffler
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | | | - Sebastian Schmitter
- Medical Physics and Metrological Information Technology, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Laura Schreiber
- Department of Cardiovascular Imaging, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
| | - Tony Stöcker
- MR Physics, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Moritz Zaiss
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Maxim Zaitsev
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Gudino N, Littin S. Advancements in Gradient System Performance for Clinical and Research MRI. J Magn Reson Imaging 2023; 57:57-70. [PMID: 36073722 DOI: 10.1002/jmri.28421] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 02/03/2023] Open
Abstract
In magnetic resonance imaging (MRI), spatial field gradients are applied along each axis to encode the location of the nuclear spin in the frequency domain. During recent years, the development of new gradient technologies has been focused on the generation of stronger and faster gradient fields for imaging with higher spatial and temporal resolution. This benefits imaging methods, such as brain diffusion and functional MRI, and enables human imaging at ultra-high field MRI. In addition to improving gradient performance, new technologies have been presented to minimize peripheral nerve stimulation and gradient-related acoustic noise, both generated by the rapid switching of strong gradient fields. This review will provide a general background on the gradient system and update on the state-of-the-art gradient technology. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Natalia Gudino
- MRI Engineering Core, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Sebastian Littin
- Medical Physics, Department of Radiology, Faculty of Medicine, University Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Jacobs SM, Versteeg E, van der Kolk AG, Visser LNC, Oliveira ÍAF, van Maren E, Klomp DWJ, Siero JCW. Image quality and subject experience of quiet T1-weighted 7-T brain imaging using a silent gradient coil. Eur Radiol Exp 2022; 6:36. [PMID: 36042139 PMCID: PMC9428090 DOI: 10.1186/s41747-022-00293-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives Acoustic noise in magnetic resonance imaging (MRI) negatively impacts patients. We assessed a silent gradient coil switched at 20 kHz combined with a T1-weighted magnetisation prepared rapid gradient-echo (MPRAGE) sequence at 7 T. Methods Five healthy subjects (21–29 years; three females) without previous 7-T MRI experience underwent both a quiet MPRAGE (Q-MPRAGE) and conventional MPRAGE (C-MPRAGE) sequence twice. Image quality was assessed quantitatively, and qualitatively by two neuroradiologists. Sound level was measured objectively and rated subjectively on a 0 to 10 scale by all subjects immediately following each sequence and after the whole examination (delayed). All subjects also reported comfort level, overall experience and willingness to undergo the sequence again. Results Compared to C-MPRAGE, Q-MPRAGE showed higher signal-to-noise ratio (10%; p = 0.012) and lower contrast-to-noise ratio (20%; p < 0.001) as well as acceptable to good image quality. Q-MPRAGE produced 27 dB lower sound level (76 versus 103 dB). Subjects reported lower sound level for Q-MPRAGE both immediate (4.4 ± 1.4 versus 6.4 ± 1.3; p = 0.007) and delayed (4.6 ± 1.4 versus 6.3 ± 1.3; p = 0.005), while they rated comfort level (7.4 ± 1.0 versus 6.1 ± 1.7; p = 0.016) and overall experience (7.6 ± 1.0 versus 6.0 ± 0.9; p = 0.005) higher. Willingness to undergo the sequence again was also higher, however not significantly (8.1 ± 1.0 versus 7.2 ± 1.3; p = 0.066). Conclusion Q-MPRAGE using a silent gradient coil reduced sound level by 27 dB compared to C-MPRAGE at 7 T while featuring acceptable-to-good image quality and a quieter and more pleasant subject experience.
Collapse
Affiliation(s)
- Sarah M Jacobs
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Edwin Versteeg
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Anja G van der Kolk
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leonie N C Visser
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.,Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institute, Stockholm, Sweden
| | - Ícaro A F Oliveira
- Spinoza Centre for Neuroimaging Amsterdam, Amsterdam, the Netherlands.,Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | - Emiel van Maren
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dennis W J Klomp
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jeroen C W Siero
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.,Spinoza Centre for Neuroimaging Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Versteeg E, Klomp DWJ, Siero JCW. Accelerating Brain Imaging Using a Silent Spatial Encoding Axis. Magn Reson Med 2022; 88:1785-1793. [PMID: 35696540 PMCID: PMC9544176 DOI: 10.1002/mrm.29350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/15/2022]
Abstract
Purpose To characterize the acceleration capabilities of a silent head insert gradient axis that operates at the inaudible frequency of 20 kHz and a maximum gradient amplitude of 40 mT/m without inducing peripheral nerve stimulation. Methods The silent gradient axis' acquisitions feature an oscillating gradient in the phase‐encoding direction that is played out on top of a cartesian readout, similarly as done in Wave‐CAIPI. The additional spatial encoding fills k‐space in readout lanes allowing for the acquisition of fewer phase‐encoding steps without increasing aliasing artifacts. Fully sampled 2D gradient echo datasets were acquired both with and without the silent readout. All scans were retrospectively undersampled (acceleration factors R = 1 to 12) to compare conventional SENSE acceleration and acceleration using the silent gradient. The silent gradient amplitude and the readout bandwidth were varied to investigate the effect on artifacts and g‐factor. Results The silent readout reduced the g‐factor for all acceleration factors when compared to SENSE acceleration. Increasing the silent gradient amplitude from 31.5 mT/m to 40 mT/m at an acceleration factor of 10 yielded a reduction in the average g‐factor (gavg) from 1.3 ± 0.14 (gmax = 1.9) to 1.1 ± 0.09 (gmax = 1.6). Furthermore, reducing the number of cycles increased the readout bandwidth and the g‐factor that reached gavg = 1.5 ± 0.16 for a readout bandwidth of 651 Hz/pixel and an acceleration factor of R = 8. Conclusion A silent gradient axis enables high acceleration factors up to R = 10 while maintaining a g‐factor close to unity (gavg = 1.1 and gmax = 1.6) and can be acquired with clinically relevant readout bandwidths. Click here for author‐reader discussions
Collapse
Affiliation(s)
- Edwin Versteeg
- Department of RadiologyUniversity Medical Center Utrecht
UtrechtThe Netherlands
| | - Dennis W. J. Klomp
- Department of RadiologyUniversity Medical Center Utrecht
UtrechtThe Netherlands
| | - Jeroen C. W. Siero
- Department of RadiologyUniversity Medical Center Utrecht
UtrechtThe Netherlands
- Spinoza Center for NeuroimagingAmsterdamNetherlands
| |
Collapse
|