Stelter J, Weiss K, Wu M, Raspe J, Braun P, Zöllner C, Karampinos DC. Dixon-based B
0 self-navigation in radial stack-of-stars multi-echo gradient echo imaging.
Magn Reson Med 2025;
93:80-95. [PMID:
39155406 DOI:
10.1002/mrm.30261]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
PURPOSE
To develop a Dixon-basedB 0 $$ {\mathrm{B}}_0 $$ self-navigation approach to estimate and correct temporalB 0 $$ {\mathrm{B}}_0 $$ variations in radial stack-of-stars gradient echo imaging for quantitative body MRI.
METHODS
The proposed method estimates temporalB 0 $$ {\mathrm{B}}_0 $$ variations using aB 0 $$ {\mathrm{B}}_0 $$ self-navigator estimated by a graph-cut-based water-fat separation algorithm on the oversampled k-space center. TheB 0 $$ {\mathrm{B}}_0 $$ self-navigator was employed to correct for phase differences between radial spokes (one-dimensional [1D] correction) and to perform a motion-resolved reconstruction to correct spatiotemporal pseudo-periodicB 0 $$ {\mathrm{B}}_0 $$ variations (three-dimensional [3D] correction). Numerical simulations, phantom experiments and in vivo neck scans were performed to evaluate the effects of temporalB 0 $$ {\mathrm{B}}_0 $$ variations on the field-map, proton density fat fraction (PDFF) andT 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ map, and to validate the proposed method.
RESULTS
TemporalB 0 $$ {\mathrm{B}}_0 $$ variations were found to cause signal loss and phase shifts on the multi-echo images that lead to an underestimation ofT 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ , while PDFF mapping was less affected. TheB 0 $$ {\mathrm{B}}_0 $$ self-navigator captured slowly varying temporalB 0 $$ {\mathrm{B}}_0 $$ drifts and temporal variations caused by respiratory motion. While the 1D correction effectively correctedB 0 $$ {\mathrm{B}}_0 $$ drifts in phantom studies, it was insufficient in vivo due to 3D spatially varying temporalB 0 $$ {\mathrm{B}}_0 $$ variations with amplitudes of up to 25 Hz at 3 T near the lungs. The proposed 3D correction locally improved the correction of field-map andT 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ and reduced image artifacts.
CONCLUSION
TemporalB 0 $$ {\mathrm{B}}_0 $$ variations particularly affectT 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ mapping in radial stack-of-stars imaging. The self-navigation approach can be applied without modifying the MR acquisition to correct forB 0 $$ {\mathrm{B}}_0 $$ drift and physiological motion-inducedB 0 $$ {\mathrm{B}}_0 $$ variations, especially in the presence of fat.
Collapse