1
|
Zhu A, Shih R, Huang RY, DeMarco JK, Bhushan C, Morris HD, Kohls G, Yeo DTB, Marinelli L, Mitra J, Hood M, Ho VB, Foo TKF. Revealing tumor microstructure with oscillating diffusion encoding MRI in pre-surgical and post-treatment glioma patients. Magn Reson Med 2023; 90:1789-1801. [PMID: 37335831 DOI: 10.1002/mrm.29758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE We hypothesized that the time-dependent diffusivity at short diffusion times, as measured by oscillating gradient spin echo (OGSE) diffusion MRI, can characterize tissue microstructures in glioma patients. THEORY AND METHODS Five adult patients with known diffuse glioma, including two pre-surgical and three with new enhancing lesions after treatment for high-grade glioma, were scanned in an ultra-high-performance gradient 3.0T MRI system. OGSE diffusion MRI at 30-100 Hz and pulsed gradient spin echo diffusion imaging (approximated as 0 Hz) were obtained. The ADC and trace-diffusion-weighted image at each acquired frequency were calculated, that is, ADC (f) and TraceDWI (f). RESULTS In pre-surgical patients, biopsy-confirmed solid enhancing tumor in a high-grade glioblastoma showed higherADC ( f ) ADC ( 0 Hz ) $$ \frac{\mathrm{ADC}\ (f)}{\mathrm{ADC}\ \left(0\ \mathrm{Hz}\right)} $$ and lowerTraceDWI ( f ) TraceDWI ( 0 Hz ) $$ \frac{\mathrm{TraceDWI}\ (f)}{\mathrm{TraceDWI}\ \left(0\ \mathrm{Hz}\right)} $$ , compared to that at same OGSE frequency in a low-grade astrocytoma. In post-treatment patients, the enhancing lesions of two patients who were diagnosed with tumor progression contained more voxels with highADC ( f ) ADC ( 0 Hz ) $$ \frac{\mathrm{ADC}\ (f)}{\mathrm{ADC}\ \left(0\ \mathrm{Hz}\right)} $$ and lowTraceDWI ( f ) TraceDWI ( 0 Hz ) $$ \frac{\mathrm{TraceDWI}\left(\mathrm{f}\right)}{\mathrm{TraceDWI}\left(0\ \mathrm{Hz}\right)} $$ , compared to the enhancing lesions of a patient who was diagnosed with treatment effect. Non-enhancing T2 signal abnormality lesions in both the pre-surgical high-grade glioblastoma and post-treatment tumor progressions showed regions with highADC ( f ) ADC ( 0 Hz ) $$ \frac{\mathrm{ADC}\ (f)}{\mathrm{ADC}\ \left(0\ \mathrm{Hz}\right)} $$ and lowTraceDWI ( f ) TraceDWI ( 0 Hz ) $$ \frac{\mathrm{TraceDWI}\ \left(\mathrm{f}\right)}{\mathrm{TraceDWI}\ \left(0\ \mathrm{Hz}\right)} $$ , consistent with infiltrative tumor. The solid tumor of the glioblastoma, the enhancing lesions of post-treatment tumor progressions, and the suspected infiltrative tumors showed high diffusion time-dependency from 30 to 100 Hz, consistent with high intra-tumoral volume fraction (cellular density). CONCLUSION Different characteristics of OGSE-based time-dependent diffusivity can reveal heterogenous tissue microstructures that indicate cellular density in glioma patients.
Collapse
Affiliation(s)
- Ante Zhu
- GE Research, Niskayuna, New York, USA
| | - Robert Shih
- Uniformed Services University, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - J Kevin DeMarco
- Uniformed Services University, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | | | - H Douglas Morris
- Uniformed Services University, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Gail Kohls
- Uniformed Services University, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | | | | | | | - Maureen Hood
- Uniformed Services University, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Vincent B Ho
- Uniformed Services University, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Thomas K F Foo
- GE Research, Niskayuna, New York, USA
- Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Dai E, Zhu A, Yang GK, Quah K, Tan ET, Fiveland E, Foo TKF, McNab JA. Frequency-dependent diffusion kurtosis imaging in the human brain using an oscillating gradient spin echo sequence and a high-performance head-only gradient. Neuroimage 2023; 279:120328. [PMID: 37586445 PMCID: PMC10529993 DOI: 10.1016/j.neuroimage.2023.120328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/17/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023] Open
Abstract
Measuring the time/frequency dependence of diffusion MRI is a promising approach to distinguish between the effects of different tissue microenvironments, such as membrane restriction, tissue heterogeneity, and compartmental water exchange. In this study, we measure the frequency dependence of diffusivity (D) and kurtosis (K) with oscillating gradient diffusion encoding waveforms and a diffusion kurtosis imaging (DKI) model in human brains using a high-performance, head-only MAGNUS gradient system, with a combination of b-values, oscillating frequencies (f), and echo time that has not been achieved in human studies before. Frequency dependence of diffusivity and kurtosis are observed in both global and local white matter (WM) and gray matter (GM) regions and characterized with a power-law model ∼Λ*fθ. The frequency dependences of diffusivity and kurtosis (including changes between fmin and fmax, Λ, and θ) vary over different WM and GM regions, indicating potential microstructural differences between regions. A trend of decreasing kurtosis over frequency in the short-time limit is successfully captured for in vivo human brains. The effects of gradient nonlinearity (GNL) on frequency-dependent diffusivity and kurtosis measurements are investigated and corrected. Our results show that the GNL has prominent scaling effects on the measured diffusivity values (3.5∼5.5% difference in the global WM and 6∼8% difference in the global cortex) and subsequently affects the corresponding power-law parameters (Λ, θ) while having a marginal influence on the measured kurtosis values (<0.05% difference) and power-law parameters (Λ, θ). This study expands previous OGSE studies and further demonstrates the translatability of frequency-dependent diffusivity and kurtosis measurements to human brains, which may provide new opportunities to probe human brain microstructure in health and disease.
Collapse
Affiliation(s)
- Erpeng Dai
- Department of Radiology, Stanford University, Stanford, CA, USA.
| | | | - Grant K Yang
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Kristin Quah
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Ek T Tan
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| | | | | | | |
Collapse
|
3
|
Borsos KB, Tse DHY, Dubovan PI, Baron CA. Tuned bipolar oscillating gradients for mapping frequency dispersion of diffusion kurtosis in the human brain. Magn Reson Med 2023; 89:756-766. [PMID: 36198030 DOI: 10.1002/mrm.29473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Oscillating gradient spin-echo (OGSE) sequences have demonstrated an ability to probe time-dependent microstructural features, although they often suffer from low SNR due to increased TEs. In this work we introduce frequency-tuned bipolar (FTB) gradients as a variation of oscillating gradients with reduced TE and demonstrate their utility by mapping the frequency dispersion of kurtosis in human subjects. METHODS An FTB oscillating gradient waveform is presented that provides encoding of 1.5 net oscillation periods, thereby reducing the TE of the acquisition. Simulations were performed to determine an optimal protocol based on the SNR of kurtosis frequency dispersion-defined as the difference in kurtosis between pulsed and oscillating gradient acquisitions. Healthy human subjects were scanned at 7T using pulsed gradient and an optimized 23 Hz FTB protocol, which featured a maximum b-value of 2500 s/mm2 . In addition, to directly compare existing methods, measurements using traditional cosine OGSE were also acquired. RESULTS FTB oscillating gradients demonstrated equivalent frequency-dependent diffusion measurements compared with cosine-modulated OGSE while enabling a significant reduction in TE. Optimization and in vivo results suggest that FTB gradients provide increased SNR of kurtosis dispersion maps compared with traditional cosine OGSE. The optimized FTB gradient protocol demonstrated consistent reductions in apparent kurtosis values and increased diffusivity in generated frequency dispersion maps. CONCLUSIONS This work presents an alternative to traditional cosine OGSE sequences, enabling more time-efficient acquisitions of frequency-dependent diffusion quantities as demonstrated through in vivo kurtosis frequency dispersion maps.
Collapse
Affiliation(s)
- Kevin B Borsos
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Center for Functional and Metabolic Mapping, Western University, London, Ontario, Canada
| | - Desmond H Y Tse
- Center for Functional and Metabolic Mapping, Western University, London, Ontario, Canada
| | - Paul I Dubovan
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Center for Functional and Metabolic Mapping, Western University, London, Ontario, Canada
| | - Corey A Baron
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Center for Functional and Metabolic Mapping, Western University, London, Ontario, Canada.,Imaging Laboratories, Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|