1
|
Julovi SM, Dao A, Trinh K, O'Donohue AK, Shu C, Smith S, Shingde M, Schindeler A, Rogers NM, Little CB. Disease-modifying interactions between chronic kidney disease and osteoarthritis: a new comorbid mouse model. RMD Open 2023; 9:e003109. [PMID: 37562858 PMCID: PMC10423836 DOI: 10.1136/rmdopen-2023-003109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
OBJECTIVE The prevalence of comorbid chronic kidney disease (CKD) and osteoarthritis (OA) is increasing globally. While sharing common risk factors, the mechanism and consequences of concurrent CKD-OA are unclear. The aims of the study were to develop a preclinical comorbid model, and to investigate the disease-modifying interactions. METHODS Seventy (70) male 8-10 week-old C57BL/6 mice were subjected to 5/6 nephrectomy (5/6Nx)±destabilisation of medial meniscus (DMM) or sham surgery. OA pathology and CKD were assessed 12 weeks postinduction by blinded histology scoring, micro-CT, immunohistochemistry for osteoclast and matrix metalloproteinase (MMP)-13 activity, and serum analysis of bone metabolic markers. RESULTS The 5/6Nx model recapitulated characteristic features of CKD, with renal fibrosis and deranged serum alkaline phosphatase, calcium and phosphate. There was no histological evidence of cartilage pathology induced by 5/6Nx alone, however, synovial MMP-13 expression and subchondral bone osteoclastic activity were increased (p<0.05), with accompanying reductions (p<0.05) in subchondral trabecular bone, bone volume and mineral density. DMM significantly (p<0.05) increased tibiofemoral cartilage damage, subchondral bone sclerosis, marginal osteophytes and synovitis, in association with increased cartilage and synovial MMP-13. DMM alone induced (p<0.05) renal fibrosis, proteinuria and increased (p<0.05) 5/6Nx-induced serum urea. However, DMM in 5/6Nx-mice resulted in significantly reduced (p<0.05) cartilage pathology and marginal osteophyte development, in association with reduced subchondral bone volume and density, and inhibition of 5/6Nx-induced subchondral bone osteoclast activation. CONCLUSION This study assessed a world-first preclinical comorbid CKD-OA model. Our findings demonstrate significant bidirectional disease-modifying interaction between CKD and OA.
Collapse
Affiliation(s)
- Sohel M Julovi
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Aiken Dao
- The Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Bioengineering & Molecular Medicine (BAMM) Laboratory, the Children's Hospital at Westmead and the Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Katie Trinh
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Alexandra K O'Donohue
- The Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Bioengineering & Molecular Medicine (BAMM) Laboratory, the Children's Hospital at Westmead and the Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Cindy Shu
- The Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Susan Smith
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Meena Shingde
- Department of Tissue Pathology and Diagnostic Oncology, Institute of Clinical Pathology and Medical Research, Wentworthville, New South Wales, Australia
| | - Aaron Schindeler
- The Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Bioengineering & Molecular Medicine (BAMM) Laboratory, the Children's Hospital at Westmead and the Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Natasha M Rogers
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Christopher B Little
- The Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
2
|
Non-steroidal anti-inflammatory drugs in chronic kidney disease and risk of acute adverse kidney events according to route of administration. Int Urol Nephrol 2023; 55:679-686. [PMID: 36065044 DOI: 10.1007/s11255-022-03344-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Topical non-steroidal anti-inflammatory drugs (NSAIDs) have lower risks for cardiovascular disease and gastrointestinal adverse effects compared to oral NSAIDs, but there are little data regarding their kidney risks in chronic kidney disease (CKD). We evaluated the risk of adverse acute kidney outcomes in CKD according to route of NSAID administration. METHODS Retrospective cohort study of adults with CKD (eGFR less than 60 ml/min/1.73 m2) who received prescriptions between 2015 and 2017 from a major healthcare cluster in Singapore. The adverse acute kidney outcomes were acute kidney injury (AKI) and need for nephrology specialist consult within 30 days. RESULTS Among 6298 adults with CKD (mean age 72.1 ± 13.3 years and eGFR 41.9 ± 12.2 ml/min/1.73 m2), systemic and topical NSAIDs were prescribed in 16.7% and 32.0%, respectively. Incident AKI (any severity), KDIGO Stage 2 or 3 AKI, and need for nephrology specialist consult occurred in 16.7%, 2.6%, and 10.6% of the study cohort, respectively. After adjusting for age, diabetes, recent cardiovascular hospitalization, baseline eGFR, RAAS blocker and diuretic, systemic NSAIDs, and topical NSAIDs, compared with the no-NSAID group, were independently associated with incident AKI [adjusted OR 1.77 (95% CI 1.46-2.15) and 1.38 (1.18-1.63), respectively]. Moderate and severe AKI (adjusted OR 1.68, 95% CI 1.09-2.58, p = 0.02) and need for nephrology consults (adjusted OR 1.41, 95% CI 1.09-1.82, p = 0.008) were also increased in systemic NSAIDs. CONCLUSION Among adults with CKD, both systemic and topical NSAIDs were independently associated with acute adverse kidney outcomes.
Collapse
|
3
|
Drożdżal S, Lechowicz K, Szostak B, Rosik J, Kotfis K, Machoy‐Mokrzyńska A, Białecka M, Ciechanowski K, Gawrońska‐Szklarz B. Kidney damage from nonsteroidal anti-inflammatory drugs-Myth or truth? Review of selected literature. Pharmacol Res Perspect 2021; 9:e00817. [PMID: 34310861 PMCID: PMC8313037 DOI: 10.1002/prp2.817] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/29/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely available drugs with anti-inflammatory and analgesic properties. Their mechanism of action is associated with the enzymes of the arachidonic acid cycle (cyclooxygenases: COX-1 and COX-2). The cyclooxygenase pathway results in the formation of prostanoids (prostaglandins [PGs], prostacyclins, and thromboxanes). It affects various structures of the human body, including the kidneys. Medical literature associates the usage of NSAIDs with acute kidney injury (AKI), tubulointerstitial nephritis (TIN), as well as nephrotic syndrome and chronic kidney disease (CKD). AKI associated with the chronic consumption of NSAIDs is mainly attributed to pharmacological polytherapy and the presence of cardiovascular or hepatic comorbidities. The pathomechanism of AKI and CKD is associated with inhibition of the biosynthesis of prostanoids involved in the maintenance of renal blood flow, especially PGE2 and PGI2. It is suggested that both COX isoforms play opposing roles in renal function, with natriuresis increased by COX-1 inhibition followed by a drop in a blood pressure, whereas COX-2 inhibition increases blood pressure and promotes sodium retention. TIN after NSAID use is potentially associated with glomerular basement membrane damage, reduction in pore size, and podocyte density. Therefore, nephrotic proteinuria and impairment of renal function may occur. The following article analyzes the association of NSAIDs with kidney disease based on available medical literature.
Collapse
Affiliation(s)
- Sylwester Drożdżal
- Department of Pharmacokinetics and Monitored TherapyPomeranian Medical UniversitySzczecinPoland
| | - Kacper Lechowicz
- Department of Anaesthesiology, Intensive Therapy and Acute IntoxicationsPomeranian Medical UniversitySzczecinPoland
| | - Bartosz Szostak
- Department of PhysiologyPomeranian Medical UniversitySzczecinPoland
| | - Jakub Rosik
- Department of PhysiologyPomeranian Medical UniversitySzczecinPoland
| | - Katarzyna Kotfis
- Department of Anaesthesiology, Intensive Therapy and Acute IntoxicationsPomeranian Medical UniversitySzczecinPoland
| | - Anna Machoy‐Mokrzyńska
- Department of Experimental and Clinical PharmacologyPomeranian Medical UniversitySzczecinPoland
| | - Monika Białecka
- Department of Pharmacokinetics and Monitored TherapyPomeranian Medical UniversitySzczecinPoland
| | - Kazimierz Ciechanowski
- Department of Nephrology, Transplantology and Internal MedicinePomeranian Medical UniversitySzczecinPoland
| | | |
Collapse
|