1
|
Mohammadi P, Hesari M, Chalabi M, Salari F, Khademi F. An overview of immune checkpoint therapy in autoimmune diseases. Int Immunopharmacol 2022; 107:108647. [DOI: 10.1016/j.intimp.2022.108647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 02/06/2023]
|
2
|
Gezmis H, Mayda Domac F, Ormeci B, Uyanik H, Doran T, Keles EC, Kirac D. ε 2 , ε 3 , and ε 4 variants of ApoE; rs2228570 (VDR), rs4588 and rs7041 (VDBP) polymorphisms in patients with multiple sclerosis: A case-control study in Turkish population. Int J Clin Pract 2021; 75:e14801. [PMID: 34486787 DOI: 10.1111/ijcp.14801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 11/28/2022] Open
Abstract
AIM OF THE STUDY Multiple sclerosis (MS) is a degenerative disease characterized by autoimmune demyelination in the central nervous system. Yet, underlined genetics or environmental markers are still controversial. The impact of vitamin D and cholesterol on disease activity has been phrased by many studies; however, the data available for the Turkish population are very limited. This study aimed to investigate the effect of vitamin D-related polymorphisms (VDBP and VDR) and cholesterol-related variants of ApoE on Turkish MS patients. MATERIALS AND METHODS Total DNAs were extracted from peripheral blood samples of 51 MS patients and 50 healthy volunteers. rs4588 and rs7041 polymorphisms of VDBP, rs2228570 of VDR, as well as ε2, ε3, and ε4 variants of ApoE, were investigated by RT-PCR. Biochemical parameters which thought to be associated with MS were also measured. Results were evaluated statistically. RESULTS Homozygous mutant genotype and G allele of rs2228570 in VDR, as well as heterozygous genotype of rs4588 in VDBP, were found statistically high in patients. Total cholesterol, triglyceride, and LDL-C levels were found significantly high, whereas HDL-C and vitamin D levels were low in patients. An association was found between rs4588 variation and high triglyceride levels. Similar correlations were found between ε2 genotype and low LDL-C level; ε3 genotype and higher LDL-C. Gender, triglyceride, HDL-C, and AA genotype in rs4588 had a significant effect on MS progression. CONCLUSION The variations of rs2228570 and rs4588, vitamin D deficiency, and biological parameters related to cholesterol metabolism may be associated with MS risk.
Collapse
Affiliation(s)
- Hazal Gezmis
- Department of Medical Biology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Fusun Mayda Domac
- Department of Neurology, University of Health Sciences, Erenkoy Mental and Nervous Diseases Training and Research Hospital, Istanbul, Turkey
| | - Burcu Ormeci
- Department of Neurology, Yeditepe University Hospital, Istanbul, Turkey
| | - Handan Uyanik
- Department of Neurology, Yeditepe University Hospital, Istanbul, Turkey
| | - Tansu Doran
- Department of Medical Biology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - E Cigdem Keles
- Department of Biostatistics, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Deniz Kirac
- Department of Medical Biology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
3
|
Mirzaei R, Zamani F, Hajibaba M, Rasouli-Saravani A, Noroozbeygi M, Gorgani M, Hosseini-Fard SR, Jalalifar S, Ajdarkosh H, Abedi SH, Keyvani H, Karampoor S. The pathogenic, therapeutic and diagnostic role of exosomal microRNA in the autoimmune diseases. J Neuroimmunol 2021; 358:577640. [PMID: 34224949 DOI: 10.1016/j.jneuroim.2021.577640] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Exosomes are a nano-vesicle surrounded by a bilipid layer that can release from almost all cells and could be detected in tissues and biological liquids. These vesicles contain lipids, proteins, and nucleic acids (including DNA, mRNA, and miRNA) inside and on the exosomes' surface constitute their content. Exosomes can transfer their cargo into the recipient cell, which can modify recipient cells' biological activities. Recently it has been deciphering that the miRNA pattern of exosomes reveals the cellular pathophysiological situation and modifies various biological processes. Increasing data regarding exosomes highlights that the exosomes and their cargo, especially miRNAs, are implicated in the pathophysiology of various disorders, such as autoimmune disease. The current evidence on the deciphering of mechanisms in which exosomal miRNAs contributed to autoimmunity was indicated that exosomal miRNA might hold information that can reprogram the function of many of the immune cells involved in autoimmune diseases' pathogenesis. In the present study, we summarized the pathogenic role of exosomal miRNAs in several autoimmune diseases, including myasthenia gravis (MG), psoriasis, inflammatory bowel disease (IBD), type 1 diabetes (T1D), multiple sclerosis (MS), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjogren's Syndrome (SS), systemic sclerosis (SSc), vitiligo, and autoimmune thyroid diseases (AITD). Moreover, in this work, we present evidence of the potential role of exosomal miRNAs as therapeutic and diagnostic agents in autoimmune diseases.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Hajibaba
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mina Noroozbeygi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassnan Abedi
- Department of Internal Medicine, Rohani Hospital, Babol University of Medical Science, Babol, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Paramonova N, Kalnina J, Dokane K, Dislere K, Trapina I, Sjakste T, Sjakste N. Genetic variations in the PSMA6 and PSMC6 proteasome genes are associated with multiple sclerosis and response to interferon-β therapy in Latvians. Exp Ther Med 2021; 21:478. [PMID: 33767773 PMCID: PMC7976443 DOI: 10.3892/etm.2021.9909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/08/2020] [Indexed: 12/26/2022] Open
Abstract
Several polymorphisms in genes related to the ubiquitin-proteasome system exhibit an association with pathogenesis and prognosis of various human autoimmune diseases. Our previous study reported the association between multiple sclerosis (MS) and the PSMA3-rs2348071 polymorphism in the Latvian population. The current study aimed to evaluate the PSMA6 and PSMC6 genetic variations, their interaction between each other and with the rs2348071, on the susceptibility to MS risk and response to therapy in the Latvian population. PSMA6-rs2277460, -rs1048990 and PSMC6-rs2295826, -rs2295827 were genotyped in the MS case/control study and analysed in terms of genotype-protein correlation network. The possible association with the disease and alleles, single- and multi-locus genotypes and haplotypes of the studied loci was assessed. Response to therapy was evaluated in terms of 'no evidence of disease activity'. To the best of our knowledge, the present study was the first to report that single- and multi-loci variations in the PSMA6, PSMC6 and PSMA3 proteasome genes may have contributed to the risk of MS in the Latvian population. The results of the current study suggested a potential for the PSMA6-rs1048990 to be an independent marker for the prognosis of interferon-β therapy response. The genotype-phenotype network presented in the current study provided a new insight into the pathogenesis of MS and perspectives for future pharmaceutical interventions.
Collapse
Affiliation(s)
- Natalia Paramonova
- Genomics and Bioinformatics, Institute of Biology of The University of Latvia, LV-1004 Riga, Latvia
| | - Jolanta Kalnina
- Genomics and Bioinformatics, Institute of Biology of The University of Latvia, LV-1004 Riga, Latvia
| | - Kristine Dokane
- Genomics and Bioinformatics, Institute of Biology of The University of Latvia, LV-1004 Riga, Latvia
| | - Kristine Dislere
- Genomics and Bioinformatics, Institute of Biology of The University of Latvia, LV-1004 Riga, Latvia
| | - Ilva Trapina
- Genomics and Bioinformatics, Institute of Biology of The University of Latvia, LV-1004 Riga, Latvia
| | - Tatjana Sjakste
- Genomics and Bioinformatics, Institute of Biology of The University of Latvia, LV-1004 Riga, Latvia
| | - Nikolajs Sjakste
- Genomics and Bioinformatics, Institute of Biology of The University of Latvia, LV-1004 Riga, Latvia.,Department of Medical Biochemistry of The University of Latvia, LV-1004 Riga, Latvia
| |
Collapse
|
5
|
Paramonova N, Trapina I, Dokane K, Kalnina J, Sjakste T, Sjakste N. An Intergenic rs9275596 Polymorphism on Chr. 6p21 Is Associated with Multiple Sclerosis in Latvians. MEDICINA-LITHUANIA 2020; 56:medicina56040154. [PMID: 32244438 PMCID: PMC7230508 DOI: 10.3390/medicina56040154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/30/2022]
Abstract
Background and objectives: Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system, leading to demyelination of neurons and potentially debilitating physical and mental symptoms. The disease is more prevalent in women than in men. The major histocompatibility complex (MHC) region has been identified as a major genetic determinant for autoimmune diseases, and its role in some neurological disorders including MS was evaluated. An intergenic single-nucleotide polymorphism (SNP), rs9275596, located between the HLA-DQB1 and HLA-DQA2 genes, is in significant association with various autoimmune diseases according to genome-wide association studies (GWASs). A cumulative effect of this SNP with other polymorphisms from this region was revealed. The aim of the study was to verify the data on rs9275596 association in multiple sclerosis in a case/control study of the Latvian population and to evaluate eventual functional significance of allele substitutions. Materials and Methods: rs9275596 (chr6:32713854; GRCh38.p12) was genotyped in 273 MS patients and 208 controls on main and sex-specific associations. Eventual functional significance of allele substitutions was evaluated in silico using publicly available tools. Results: The rs9275596 rare alleles were identified as a disease susceptibility factor in association with the MS main group and in affected females (p < 0.001 and p < 0.01, respectively). Risk factor genotypes with rare alleles included were associated with the MS common cohort (p < 0.002) and female cohort (odds ratio, OR = 2.24) and were identified as disease susceptible in males (OR = 2.41). It was shown that structural changes of rs9275596 affect the secondary structure of DNA. Functional significance of allele substitutions was evaluated on the eventual sequence affinity to transcription factors (TFs) and splicing signals similarity. A possible impact of the particular polymorphisms on the transcription and splicing efficiency is discussed. Conclusions: Our results suggest susceptibility of rs9275596 to multiple sclerosis in Latvians.
Collapse
Affiliation(s)
- Natalia Paramonova
- Genomics and Bioinformatics, Institute of Biology of the University of Latvia, LV-1004 Riga, Latvia; (N.P.); (K.D.); (J.K.); (T.S.); (N.S.)
| | - Ilva Trapina
- Genomics and Bioinformatics, Institute of Biology of the University of Latvia, LV-1004 Riga, Latvia; (N.P.); (K.D.); (J.K.); (T.S.); (N.S.)
- Correspondence: ; Tel.: +371-29354786
| | - Kristine Dokane
- Genomics and Bioinformatics, Institute of Biology of the University of Latvia, LV-1004 Riga, Latvia; (N.P.); (K.D.); (J.K.); (T.S.); (N.S.)
| | - Jolanta Kalnina
- Genomics and Bioinformatics, Institute of Biology of the University of Latvia, LV-1004 Riga, Latvia; (N.P.); (K.D.); (J.K.); (T.S.); (N.S.)
| | - Tatjana Sjakste
- Genomics and Bioinformatics, Institute of Biology of the University of Latvia, LV-1004 Riga, Latvia; (N.P.); (K.D.); (J.K.); (T.S.); (N.S.)
| | - Nikolajs Sjakste
- Genomics and Bioinformatics, Institute of Biology of the University of Latvia, LV-1004 Riga, Latvia; (N.P.); (K.D.); (J.K.); (T.S.); (N.S.)
- Department of Medical Biochemistry of the University of Latvia, LV-1004 Riga, Latvia
| |
Collapse
|
6
|
De Marco R, Greco A, Calonghi N, Dattoli SD, Baiula M, Spampinato S, Picchetti P, De Cola L, Anselmi M, Cipriani F, Gentilucci L. Selective detection of α4β1 integrin (VLA-4)-expressing cells using peptide-functionalized nanostructured materials mimicking endothelial surfaces adjacent to inflammatory sites. Biopolymers 2017; 110. [PMID: 29178262 DOI: 10.1002/bip.23081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/06/2017] [Accepted: 10/18/2017] [Indexed: 01/01/2023]
Abstract
Persistent accumulation of immune cells mediated by α4β1 integrin (VLA-4) is a hallmark of the inflammatory diseases and of chronic inflammation observed in the affected tissues of autoimmune diseases. Aiming at exploring new methods for monitoring the course of the inflammatory processes, we designed the first peptide-functionalized nanostructured devices capable to mimic the high-density multivalency binding between the α4β1 integrin-expressing cells and the ligands overexpressed on the endothelial surfaces, in the proximity of the sites of inflammation. Specifically, we describe the first examples of monolayers constituted by dye-loaded zeolite L crystals, coated with α4β1 integrin peptide ligands, and we analyze the adhesion of model Jurkat cells in comparison to non-α4β1 integrin-expressing cells. In particular, the peptidomimetic diphenylurea-Leu-Asp-Val-diamine allows significant and selective detection of α4β1 integrin-expressing Jurkat cells, after very rapid incubation time, supporting the possible implementation in a diagnostic device capable to detect the desired cells from biological fluids, obtainable from patients in a noninvasive way.
Collapse
Affiliation(s)
- Rossella De Marco
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Arianna Greco
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Natalia Calonghi
- Department of Pharmacy and Biotechnology, University of Bologna, via Irnerio 48, Bologna, 40126, Italy
| | - Samantha D Dattoli
- Department of Pharmacy and Biotechnology, University of Bologna, via Irnerio 48, Bologna, 40126, Italy
| | - Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, via Irnerio 48, Bologna, 40126, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, via Irnerio 48, Bologna, 40126, Italy
| | - Pierre Picchetti
- Institut de science et d'ingénierie supramoléculaires (ISIS), Université de Strasbourg and CNR UMR 7006, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Luisa De Cola
- Institut de science et d'ingénierie supramoléculaires (ISIS), Université de Strasbourg and CNR UMR 7006, 8 Allée Gaspard Monge, Strasbourg, 67000, France
- Institut fűr Nanotechnologie (INT), Karlsruhe Institute of Technology (KIT) - Campus Nord, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Michele Anselmi
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Francesca Cipriani
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 11, Bologna, 40138, Italy
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, Bologna, 40126, Italy
| |
Collapse
|
7
|
Mohamed Koriem KM. Corrigendum to ‘Multiple sclerosis: New insights and trends’. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
8
|
Magnetic poly(2-hydroxyethyl methacrylate) microspheres for affinity purification of monospecific anti-p46 kDa/Myo1C antibodies for early diagnosis of multiple sclerosis patients. Biosci Rep 2017; 37:BSR20160526. [PMID: 28351895 PMCID: PMC5484020 DOI: 10.1042/bsr20160526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study is to develop new magnetic polymer microspheres with
functional groups available for easy protein and antibody binding. Monodisperse
macroporous poly(2-hydroxyethyl methacrylate) (PHEMA-COOH) microspheres
~4 µm in diameter and containing ∼1 mmol COOH/g
were synthesized by multistep swelling polymerization of 2-hydroxyethyl methacrylate
(HEMA), ethylene dimethacrylate (EDMA), and 2-[(methoxycarbonyl)methoxy]ethyl
methacrylate (MCMEMA), which was followed by MCMEMA hydrolysis. The microspheres were
rendered magnetic by precipitation of iron oxide inside the pores, which made them
easily separable in a magnetic field. Properties of the resulting magnetic
poly(2-hydroxyethyl methacrylate) (mgt.PHEMA) particles with COOH functionality were
examined by scanning and transmission electron microscopy (SEM and TEM), static
volumetric adsorption of helium and nitrogen, mercury porosimetry, Fourier transform
infrared (FTIR) and atomic absorption spectroscopy (AAS), and elemental analysis.
Mgt.PHEMA microspheres were coupled with p46/Myo1C protein purified from blood
serum of multiple sclerosis (MS) patients, which enabled easy isolation of
monospecific anti-p46/Myo1C immunoglobulin G (IgG) antibodies from crude
antibody preparations of mouse blood serum. High efficiency of this approach was
confirmed by SDS/PAGE, Western blot, and dot blot analyses. The newly
developed mgt.PHEMA microspheres conjugated with a potential disease biomarker,
p46/Myo1C protein, are thus a promising tool for affinity purification of
antibodies, which can improve diagnosis and treatment of MS patients.
Collapse
|
9
|
|
10
|
Fawaz CN, Makki IS, Kazan JM, Gebara NY, Andary FS, Itani MM, El-Sayyed M, Zeidan A, Quartarone A, Darwish H, Mondello S. Neuroproteomics and microRNAs studies in multiple sclerosis: transforming research and clinical knowledge in biomarker research. Expert Rev Proteomics 2015; 12:637-50. [DOI: 10.1586/14789450.2015.1099435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Expression and Genetic Analysis of MicroRNAs Involved in Multiple Sclerosis. Int J Mol Sci 2013; 14:4375-84. [PMID: 23439547 PMCID: PMC3634436 DOI: 10.3390/ijms14034375] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 01/21/2023] Open
Abstract
Evidence underlines the importance of microRNAs (miRNAs) in the pathogenesis of multiple sclerosis (MS). Based on the fact that miRNAs are present in human biological fluids, we previously showed that miR-223, miR-23a and miR-15b levels were downregulated in the sera of MS patients versus controls. Here, the expression levels of these candidate miRNAs were determined in peripheral blood mononuclear cells (PBMCs) and the serum of MS patients, in addition to three genotyped single nucleotide polymorphisms (SNPs). Mapping in the genomic regions of miR-223, miR-23a and miR-15b genes, 399 cases and 420 controls were tested. Expression levels of miR-223 and miR-23a were altered in PBMCs from MS patients versus controls. Conversely, there were no differences in the expression levels of miR-15b. A significantly decreased genotypic frequency of miR-223 rs1044165 T/T genotype was observed in MS patients. Moreover, the allelic frequency of miR-23a rs3745453 C allele was significantly increased in patients versus controls. In contrast, there were no differences in the distribution of miR-15b SNP. In conclusion, our results suggest that miR-223 and miR-23a could play a role in the pathogenesis of MS. Moreover, miR-223 rs1044165 polymorphism likely acts as a protective factor, while miR-23a rs3745453 variant seems to act as a risk factor for MS.
Collapse
|
12
|
Fenoglio C, Ridolfi E, Galimberti D, Scarpini E. MicroRNAs as active players in the pathogenesis of multiple sclerosis. Int J Mol Sci 2012. [PMID: 23202949 PMCID: PMC3497323 DOI: 10.3390/ijms131013227] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
MicroRNAs (miRNAs) are a recently discovered group of small noncoding RNAs that regulate gene expression post-transcriptionally. They are highly expressed in cells of the immune system, as well as in the central nervous system, and they are deregulated in various neurological disorders. Emerging evidence underlines an involvement of miRNAs in the pathogenesis of Multiple Sclerosis (MS). A number of miRNAs have been found to be dysregulated in blood cells from MS patients, in brain lesions, as well as in biological fluids such as serum and plasma. Despite miRNA altered expression likely showing a high tissue specificity, some profile similarities could be observed for certain miRNAs such as miR-326-such as upregulation in both active lesions and blood-though not for others such as miR-323, which demonstrated upregulation in whole blood, active brain lesions, and T-reg cells, but not in the serum of MS patients. In this review, the possible role of miRNAs in MS pathogenesis will be discussed according to all the available literature, with a particular emphasis on the possibility of considering extracellular miRNAs as a new source for both biomarker identification and therapeutic target discovery.
Collapse
Affiliation(s)
- Chiara Fenoglio
- Department of Pathophysiology and transplantation, "Dino Ferrari" Center, University of Milan, IRCCS Foundation Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy.
| | | | | | | |
Collapse
|
13
|
Hubbard D, Ponec D, Gooding J, Saxon R, Sauder H, Haacke M. Clinical improvement after extracranial venoplasty in multiple sclerosis. J Vasc Interv Radiol 2012; 23:1302-8. [PMID: 22951366 DOI: 10.1016/j.jvir.2012.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 07/07/2012] [Accepted: 07/10/2012] [Indexed: 11/15/2022] Open
Abstract
PURPOSE This study proposed to prospectively evaluate safety and clinical changes in outpatient endovascular treatment in patients with multiple sclerosis (MS) and chronic cerebrospinal venous insufficiency (CCSVI). MATERIALS AND METHODS Two hundred fifty-nine patients with MS were followed with the Multiple Sclerosis Impact Scale (MSIS-29) before and for 1 and 6 months after treatment of extracranial internal jugular vein and azygos vein stenoses and occlusions using venous angioplasty, as well as stent placement in 2.5% of patients. Before treatment, the patients were tested with magnetic resonance (MR) venography and flow quantification. RESULTS We found statistically significant improvements in the MSIS-29 scores (P < .01) at both 1 and 6 months. At 1 and 6 months, 67.9% and 53.6% were improved on the physical scale, respectively, and 53.0% and 44.4% were improved on the psychological scale, respectively. Women showed greater improvement than did men on the physical scale at 6 months (P = .01). Patients with primary progressive MS (PPMS) showed less improvement than did those with relapsing-remitting MS (RRMS) on the psychological scale at 1 month, and venoplasty treatment of more vein sites versus fewer vein sites showed greater improvement on the physical scale at both 1 and 6 months. Fifteen patients (6.3%) reported recurrent symptoms after clinical improvement and were treated again. There was one serious adverse event, a deep venous thrombosis at the catheter insertion site, which resolved with treatment. CONCLUSIONS Endovascular treatment of CCSVI in patients with MS appears to be a safe procedure resulting in significant clinical improvement.
Collapse
Affiliation(s)
- David Hubbard
- Applied fMRI Institute, Hubbard Foundation, San Diego, California 92064, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Sex differences and genomics in autoimmune diseases. J Autoimmun 2012; 38:J254-65. [DOI: 10.1016/j.jaut.2011.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 12/23/2022]
|