1
|
Francisco R, Jesus F, Santos P, Trbovšek P, Moreira AS, Nunes CL, Alvim M, Sardinha LB, Lukaski H, Mendonca GV, Silva AM. Does acute dehydration affect the neuromuscular function in healthy adults?-a systematic review. Appl Physiol Nutr Metab 2024; 49:1441-1460. [PMID: 39047298 DOI: 10.1139/apnm-2024-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The effects of acute dehydration on neuromuscular function have been studied. However, whether the mechanisms underpinning such function are central or peripheral is still being determined, and the results are inconsistent. This systematic review aims to elucidate the influence of acute dehydration on neuromuscular function, including a novel aspect of investigating the central and peripheral neuromuscular mechanisms. Three databases were used for the article search: PubMed, Web of Science, and Scopus. Studies were included if they had objective measurements of dehydration, muscle performance, and electromyography data or transcranial magnetic stimulation or peripheral nerve stimulation measurements with healthy individuals aged 18-65 years. Twenty-three articles met the eligibility criteria. The studies exhibited considerable heterogeneity in the methods used to induce and quantify dehydration. Despite being inconsistent, the literature shows some evidence that acute dehydration does not affect maximal strength during isometric or moderate-speed isokinetic contractions. Conversely, acute dehydration significantly reduces maximal strength during slow-speed isokinetic contractions and fatigue resistance in response to endurance tasks. The studies report that dehydration does not affect the motor cortical output or spinal circuity. The effects occur at the peripheral level within the muscle.
Collapse
Affiliation(s)
- Rúben Francisco
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Filipe Jesus
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Paulo Santos
- Neuromuscular Research Lab, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Pia Trbovšek
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Alexandre S Moreira
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina L Nunes
- Atlântica, Instituto Universitário, Fábrica da Pólvora de Barcarena, 2730-036 Barcarena, Portugal
| | - Marta Alvim
- National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Luís B Sardinha
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Henry Lukaski
- Department of Kinesiology and Public Health Education, Hyslop Sports Center, University of North Dakota, Grand Forks, ND, USA
| | - Gonçalo V Mendonca
- Neuromuscular Research Lab, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Analiza M Silva
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Uddin N, Scott J, Nixon J, Patterson SD, Kidgell D, Pearce AJ, Waldron M, Tallent J. The effects of exercise, heat-induced hypo-hydration and rehydration on blood-brain-barrier permeability, corticospinal and peripheral excitability. Eur J Appl Physiol 2024:10.1007/s00421-024-05616-x. [PMID: 39340668 DOI: 10.1007/s00421-024-05616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
PURPOSE The effects of low-intensity exercise, heat-induced hypo-hydration and rehydration on maximal strength and the underlying neurophysiological mechanisms are not well understood. METHODS To assess this, 12 participants took part in a randomised crossover study, in a prolonged (3 h) submaximal (60 W) cycling protocol under 3 conditions: (i) in 45 °C (achieving ~ 5% body mass reduction), with post-exercise rehydration in 2 h (RHY2), (ii) with rehydration across 24 h (RHY24), and (iii) a euhydrated trial in 25 °C (CON). Dependent variables included maximal voluntary contractions (MVC), maximum motor unit potential (MMAX), motor evoked potential (MEPRAW) amplitude and cortical silent period (cSP) duration. Blood-brain-barrier integrity was also assessed by serum Ubiquitin Carboxyl-terminal Hydrolase (UCH-L1) concentrations. All measures were obtained immediately pre, post, post 2 h and 24 h. RESULTS During both dehydration trials, MVC (RHY2: p < 0.001, RHY24: p = 0.001) and MEPRAW (RHY2: p = 0.025, RHY24: p = 0.045) decreased from pre- to post-exercise. MEPRAW returned to baseline during RHY2 and CON, but not RHY24 (p = 0.020). MEP/MMAX ratio decreased across time for all trials (p = 0.009) and returned to baseline, except RHY24 (p < 0.026). Increased cSP (p = 0.011) was observed during CON post-exercise, but not during RHY2 and RHY24. Serum UCH-L1 increased across time for all conditions (p < 0.001) but was not significantly different between conditions. CONCLUSION Our findings demonstrate an increase in corticospinal inhibition after exercise with fluid ingestion, but a decrease in corticospinal excitability after heat-induced hypo-hydration. In addition, low-intensity exercise increases peripheral markers of blood-brain-barrier permeability.
Collapse
Affiliation(s)
- Nasir Uddin
- Faculty of Sport, Technology and Health Sciences, St Mary's University, Twickenham, UK.
- School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Jamie Scott
- Faculty of Sport, Technology and Health Sciences, St Mary's University, Twickenham, UK
| | - Jonathan Nixon
- Faculty of Sport, Technology and Health Sciences, St Mary's University, Twickenham, UK
| | - Stephen D Patterson
- Faculty of Sport, Technology and Health Sciences, St Mary's University, Twickenham, UK
| | - Dawson Kidgell
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Alan J Pearce
- Swinburne Neuroimaging Facility, School of Health Science, Swinburne University of Technology, Melbourne, Australia
| | - Mark Waldron
- Applied Sport, Technology, Exercise and Medicine, College of Engineering, Swansea University, Swansea, Wales, UK
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Welsh Institute of Performance Science, Swansea University, Swansea, UK
| | - Jamie Tallent
- School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| |
Collapse
|
3
|
Francisco R, Jesus F, Nunes CL, Santos P, Alvim M, Campa F, Schoeller DA, Lukaski H, Mendonca GV, Sardinha LFCB, Silva AMLDA. H2OAthletes study protocol: effects of hydration changes on neuromuscular function in athletes. Br J Nutr 2024; 131:1579-1590. [PMID: 38299306 DOI: 10.1017/s0007114524000308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
We aim to understand the effects of hydration changes on athletes' neuromuscular performance, on body water compartments, fat-free mass hydration and hydration biomarkers and to test the effects of the intervention on the response of acute dehydration in the hydration indexes. The H2OAthletes study (clinicaltrials.gov ID: NCT05380089) is a randomised controlled trial in thirty-eight national/international athletes of both sexes with low total water intake (WI) (i.e. < 35·0 ml/kg/d). In the intervention, participants will be randomly assigned to the control (CG, n 19) or experimental group (EG, n 19). During the 4-day intervention, WI will be maintained in the CG and increased in the EG (i.e. > 45·0 ml/kg/d). Exercise-induced dehydration protocols with thermal stress will be performed before and after the intervention. Neuromuscular performance (knee extension/flexion with electromyography and handgrip), hydration indexes (serum, urine and saliva osmolality), body water compartments and water flux (dilution techniques, body composition (four-compartment model) and biochemical parameters (vasopressin and Na) will be evaluated. This trial will provide novel evidence about the effects of hydration changes on neuromuscular function and hydration status in athletes with low WI, providing useful information for athletes and sports-related professionals aiming to improve athletic performance.
Collapse
Affiliation(s)
- Rúben Francisco
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, 1499-002 Cruz-Quebrada, Lisbon, Portugal
| | - Filipe Jesus
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, 1499-002 Cruz-Quebrada, Lisbon, Portugal
| | - Catarina L Nunes
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, 1499-002 Cruz-Quebrada, Lisbon, Portugal
| | - Paulo Santos
- Neuromuscular Research Lab, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Marta Alvim
- National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Francesco Campa
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Dale A Schoeller
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Henry Lukaski
- Department of Kinesiology and Public Health Education, Hyslop Sports Center, University of North Dakota, Grand Forks, ND, USA
| | - Goncalo V Mendonca
- Neuromuscular Research Lab, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | | | | |
Collapse
|
4
|
Correa M, Projetti M, Siegler IA, Vignais N. Mechanomyographic Analysis for Muscle Activity Assessment during a Load-Lifting Task. SENSORS (BASEL, SWITZERLAND) 2023; 23:7969. [PMID: 37766025 PMCID: PMC10535044 DOI: 10.3390/s23187969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
The purpose of this study was to compare electromyographic (EMG) with mechanomyographic (MMG) recordings during isometric conditions, and during a simulated load-lifting task. Twenty-two males (age: 25.5 ± 5.3 years) first performed maximal voluntary contractions (MVC) and submaximal isometric contractions of upper limb muscles at 25%, 50% and 75% MVC. Participants then executed repetitions of a functional activity simulating a load-lifting task above shoulder level, at 25%, 50% and 75% of their maximum activity (based on MVC). The low-frequency part of the accelerometer signal (<5 Hz) was used to segment the six phases of the motion. EMG and MMG were both recorded during the entire experimental procedure. Root mean square (RMS) and mean power frequency (MPF) were selected as signal extraction features. During isometric contractions, EMG and MMG exhibited similar repeatability scores. They also shared similar RMS vs. force relationship, with RMS increasing to 75% MVC and plateauing to 100%. MPF decreased with increasing force to 75% MVC. In dynamic condition, RMSMMG exhibited higher sensitivity to changes in load than RMSEMG. These results confirm the feasibility of MMG measurements to be used during functional activities outside the laboratory. It opens new perspectives for future applications in sports science, ergonomics and human-machine interface conception.
Collapse
Affiliation(s)
- Matthieu Correa
- Laboratoire CIAMS (Complexité, Innovation, Activités Motrices et Sportives), Université Paris-Saclay, CEDEX, 91405 Orsay, France; (I.A.S.); (N.V.)
- Laboratoire CIAMS (Complexité, Innovation, Activités Motrices et Sportives), Université d’Orléans, 45067 Orléans, France
- Moten Technologies, 92800 Puteaux, France
| | | | - Isabelle A. Siegler
- Laboratoire CIAMS (Complexité, Innovation, Activités Motrices et Sportives), Université Paris-Saclay, CEDEX, 91405 Orsay, France; (I.A.S.); (N.V.)
- Laboratoire CIAMS (Complexité, Innovation, Activités Motrices et Sportives), Université d’Orléans, 45067 Orléans, France
| | - Nicolas Vignais
- Laboratoire CIAMS (Complexité, Innovation, Activités Motrices et Sportives), Université Paris-Saclay, CEDEX, 91405 Orsay, France; (I.A.S.); (N.V.)
- Laboratoire CIAMS (Complexité, Innovation, Activités Motrices et Sportives), Université d’Orléans, 45067 Orléans, France
| |
Collapse
|
5
|
Reece TM, Hatcher ML, Emerson DM, Herda TJ. The effects of passive dehydration on motor unit firing rates of the vastus lateralis in males. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-022-01006-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Corticospinal and peripheral responses to heat-induced hypo-hydration: potential physiological mechanisms and implications for neuromuscular function. Eur J Appl Physiol 2022; 122:1797-1810. [PMID: 35362800 PMCID: PMC9287254 DOI: 10.1007/s00421-022-04937-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/16/2022] [Indexed: 12/05/2022]
Abstract
Heat-induced hypo-hydration (hyperosmotic hypovolemia) can reduce prolonged skeletal muscle performance; however, the mechanisms are less well understood and the reported effects on all aspects of neuromuscular function and brief maximal contractions are inconsistent. Historically, a 4–6% reduction of body mass has not been considered to impair muscle function in humans, as determined by muscle torque, membrane excitability and peak power production. With the development of magnetic resonance imaging and neurophysiological techniques, such as electromyography, peripheral nerve, and transcranial magnetic stimulation (TMS), the integrity of the brain-to-muscle pathway can be further investigated. The findings of this review demonstrate that heat-induced hypo-hydration impairs neuromuscular function, particularly during repeated and sustained contractions. Additionally, the mechanisms are separate to those of hyperthermia-induced fatigue and are likely a result of modulations to corticospinal inhibition, increased fibre conduction velocity, pain perception and impaired contractile function. This review also sheds light on the view that hypo-hydration has ‘no effect’ on neuromuscular function during brief maximal voluntary contractions. It is hypothesised that irrespective of unchanged force, compensatory reductions in cortical inhibition are likely to occur, in the attempt of achieving adequate force production. Studies using single-pulse TMS have shown that hypo-hydration can reduce maximal isometric and eccentric force, despite a reduction in cortical inhibition, but the cause of this is currently unclear. Future work should investigate the intracortical inhibitory and excitatory pathways within the brain, to elucidate the role of the central nervous system in force output, following heat-induced hypo-hydration.
Collapse
|
7
|
Kelly DJ, West SL, O'Keeffe N, Brown LE. A quasi-experimental examination of weight-reducing dehydration practices in collegiate male rowers. BMC Sports Sci Med Rehabil 2021; 13:115. [PMID: 34563254 PMCID: PMC8466389 DOI: 10.1186/s13102-021-00344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/14/2021] [Indexed: 11/10/2022]
Abstract
Background Lightweight rowers commonly utilize weight loss techniques over 24-h before competition to achieve the qualifying weight for racing. The objective was to investigate, using a quasi-experimental design, whether changes in weight resulting from dehydration practices are related to changes in proxies of bodily systems involved in rowing and whether these relationships depend on the dehydration technique used. Methods Twelve elite male rowers performed a power test, an incremental VO2max test, and a visuomotor battery following: weight loss via thermal exposure, weight loss via fluid abstinence and then thermal exposure, and no weight loss. The total percent body mass change (%BMC), %BMC attributable to thermal exposure, and %BMC attributable to fluid abstinence were used to predict performance variables. Results Fluid abstinence but not thermal exposure was related to a lower total wattage produced on a incremental VO2max test (b = 4261.51 W/1%BMC, 95%CI = 1502.68–7020.34), lower wattages required to elicit 2 mmol/L (b = 27.84 W/1%BMC, 95%CI = 14.69–40.99) and 4 mmol/L blood lactate (b = 20.45 W/1%BMC, 95%CI = 8.91–31.99), and slower movement time on a visuomotor task (b = -38.06 ms/1%BMC, 95%CI = -62.09–-14.03). Conclusions Dehydration related weight changes are associated with reductions in some proxies of bodily systems involved in rowing but depend on the dehydration technique used. Supplementary Information The online version contains supplementary material available at 10.1186/s13102-021-00344-7.
Collapse
Affiliation(s)
- Dayton J Kelly
- Department of Biology, Trent University, Peterborough, Canada.,Department of Psychology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada.,Northern Ontario School of Medicine, Sudbury, Canada
| | - Sarah L West
- Department of Biology, Trent University, Peterborough, Canada.,Trent University, Peterborough, Canada.,Trent/Fleming School of Nursing, Trent University, Peterborough, Canada
| | - Nathan O'Keeffe
- Department of Biology, Trent University, Peterborough, Canada
| | - Liana E Brown
- Department of Psychology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada. .,Trent University, Peterborough, Canada.
| |
Collapse
|
8
|
Barley OR, Chapman DW, Abbiss CR. The Current State of Weight-Cutting in Combat Sports-Weight-Cutting in Combat Sports. Sports (Basel) 2019; 7:E123. [PMID: 31117325 PMCID: PMC6572325 DOI: 10.3390/sports7050123] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 01/08/2023] Open
Abstract
In combat sports, athletes are divided into categories based on gender and body mass. Athletes attempt to compete against a lighter opponent by losing body mass prior to being weighed (i.e., 'weight-cutting'). The purpose of this narrative review was to explore the current body of literature on weight-cutting and outline gaps for further research. Methods of weight-loss include energy intake restriction, total body fluid reduction and pseudo extreme/abusive medical practice (e.g., diuretics). The influence of weight-cutting on performance is unclear, with studies suggesting a negative or no effect. However, larger weight-cuts (~5% of body mass in <24 h) do impair repeat-effort performance. It is unclear if the benefit from competing against a smaller opponent outweighs the observed reduction in physical capacity. Many mechanisms have been proposed for the observed reductions in performance, ranging from reduced glycogen availability to increased perceptions of fatigue. Athletes undertaking weight-cutting may be able to utilise strategies around glycogen, total body water and electrolyte replenishment to prepare for competition. Despite substantial discussion on managing weight-cutting in combat sports, no clear solution has been offered. Given the prevalence of weight-cutting, it is important to develop a deeper understanding of such practices so appropriate advice can be given.
Collapse
Affiliation(s)
- Oliver R Barley
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia.
| | - Dale W Chapman
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia.
- Performance Support-Physiology and Nutrition, New South Wales Institute of Sport, Sydney Olympic Park, NSW 2127, Australia.
| | - Chris R Abbiss
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia.
| |
Collapse
|
9
|
Barley OR, Chapman DW, Blazevich AJ, Abbiss CR. Acute Dehydration Impairs Endurance Without Modulating Neuromuscular Function. Front Physiol 2018; 9:1562. [PMID: 30450056 PMCID: PMC6224374 DOI: 10.3389/fphys.2018.01562] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/18/2018] [Indexed: 01/06/2023] Open
Abstract
Introduction/Purpose: This study examined the influence of acute dehydration on neuromuscular function. Methods: On separate days, combat sports athletes experienced in acute dehydration practices (n = 14) completed a 3 h passive heating intervention (40°C, 63% relative humidity) to induce dehydration (DHY) or a thermoneutral euhydration control (25°C, 50% relative humidity: CON). In the ensuing 3 h ad libitum fluid and food intake was allowed, after which participants performed fatiguing exercise consisting of repeated unilateral knee extensions at 85% of their maximal voluntary isometric contraction (MVIC) torque until task failure. Both before and after the fatiguing protocol participants performed six MVICs during which measures of central and peripheral neuromuscular function were made. Urine and whole blood samples to assess urine specific gravity, urine osmolality, haematocrit and serum osmolality were collected before, immediately and 3 h after intervention. Results: Body mass was reduced by 3.2 ± 1.1% immediately after DHY (P < 0.001) but recovered by 3 h. Urine and whole blood markers indicated dehydration immediately after DHY, although blood markers were not different to CON at 3 h. Participants completed 28% fewer knee extensions at 85% MVIC (P < 0.001, g = 0.775) and reported a greater perception of fatigue (P = 0.012) 3 h after DHY than CON despite peak torque results being unaffected. No between-condition differences were observed in central or peripheral indicators of neuromuscular function at any timepoint. Conclusion: Results indicate that acute dehydration of 3.2% body mass followed by 3 h of recovery impairs muscular strength-endurance and increases fatigue perception without changes in markers of central or peripheral function. These findings suggest that altered fatigue perception underpins muscular performance decrements in recovery from acute dehydration.
Collapse
Affiliation(s)
- Oliver R Barley
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Dale W Chapman
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Chris R Abbiss
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
10
|
Davis JK, Laurent CM, Allen KE, Green JM, Stolworthy NI, Welch TR, Nevett ME. Influence of Dehydration on Intermittent Sprint Performance. J Strength Cond Res 2016; 29:2586-93. [PMID: 25774626 DOI: 10.1519/jsc.0000000000000907] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study examined the effects of dehydration on intermittent sprint performance and perceptual responses. Eight male collegiate baseball players completed intermittent sprints either dehydrated (DEHY) by 3% body mass or euhydrated (EU). Body mass was reduced through exercise in the heat with controlled fluid restriction occurring 1 day before the trial. Participants completed twenty-four 30-m sprints divided into 3 bouts of 8 sprints with 45 seconds of rest between each sprint and 3 minutes between each bout. Perceived recovery status (PRS) scale was recorded before the start of each trial. Heart rate (HR), ratings of perceived exertion (RPE) (0-10 OMNI scale), and perceived readiness (PR) scale were recorded after every sprint, and session RPE (SRPE) was recorded 20 minutes after completing the entire session. A 2 (condition) × 3 (bout of sprints) repeated-measures ANOVA revealed a significant main effect of condition on mean sprint time (p = 0.03), HR (p < 0.01), RPE (p = 0.01), and PR (p = 0.02). Post hoc tests showed significantly faster mean sprint times for EU vs. DEHY during the second (4.87 ± 0.29 vs. 5.03 ± 0.33 seconds; p = 0.01) and third bouts of sprints (4.91 ± 0.29 vs. 5.12 ± 0.44 seconds; p = 0.02). Heart rate was also significantly lower (p ≤ 0.05) for EU during the second and third bouts. Post hoc measures also showed significantly impaired (p ≤ 0.05) feelings of recovery (PRS) before exercise and increased (p ≤ 0.05) perceptual strain before each bout (PR) during the second and third bouts of repeated sprint work (i.e., RPE and PR) and after the total session (SRPE) in the DEHY condition. Dehydration impaired sprint performance, negatively altered perception of recovery status before exercise, and increased RPE and HR response.
Collapse
Affiliation(s)
- Jon-Kyle Davis
- 1Department of Kinesiology, University of Montevallo, Montevallo, Alabama; 2Exercise Science Program, Bowling Green State University, Bowling Green, Ohio; 3Department of Health, Physical Education and Recreation, the University of North Alabama, Florence, Alabama; and 4Department of Physical Education and Exercise Science, University of South Florida, Tampa, Florida
| | | | | | | | | | | | | |
Collapse
|
11
|
Effect of Hypohydration on Muscle Endurance, Strength, Anaerobic Power and Capacity and Vertical Jumping Ability: A Meta-Analysis. Sports Med 2015; 45:1207-27. [DOI: 10.1007/s40279-015-0349-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Novel insights into skeletal muscle function by mechanomyography: from the laboratory to the field. SPORT SCIENCES FOR HEALTH 2015. [DOI: 10.1007/s11332-015-0219-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Cheuvront SN, Kenefick RW. Dehydration: physiology, assessment, and performance effects. Compr Physiol 2014; 4:257-85. [PMID: 24692140 DOI: 10.1002/cphy.c130017] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This article provides a comprehensive review of dehydration assessment and presents a unique evaluation of the dehydration and performance literature. The importance of osmolality and volume are emphasized when discussing the physiology, assessment, and performance effects of dehydration. The underappreciated physiologic distinction between a loss of hypo-osmotic body water (intracellular dehydration) and an iso-osmotic loss of body water (extracellular dehydration) is presented and argued as the single most essential aspect of dehydration assessment. The importance of diagnostic and biological variation analyses to dehydration assessment methods is reviewed and their use in gauging the true potential of any dehydration assessment method highlighted. The necessity for establishing proper baselines is discussed, as is the magnitude of dehydration required to elicit reliable and detectable osmotic or volume-mediated compensatory physiologic responses. The discussion of physiologic responses further helps inform and explain our analysis of the literature suggesting a ≥ 2% dehydration threshold for impaired endurance exercise performance mediated by volume loss. In contrast, no clear threshold or plausible mechanism(s) support the marginal, but potentially important, impairment in strength, and power observed with dehydration. Similarly, the potential for dehydration to impair cognition appears small and related primarily to distraction or discomfort. The impact of dehydration on any particular sport skill or task is therefore likely dependent upon the makeup of the task itself (e.g., endurance, strength, cognitive, and motor skill).
Collapse
Affiliation(s)
- Samuel N Cheuvront
- Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | | |
Collapse
|
14
|
Abstract
The objective of this article is to provide a review of the fundamental aspects of body fluid balance and the physiological consequences of water imbalances, as well as discuss considerations for the optimal composition of a fluid replacement beverage across a broad range of applications. Early pioneering research involving fluid replacement in persons suffering from diarrheal disease and in military, occupational, and athlete populations incurring exercise- and/or heat-induced sweat losses has provided much of the insight regarding basic principles on beverage palatability, voluntary fluid intake, fluid absorption, and fluid retention. We review this work and also discuss more recent advances in the understanding of fluid replacement as it applies to various populations (military, athletes, occupational, men, women, children, and older adults) and situations (pathophysiological factors, spaceflight, bed rest, long plane flights, heat stress, altitude/cold exposure, and recreational exercise). We discuss how beverage carbohydrate and electrolytes impact fluid replacement. We also discuss nutrients and compounds that are often included in fluid-replacement beverages to augment physiological functions unrelated to hydration, such as the provision of energy. The optimal composition of a fluid-replacement beverage depends upon the source of the fluid loss, whether from sweat, urine, respiration, or diarrhea/vomiting. It is also apparent that the optimal fluid-replacement beverage is one that is customized according to specific physiological needs, environmental conditions, desired benefits, and individual characteristics and taste preferences.
Collapse
|
15
|
Rodrigues R, Baroni BM, Pompermayer MG, de Oliveira Lupion R, Geremia JM, Meyer F, Vaz MA. Effects of acute dehydration on neuromuscular responses of exercised and nonexercised muscles after exercise in the heat. J Strength Cond Res 2014; 28:3531-6. [PMID: 24942173 DOI: 10.1519/jsc.0000000000000578] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dehydration can impair aerobic performance, but its effects on muscular strength are still unclear. This study evaluated the effect of dehydration induced by cycling in the heat on exercised (knee extensors) and nonexercised (elbow flexors) muscles' strength and activation. Ten healthy recreationally active and nonacclimatized men (age, 22.71 ± 2.21 years old; body mass (BM), 77.94 ± 7.35 kg; height, 1.76 ± 6.46 m; body fat, 18.93 ± 3.01%) cycled in the heat in 2 separate sessions: dehydrated (DHY) and euhydrated (EUH). Dehydrated session led to a 2% BM loss, and water ingestion prevented the water loss in the euhydrated session. Knee extensor and elbow flexor maximal isometric torques and muscle activation were assessed before and after exercising in both sessions. Knee extensor torque decreased 15.8% (p < 0.001; 294.27 ± 44.82-247.16 ± 40.54) in dehydrated session, whereas no significant reduction (2.98%; p = 0.348; 291.99 ± 48.37-281.74 ± 38.65) was observed in the euhydrated session. No significant session-time interaction (p = 0.098) was observed for elbow flexor responses (DHY, 67.51 ± 14.53-62.95 ± 13.60; EUH, 68.26 ± 13.06-67.87 ± 13.89). Muscle activation capacity was unaffected by the hydration status. Maintenance of euhydration state during cycling in the heat may attenuate strength impairments caused by water loss in exercised muscle groups.
Collapse
Affiliation(s)
- Rodrigo Rodrigues
- Exercise Research Laboratory, School of Physical Education, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|
16
|
Bowtell JL, Avenell G, Hunter SP, Mileva KN. Effect of hypohydration on peripheral and corticospinal excitability and voluntary activation. PLoS One 2013; 8:e77004. [PMID: 24098574 PMCID: PMC3788753 DOI: 10.1371/journal.pone.0077004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/27/2013] [Indexed: 11/18/2022] Open
Abstract
We investigated whether altered peripheral and/or corticospinal excitatory output and voluntary activation are implicated in hypohydration-induced reductions in muscle isometric and isokinetic (90°.s−1) strength. Nine male athletes completed two trials (hypohydrated, euhydrated) comprising 90 min cycling at 40°C, with body weight losses replaced in euhydrated trial. Peripheral nerve and transcranial magnetic stimulations were applied during voluntary contractions pre- and 40 min post-exercise to quantify voluntary activation and peripheral (M-wave) and corticospinal (motor evoked potential) evoked responses in m. vastus medialis. Both maximum isometric (−15.3±3.1 vs −5.4±3.5%) and isokinetic eccentric (−24.8±4.6 vs −7.3±7.2%) torque decreased to a greater extent in hypohydrated than euhydrated trials (p<0.05). Half relaxation time of the twitch evoked by peripheral nerve stimulation during maximal contractions increased after exercise in the hypohydrated (21.8±9.3%) but stayed constant in the euhydrated (1.6±10.7%; p = 0.017) condition. M-wave amplitude during maximum voluntary contraction increased after exercise in the heat in hypohydrated (10.7±18.0%) but decreased in euhydrated condition (−17.4±16.9%; p = 0.067). Neither peripheral nor cortical voluntary activation were significantly different between conditions. Motor evoked potential amplitude increased similarly in both conditions (hypohydrated: 25.7±28.5%; euhydrated: 52.9±33.5%) and was accompanied by lengthening of the cortical silent period in euhydrated but not hypohydrated condition (p = 0.019). Different neural strategies seem to be adopted to regulate neural drive in the two conditions, with increases in inhibitory input of either intracortical or corticospinal origin during the euhydrated trial. Such changes were absent in the hypohydrated condition, yet voluntary activation was similar to the euhydrated condition, perhaps due to smaller increases in excitatory drive rather than increased inhibition. Despite this maximal isometric and eccentric strength were impaired in the hypohydrated condition. The increase in peripheral muscle excitability evident in the hypohydrated condition was not sufficient to preserve performance in the face of reduced muscle contractility or impaired excitation-contraction coupling.
Collapse
Affiliation(s)
- Joanna L Bowtell
- Sport and Exercise Science, London South Bank University, London, United Kingdom ; Sport and Health Sciences, Exeter University, Exeter, United Kingdom
| | | | | | | |
Collapse
|
17
|
Kenefick RW, Cheuvront SN. Hydration for recreational sport and physical activity. Nutr Rev 2012; 70 Suppl 2:S137-42. [DOI: 10.1111/j.1753-4887.2012.00523.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
18
|
Minshull C, James L. The effects of hypohydration and fatigue on neuromuscular activation performance. Appl Physiol Nutr Metab 2012; 38:21-6. [PMID: 23368824 DOI: 10.1139/apnm-2012-0189] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effects of hypohydration by fluid restriction on voluntary and evoked indices of neuromuscular performance at a functional joint angle. Measures of static volitional peak force (2-3-s maximal muscle actions) and evoked peak twitch force, electromechanical delay, and rate of force development were obtained from the knee extensors (30° knee flexion) of 10 males (age, 24 (4) years; height, 1.76 (0.10) m; body mass, 78.7 (9.13) kg (mean (SD))) prior to and immediately following 24 h of (i) euhydration (EU) and (ii) hypohydration (HYP). Neuromuscular performance was also assessed in response to a fatiguing task (3 × 30-s maximal static knee extensions) following each condition. Repeated-measures ANOVAs showed that HYP was associated with a significant 2.1% loss in body mass (p < 0.001) and a 7.8% reduction in volitional peak force (p < 0.05). Following fatigue, data indicated statistically similar levels of impairment to volitional peak force (11.6%, p < 0.01) and rate of force development (21.0%, p < 0.01) between conditions (EU; HYP). No changes to any other indices of performance were observed. The substantive hypohydration-induced deficits to muscle strength at this functional joint angle might convey a decreased performance capability and should be considered by the hypohydrated athlete. Whilst hypohydration did not affect fatigue-related performance of the knee extensors, the additive changes associated with lower baseline levels of strength performance (7.8%) and fatigue (11.6%) coupled with slower rate of muscle force production (from 0-100 ms) following fatigue may present significant challenges to the maintenance of dynamic knee joint stability, particularly at this vulnerable joint position.
Collapse
Affiliation(s)
- Claire Minshull
- SHAPE Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| | | |
Collapse
|
19
|
Kraft JA, Green JM, Bishop PA, Richardson MT, Neggers YH, Leeper JD. The influence of hydration on anaerobic performance: a review. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2012; 83:282-292. [PMID: 22808714 DOI: 10.1080/02701367.2012.10599859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This review examines the influence of dehydration on muscular strength and endurance and on single and repeated anaerobic sprint bouts. Describing hydration effects on anaerobic performance is difficult because various exercise modes are dominated by anaerobic energy pathways, but still contain inherent physiological differences. The critical level of water deficit (approximately 3-4%; mode dependent) affecting anaerobic performance is larger than the deficit (approximately 2%) impairing endurance performance. A critical performance-duration component (> 30 s) may also exist. Moderate dehydration (approximately 3% body weight; precise threshold depends on work/recovery ratio) impairs repeated anaerobic bouts, which place an increased demand on aerobic metabolism. Interactions between dehydration level, dehydration mode, testing mode, performance duration, and work/recovery ratio during repeated bouts make the dehydration threshold influencing anaerobic performance mode dependent.
Collapse
Affiliation(s)
- Justin A Kraft
- Department of Physical Education, Missouri Western State University, St. Joseph, MO 64507, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Sawka MN, Leon LR, Montain SJ, Sonna LA. Integrated Physiological Mechanisms of Exercise Performance, Adaptation, and Maladaptation to Heat Stress. Compr Physiol 2011; 1:1883-928. [DOI: 10.1002/cphy.c100082] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Hypohydration reduces vertical ground reaction impulse but not jump height. Eur J Appl Physiol 2010; 109:1163-70. [DOI: 10.1007/s00421-010-1458-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2010] [Indexed: 11/26/2022]
|
22
|
Kraft JA, Green JM, Bishop PA, Richardson MT, Neggers YH, Leeper JD. Impact of dehydration on a full body resistance exercise protocol. Eur J Appl Physiol 2010; 109:259-67. [DOI: 10.1007/s00421-009-1348-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2009] [Indexed: 11/30/2022]
|
23
|
The effects of progressive dehydration on strength and power: is there a dose response? Eur J Appl Physiol 2009; 108:701-7. [DOI: 10.1007/s00421-009-1288-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2009] [Indexed: 01/08/2023]
|
24
|
|
25
|
Judelson DA, Maresh CM, Farrell MJ, Yamamoto LM, Armstrong LE, Kraemer WJ, Volek JS, Spiering BA, Casa DJ, Anderson JM. Effect of Hydration State on Strength, Power, and Resistance Exercise Performance. Med Sci Sports Exerc 2007; 39:1817-24. [PMID: 17909410 DOI: 10.1249/mss.0b013e3180de5f22] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Although many studies have attempted to examine the effect of hypohydration on strength, power, and high-intensity endurance, few have successfully isolated changes in total body water from other variables that alter performance (e.g., increased core temperature), and none have documented the influence of hypohydration on an isotonic, multiset, multirepetition exercise bout typical of resistance exercise training. Further, no investigations document the effect of hypohydration on the ability of the central nervous system to stimulate the musculature, despite numerous scientists suggesting this possibility. The purposes of this study were to examine the isolated effect of hydration state on 1) strength, power, and the performance of acute resistance exercise, and 2) central activation ratio (CAR). METHODS Seven healthy resistance-trained males (age = 23 +/- 4 yr, body mass = 87.8 +/- 6.8 kg, body fat = 11.5 +/- 5.2%) completed three resistance exercise bouts in different hydration states: euhydrated (EU), hypohydrated by approximately 2.5% body mass (HY25), and hypohydrated by approximately 5.0% body mass (HY50). Investigators manipulated hydration status via exercise-heat stress and controlled fluid intake 1 d preceding testing. RESULTS Body mass decreased 2.4 +/- 0.4 and 4.8 +/- 0.4% during HY25 and HY50, respectively. No significant differences existed among trials in vertical jump height, peak lower-body power (assessed via jump squat), or peak lower-body force (assessed via isometric back squat). CAR tended to decrease as hypohydration increased (EU = 95.6 +/- 4.9%, HY25 = 94.0 +/- 3.1%, HY50 = 92.5 +/- 5.1%; P = 0.075, eta(p)(2) = 0.41). When evaluated as a function of the percentage of total work completed during a six-set back squat protocol, hypohydration significantly decreased resistance exercise performance during sets 2-3 and 2-5 for HY25 and HY50, respectively. CONCLUSION These data indicate that hypohydration attenuates resistance exercise performance; the role of central drive as the causative mechanism driving these responses merits further research.
Collapse
Affiliation(s)
- Daniel A Judelson
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kawczyński A, Nie H, Jaskólska A, Jaskólski A, Arendt-Nielsen L, Madeleine P. Mechanomyography and electromyography during and after fatiguing shoulder eccentric contractions in males and females. Scand J Med Sci Sports 2007; 17:172-9. [PMID: 17394479 DOI: 10.1111/j.1600-0838.2006.00551.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to investigate changes in mechanomyographic (MMG) and the surface electromyographic (EMG) signals during and after fatiguing shoulder eccentric contractions in a group consisting of 12 males and 12 females. Exerted force, MMG, EMG, pain and rate of perceived exertion were assessed before, during and after repeated high-intensity eccentric exercises. Bouts of eccentric contractions caused a decrease in the exerted force for males (P<0.05) and an increase in the rate of perceived exertion and pain for both genders (P<0.05). During eccentric exercise, the root mean square (RMS) values of the MMG signal increased (P<0.05). The mean power frequency (MPF) values of the EMG signal decreased at the end of each eccentric bout for both genders (P<0.05); the decrease was higher for females compared with males (P<0.05). Immediately after eccentric exercise in static abduction of the upper limbs, the MMG RMS and MPF values increased (P<0.05). The present study showed that (1) neuromuscular changes associated with pain and changes in muscle stiffness and (2) changes in motor units strategy during fatigue development in shoulder muscle are reflected in the MMG and EMG signals.
Collapse
Affiliation(s)
- A Kawczyński
- Department of Kinesiology, University School of Physical Education, Wroclaw, Poland
| | | | | | | | | | | |
Collapse
|
27
|
Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS. Exercise and Fluid Replacement. Med Sci Sports Exerc 2007; 39:377-90. [PMID: 17277604 DOI: 10.1249/mss.0b013e31802ca597] [Citation(s) in RCA: 934] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This Position Stand provides guidance on fluid replacement to sustain appropriate hydration of individuals performing physical activity. The goal of prehydrating is to start the activity euhydrated and with normal plasma electrolyte levels. Prehydrating with beverages, in addition to normal meals and fluid intake, should be initiated when needed at least several hours before the activity to enable fluid absorption and allow urine output to return to normal levels. The goal of drinking during exercise is to prevent excessive (>2% body weight loss from water deficit) dehydration and excessive changes in electrolyte balance to avert compromised performance. Because there is considerable variability in sweating rates and sweat electrolyte content between individuals, customized fluid replacement programs are recommended. Individual sweat rates can be estimated by measuring body weight before and after exercise. During exercise, consuming beverages containing electrolytes and carbohydrates can provide benefits over water alone under certain circumstances. After exercise, the goal is to replace any fluid electrolyte deficit. The speed with which rehydration is needed and the magnitude of fluid electrolyte deficits will determine if an aggressive replacement program is merited.
Collapse
|
28
|
Judelson DA, Maresh CM, Anderson JM, Armstrong LE, Casa DJ, Kraemer WJ, Volek JS. Hydration and Muscular Performance. Sports Med 2007; 37:907-21. [PMID: 17887814 DOI: 10.2165/00007256-200737100-00006] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Significant scientific evidence documents the deleterious effects of hypohydration (reduced total body water) on endurance exercise performance; however, the influence of hypohydration on muscular strength, power and high-intensity endurance (maximal activities lasting >30 seconds but <2 minutes) is poorly understood due to the inconsistent results produced by previous investigations. Several subtle methodological choices that exacerbate or attenuate the apparent effects of hypohydration explain much of this variability. After accounting for these factors, hypohydration appears to consistently attenuate strength (by approximately 2%), power (by approximately 3%) and high-intensity endurance (by approximately 10%), suggesting alterations in total body water affect some aspect of force generation. Unfortunately, the relationships between performance decrement and crucial variables such as mode, degree and rate of water loss remain unclear due to a lack of suitably uninfluenced data. The physiological demands of strength, power and high-intensity endurance couple with a lack of scientific support to argue against previous hypotheses that suggest alterations in cardiovascular, metabolic and/or buffering function represent the performance-reducing mechanism of hypohydration. On the other hand, hypohydration might directly affect some component of the neuromuscular system, but this possibility awaits thorough evaluation. A critical review of the available literature suggests hypohydration limits strength, power and high-intensity endurance and, therefore, is an important factor to consider when attempting to maximise muscular performance in athletic, military and industrial settings.
Collapse
Affiliation(s)
- Daniel A Judelson
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, Connecticut, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Hu XL, Tong KY, Li L. The mechanomyography of persons after stroke during isometric voluntary contractions. J Electromyogr Kinesiol 2006; 17:473-83. [PMID: 16603386 DOI: 10.1016/j.jelekin.2006.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 10/28/2005] [Accepted: 01/05/2006] [Indexed: 11/23/2022] Open
Abstract
This study was to investigate the properties of mechanomyography (MMG), or muscle sound, of the paretic muscle in the affected side of hemiplegic subjects after stroke during isometric voluntary contractions, in comparison with those from the muscle in the unaffected side of the hemiplegic subjects and from the healthy muscle of unimpaired subjects. MMG and electromyography (EMG) signals were recorded simultaneously from the biceps brachii muscles of the dominant arm of unimpaired subjects (n=5) and the unaffected and affected arms of subjects after stroke (n=8), when performing a fatiguing maximal voluntary contraction (MVC) associated with the decrease in elbow flexion torque, and then submaximal elbow flexions at 20%, 40%, 60% and 80% MVCs. The root mean squared (RMS) values, the mean power frequencies (MPF, in the power density spectrum, PDS) of the EMG and MMG, and the high frequency rate (HF-rate, the ratio of the power above 15Hz in the MMG PDS) were used for the analysis. The MMG RMS decreased more slowly during the MVC in the affected muscle compared to the healthy and unaffected muscles. A transient increase could be observed in the MMG MPFs from the unaffected and healthy muscles during the MVC, associated with the decrease in their simultaneous EMG MPFs due to the muscular fatigue. No significant variation could be seen in the EMG and MMG MPFs in the affected muscles during the MVC. The values in the MPF and HF-rate of MMG from the affected muscles were significantly lower than those from the healthy and unaffected muscles (P<0.05) at the high contraction level (80% MVC). Both the MMG and EMG RMS values in the healthy and unaffected groups were found to be significantly higher than the affected group (P<0.05) at 60% and 80% MVCs. These observations were related to an atrophy of the fast-twitch fibers and a reduction of the neural input in the affected muscles of the hemiplegic subjects. The results in this study suggested MMG could be used as a complementary to EMG for the analysis on muscular characteristics in subjects after stroke.
Collapse
Affiliation(s)
- X L Hu
- The Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Room ST417, Core S, Hong Kong
| | | | | |
Collapse
|
30
|
Ebersole KT, O'Connor KM, Wier AP. Mechanomyographic and electromyographic responses to repeated concentric muscle actions of the quadriceps femoris. J Electromyogr Kinesiol 2006; 16:149-57. [PMID: 16139522 DOI: 10.1016/j.jelekin.2005.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 05/02/2005] [Accepted: 05/12/2005] [Indexed: 11/19/2022] Open
Abstract
In comparison to isometric muscle action models, little is known about the electromyographic (EMG) and mechanomyographic (MMG) amplitude and mean power frequency (MPF) responses to fatiguing dynamic muscle actions. Simultaneous examination of the EMG and MMG amplitude and MPF may provide additional insight with regard to the motor control strategies utilized by the superficial muscles of the quadriceps femoris during a concentric fatiguing task. Thus, the purpose of this study was to examine the EMG and MMG amplitude and MPF responses of the vastus lateralis (VL), rectus femoris (RF), and vastus medialis (VM) during repeated, concentric muscle actions of the dominant leg. Seventeen adults (21.8+/-1.7 yr) performed 50 consecutive, maximal concentric muscle actions of the dominant leg extensors on a Biodex System 3 Dynamometer at velocities of 60 degrees s(-1) and 300 degrees s(-1). Bipolar surface electrode arrangements were placed over the mid portion of the VL, RF, and VM muscles with a MMG contact sensor placed adjacent to the superior EMG electrode on each muscle. Torque, MMG and EMG amplitude and MPF values were calculated for each of the 50 repetitions. All values were normalized to the value recorded during the first repetition and then averaged across all subjects. The cubic decreases in torque at 60 degrees s(-1) (R2 = 0.972) and 300 degrees s(-1) (R2 = 0.931) was associated with a decline in torque of 59+/-24% and 53+/-11%, respectively. The muscle and velocity specific responses for the MMG amplitude and MPF demonstrated that each of the superficial muscles of the quadriceps femoris uniquely contributed to the control of force output across the 50 repetitions. These results suggested that the MMG responses for the VL, RF, VM during a fatiguing task may be influenced by a number of factors such as fiber type differences, alterations in activation strategy including motor unit recruitment and firing rate and possibly muscle wisdom.
Collapse
Affiliation(s)
- Kyle T Ebersole
- Department of Human Movement Sciences, Athletic Training Research Laboratory, University of Wisconsin-Milwaukee, Enderis Hall 411, PO Box 413, Milwaukee, WI 53201-0413, USA.
| | | | | |
Collapse
|
31
|
Beck TW, Housh TJ, Cramer JT, Weir JP, Johnson GO, Coburn JW, Malek MH, Mielke M. Mechanomyographic amplitude and frequency responses during dynamic muscle actions: a comprehensive review. Biomed Eng Online 2005; 4:67. [PMID: 16364182 PMCID: PMC1343566 DOI: 10.1186/1475-925x-4-67] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 12/19/2005] [Indexed: 11/21/2022] Open
Abstract
The purpose of this review is to examine the literature that has investigated mechanomyographic (MMG) amplitude and frequency responses during dynamic muscle actions. To date, the majority of MMG research has focused on isometric muscle actions. Recent studies, however, have examined the MMG time and/or frequency domain responses during various types of dynamic activities, including dynamic constant external resistance (DCER) and isokinetic muscle actions, as well as cycle ergometry. Despite the potential influences of factors such as changes in muscle length and the thickness of the tissue between the muscle and the MMG sensor, there is convincing evidence that during dynamic muscle actions, the MMG signal provides valid information regarding muscle function. This argument is supported by consistencies in the MMG literature, such as the close relationship between MMG amplitude and power output and a linear increase in MMG amplitude with concentric torque production. There are still many issues, however, that have yet to be resolved, and the literature base for MMG during both dynamic and isometric muscle actions is far from complete. Thus, it is important to investigate the unique applications of MMG amplitude and frequency responses with different experimental designs/methodologies to continually reassess the uses/limitations of MMG.
Collapse
Affiliation(s)
- Travis W Beck
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE, USA 68583
| | - Terry J Housh
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE, USA 68583
| | - Joel T Cramer
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA 73019
| | - Joseph P Weir
- Applied Physiology Laboratory, Division of Physical Therapy, Des Moines University, Osteopathic Medical Center, Des Moines, IA, USA 50312
| | - Glen O Johnson
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE, USA 68583
| | - Jared W Coburn
- Department of Kinesiology, California State University, Fullerton, Fullerton, CA, USA 92834
| | - Moh H Malek
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE, USA 68583
| | - Michelle Mielke
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE, USA 68583
| |
Collapse
|
32
|
Abstract
OBJECTIVES To investigate the effects of fluid ingestion on neuromuscular function during prolonged cycling exercise. METHODS Eight well trained subjects exercised for 180 minutes in a moderate environment at a workload requiring approximately 60% maximal oxygen uptake. Two conditions, fluid (F) and no fluid (NF) ingestion, were investigated. RESULTS During maximal voluntary isometric contraction (MVC), prolonged cycling exercise reduced (p<0.05) the maximal force generating capacity of quadriceps muscles (after three hours of cycling) and root mean square (RMS) values (after two hours of cycling) with no difference between the two conditions despite greater body weight loss (p<0.05) in NF. The mean power frequency (MPF) for vastus lateralis muscle was reduced (p<0.05) and the rate of force development (RFD) was increased (p<0.05) only during NF. During cycling exercise, integrated electromyographic activity and perceived exertion were increased in both conditions (p<0.05) with no significant effect of fluid ingestion. CONCLUSIONS The results suggest that fluid ingestion did not prevent the previously reported decrease in maximal force with exercise duration, but seems to have a positive effect on some indicators of neuromuscular fatigue such as mean power frequency and rate of force development during maximal voluntary contraction. Further investigations are needed to assess the effect of change in hydration on neural mechanisms linked to the development of muscular fatigue during prolonged exercise.
Collapse
|
33
|
Madeleine P, Arendt-Nielsen L. Experimental muscle pain increases mechanomyographic signal activity during sub-maximal isometric contractions. J Electromyogr Kinesiol 2005; 15:27-36. [PMID: 15642651 DOI: 10.1016/j.jelekin.2004.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 06/03/2004] [Accepted: 06/16/2004] [Indexed: 10/26/2022] Open
Abstract
This study was designed to investigate the local effect of experimental muscle pain on the MMG and the surface EMG during a range of sub-maximal isometric contractions. Muscle pain was induced by injections of hypertonic saline into the biceps brachii muscle in 12 subjects. Injections of isotonic saline served as a control. Pain intensity and location, MMG and surface EMG from the biceps brachii were assessed during static isometric (0%, 10%, 30%, 50% and, 70% of the maximal voluntary contraction) and ramp isometric (0-50% of the maximal voluntary contraction) elbow flexions. MMG and surface EMG signals were analyzed in the time and frequency domain. Experimentally induced muscle pain induced an increase in root mean square values of the MMG signal while no changes were observed in the surface EMG. Most likely this increase reflects changes in the mechanical contractile properties of the muscle and indicates compensatory mechanisms, i.e. decreased firing rate and increased twitch force to maintain a constant force output in presence of experimental muscle pain. Under well-controlled conditions, MMG recordings may be more sensitive than surface EMG recordings and clinically useful for detecting non-invasively increased muscle mechanical contributions during muscle pain conditions.
Collapse
Affiliation(s)
- P Madeleine
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Building D-3, Fredrik Bajers Vej 7, DK-9220 Aalborg, Denmark.
| | | |
Collapse
|