1
|
Vaughan RH, Kresse J, Farmer LK, Thézénas ML, Kessler BM, Lindeman JHN, Sharples EJ, Welsh GI, Nørregaard R, Ploeg RJ, Kaisar M. Cytoskeletal protein degradation in brain death donor kidneys associates with adverse posttransplant outcomes. Am J Transplant 2022; 22:1073-1087. [PMID: 34878723 PMCID: PMC9305475 DOI: 10.1111/ajt.16912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/25/2023]
Abstract
In brain death, cerebral injury contributes to systemic biological dysregulation, causing significant cellular stress in donor kidneys adversely impacting the quality of grafts. Here, we hypothesized that donation after brain death (DBD) kidneys undergo proteolytic processes that may deem grafts susceptible to posttransplant dysfunction. Using mass spectrometry and immunoblotting, we mapped degradation profiles of cytoskeletal proteins in deceased and living donor kidney biopsies. We found that key cytoskeletal proteins in DBD kidneys were proteolytically cleaved, generating peptide fragments, predominantly in grafts with suboptimal posttransplant function. Interestingly, α-actinin-4 and talin-1 proteolytic fragments were detected in brain death but not in circulatory death or living donor kidneys with similar donor characteristics. As talin-1 is a specific proteolytic target of calpain-1, we investigated a potential trigger of calpain activation and talin-1 degradation using human ex vivo precision-cut kidney slices and in vitro podocytes. Notably, we showed that activation of calpain-1 by transforming growth factor-β generated proteolytic fragments of talin-1 that matched the degradation fragments detected in DBD preimplantation kidneys, also causing dysregulation of the actin cytoskeleton in human podocytes; events that were reversed by calpain-1 inhibition. Our data provide initial evidence that brain death donor kidneys are more susceptible to cytoskeletal protein degradation. Correlation to posttransplant outcomes may be established by future studies.
Collapse
Affiliation(s)
- Rebecca H. Vaughan
- Research and DevelopmentNHS Blood and TransplantBristol & OxfordUK,Nuffield Department of Surgical SciencesOxford University Hospital OxfordBiomedical Research CentreUniversity of OxfordOxfordUK
| | | | - Louise K. Farmer
- Bristol RenalBristol Medical SchoolUniversity of BristolBristolUK
| | - Marie L. Thézénas
- Nuffield Department of MedicineTarget Discovery InstituteUniversity of OxfordOxfordUK
| | - Benedikt M. Kessler
- Nuffield Department of MedicineTarget Discovery InstituteUniversity of OxfordOxfordUK
| | - Jan H. N. Lindeman
- Department of SurgeryLeiden University Medical CentreLeidenThe Netherlands
| | | | - Gavin I. Welsh
- Bristol RenalBristol Medical SchoolUniversity of BristolBristolUK
| | | | - Rutger J. Ploeg
- Research and DevelopmentNHS Blood and TransplantBristol & OxfordUK,Nuffield Department of Surgical SciencesOxford University Hospital OxfordBiomedical Research CentreUniversity of OxfordOxfordUK,Department of SurgeryLeiden University Medical CentreLeidenThe Netherlands
| | - Maria Kaisar
- Research and DevelopmentNHS Blood and TransplantBristol & OxfordUK,Nuffield Department of Surgical SciencesOxford University Hospital OxfordBiomedical Research CentreUniversity of OxfordOxfordUK
| |
Collapse
|
2
|
Guiraud S, Roblin D, Kay DE. The potential of utrophin modulators for the treatment of Duchenne muscular dystrophy. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1438261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Simon Guiraud
- Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Davies. E. Kay
- Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Hammers DW, Sleeper MM, Forbes SC, Shima A, Walter GA, Sweeney HL. Tadalafil Treatment Delays the Onset of Cardiomyopathy in Dystrophin-Deficient Hearts. J Am Heart Assoc 2016; 5:JAHA.116.003911. [PMID: 27506543 PMCID: PMC5015305 DOI: 10.1161/jaha.116.003911] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Cardiomyopathy is a leading cause of mortality among Duchenne muscular dystrophy patients and lacks effective therapies. Phosphodiesterase type 5 is implicated in dystrophic pathology, and the phosphodiesterase type 5 inhibitor tadalafil has recently been studied in a clinical trial for Duchenne muscular dystrophy. Methods and Results Tadalafil was evaluated for the prevention of cardiomyopathy in the mdx mouse and golden retriever muscular dystrophy dog models of Duchenne muscular dystrophy. Tadalafil blunted the adrenergic response in mdx hearts during a 30‐minute dobutamine challenge, which coincided with cardioprotective signaling, reduced induction of μ‐calpain levels, and decreased sarcomeric protein proteolysis. Dogs with golden retriever muscular dystrophy began daily tadalafil treatment prior to detectable cardiomyopathy and demonstrated preserved cardiac function, as assessed by echocardiography and magnetic resonance imaging at ages 18, 21, and 25 months. Tadalafil treatment improved golden retriever muscular dystrophy histopathological features, decreased levels of the cation channel TRPC6, increased total threonine phosphorylation status of TRPC6, decreased m‐calpain levels and indicators of calpain target proteolysis, and elevated levels of utrophin. In addition, we showed that Duchenne muscular dystrophy patient myocardium exhibited increased TRPC6, m‐calpain, and calpain cleavage products compared with control human myocardium. Conclusions Prophylactic use of tadalafil delays the onset of dystrophic cardiomyopathy, which is likely attributed to modulation of TRPC6 levels and permeability and inhibition of protease content and activity. Consequently, phosphodiesterase type 5 inhibition is a candidate therapy for slowing the development of cardiomyopathy in Duchenne muscular dystrophy patients.
Collapse
Affiliation(s)
- David W Hammers
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL Myology Institute, University of Florida College of Medicine, Gainesville, FL
| | - Margaret M Sleeper
- Myology Institute, University of Florida College of Medicine, Gainesville, FL Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL
| | - Sean C Forbes
- Myology Institute, University of Florida College of Medicine, Gainesville, FL Physical Therapy, University of Florida, Gainesville, FL
| | - Ai Shima
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Glenn A Walter
- Myology Institute, University of Florida College of Medicine, Gainesville, FL Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL
| | - H Lee Sweeney
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL Myology Institute, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
4
|
Wynne GM, Russell AJ. Drug Discovery Approaches for Rare Neuromuscular Diseases. ORPHAN DRUGS AND RARE DISEASES 2014. [DOI: 10.1039/9781782624202-00257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rare neuromuscular diseases encompass many diverse and debilitating musculoskeletal disorders, ranging from ultra-orphan conditions that affect only a few families, to the so-called ‘common’ orphan diseases like Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA), which affect several thousand individuals worldwide. Increasingly, pharmaceutical and biotechnology companies, in an effort to improve productivity and rebuild dwindling pipelines, are shifting their business models away from the formerly popular ‘blockbuster’ strategy, with rare diseases being an area of increased focus in recent years. As a consequence of this paradigm shift, coupled with high-profile campaigns by not-for-profit organisations and patient advocacy groups, rare neuromuscular diseases are attracting considerable attention as new therapeutic areas for improved drug therapy. Much pioneering work has taken place to elucidate the underlying pathological mechanisms of many rare neuromuscular diseases. This, in conjunction with the availability of new screening technologies, has inspired the development of several truly innovative therapeutic strategies aimed at correcting the underlying pathology. A survey of medicinal chemistry approaches and the resulting clinical progress for new therapeutic agents targeting this devastating class of degenerative diseases is presented, using DMD and SMA as examples. Complementary strategies using small-molecule drugs and biological agents are included.
Collapse
Affiliation(s)
- Graham M. Wynne
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Angela J. Russell
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
5
|
Gokhin DS, Tierney MT, Sui Z, Sacco A, Fowler VM. Calpain-mediated proteolysis of tropomodulin isoforms leads to thin filament elongation in dystrophic skeletal muscle. Mol Biol Cell 2014; 25:852-65. [PMID: 24430868 PMCID: PMC3952854 DOI: 10.1091/mbc.e13-10-0608] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Calpain-mediated proteolysis of the thin filament pointed-end–capping protein tropomodulin results in actin subunit association onto pointed ends and increased thin filament lengths in two different murine models of Duchenne muscular dystrophy. This mechanism affects different skeletal muscles in a use- and disease severity–dependent manner. Duchenne muscular dystrophy (DMD) induces sarcolemmal mechanical instability and rupture, hyperactivity of intracellular calpains, and proteolytic breakdown of muscle structural proteins. Here we identify the two sarcomeric tropomodulin (Tmod) isoforms, Tmod1 and Tmod4, as novel proteolytic targets of m-calpain, with Tmod1 exhibiting ∼10-fold greater sensitivity to calpain-mediated cleavage than Tmod4 in situ. In mdx mice, increased m-calpain levels in dystrophic soleus muscle are associated with loss of Tmod1 from the thin filament pointed ends, resulting in ∼11% increase in thin filament lengths. In mdx/mTR mice, a more severe model of DMD, Tmod1 disappears from the thin filament pointed ends in both tibialis anterior (TA) and soleus muscles, whereas Tmod4 additionally disappears from soleus muscle, resulting in thin filament length increases of ∼10 and ∼12% in TA and soleus muscles, respectively. In both mdx and mdx/mTR mice, both TA and soleus muscles exhibit normal localization of α-actinin, the nebulin M1M2M3 domain, Tmod3, and cytoplasmic γ-actin, indicating that m-calpain does not cause wholesale proteolysis of other sarcomeric and actin cytoskeletal proteins in dystrophic skeletal muscle. These results implicate Tmod proteolysis and resultant thin filament length misspecification as novel mechanisms that may contribute to DMD pathology, affecting muscles in a use- and disease severity–dependent manner.
Collapse
Affiliation(s)
- David S Gokhin
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037 Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | | | | | | | | |
Collapse
|
6
|
|
7
|
Singh SM, Molas JF, Kongari N, Bandi S, Armstrong GS, Winder SJ, Mallela KM. Thermodynamic stability, unfolding kinetics, and aggregation of the N-terminal actin-binding domains of utrophin and dystrophin. Proteins 2012; 80:1377-92. [PMID: 22275054 PMCID: PMC3439503 DOI: 10.1002/prot.24033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/21/2011] [Accepted: 01/02/2012] [Indexed: 12/12/2022]
Abstract
Muscular dystrophy (MD) is the most common genetic lethal disorder in children. Mutations in dystrophin trigger the most common form of MD, Duchenne, and its allelic variant Becker MD. Utrophin is the closest homologue and has been shown to compensate for the loss of dystrophin in human disease animal models. However, the structural and functional similarities and differences between utrophin and dystrophin are less understood. Both proteins interact with actin through their N-terminal actin-binding domain (N-ABD). In this study, we examined the thermodynamic stability and aggregation of utrophin N-ABD and compared with that of dystrophin. Our results show that utrophin N-ABD has spectroscopic properties similar to dystrophin N-ABD. However, utrophin N-ABD has decreased denaturant and thermal stability, unfolds faster, and is correspondingly more susceptible to proteolysis, which might account for its decreased in vivo half-life compared to dystrophin. In addition, utrophin N-ABD aggregates to a lesser extent compared with dystrophin N-ABD, contrary to the general behavior of proteins in which decreased stability enhances protein aggregation. Despite these differences in stability and aggregation, both proteins exhibit deleterious effects of mutations. When utrophin N-ABD mutations analogous in position to the dystrophin disease-causing mutations were generated, they behaved similarly to dystrophin mutants in terms of decreased stability and the formation of cross-β aggregates, indicating a possible role for utrophin mutations in disease mechanisms.
Collapse
Affiliation(s)
- Surinder M. Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Justine F. Molas
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Narsimulu Kongari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Swati Bandi
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Geoffrey S. Armstrong
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Steve J. Winder
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Krishna M.G. Mallela
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
8
|
Erb M, Hoffmann-Enger B, Deppe H, Soeberdt M, Haefeli RH, Rummey C, Feurer A, Gueven N. Features of idebenone and related short-chain quinones that rescue ATP levels under conditions of impaired mitochondrial complex I. PLoS One 2012; 7:e36153. [PMID: 22558363 PMCID: PMC3338594 DOI: 10.1371/journal.pone.0036153] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/27/2012] [Indexed: 12/14/2022] Open
Abstract
Short-chain quinones have been investigated as therapeutic molecules due to their ability to modulate cellular redox reactions, mitochondrial electron transfer and oxidative stress, which are pathologically altered in many mitochondrial and neuromuscular disorders. Recently, we and others described that certain short-chain quinones are able to bypass a deficiency in complex I by shuttling electrons directly from the cytoplasm to complex III of the mitochondrial respiratory chain to produce ATP. Although this energy rescue activity is highly interesting for the therapy of disorders associated with complex I dysfunction, no structure-activity-relationship has been reported for short-chain quinones so far. Using a panel of 70 quinones, we observed that the capacity for this cellular energy rescue as well as their effect on lipid peroxidation was influenced more by the physicochemical properties (in particular logD) of the whole molecule than the quinone moiety itself. Thus, the observed correlations allow us to explain the differential biological activities and therapeutic potential of short-chain quinones for the therapy of disorders associated with mitochondrial complex I dysfunction and/or oxidative stress.
Collapse
Affiliation(s)
- Michael Erb
- Santhera Pharmaceuticals, Liestal, Switzerland
| | | | | | | | - Roman H. Haefeli
- Santhera Pharmaceuticals, Liestal, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Nuri Gueven
- Santhera Pharmaceuticals, Liestal, Switzerland
| |
Collapse
|
9
|
Childers MK, Bogan JR, Bogan DJ, Greiner H, Holder M, Grange RW, Kornegay JN. Chronic administration of a leupeptin-derived calpain inhibitor fails to ameliorate severe muscle pathology in a canine model of duchenne muscular dystrophy. Front Pharmacol 2012; 2:89. [PMID: 22291646 PMCID: PMC3253583 DOI: 10.3389/fphar.2011.00089] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 12/18/2011] [Indexed: 11/18/2022] Open
Abstract
Calpains likely play a role in the pathogenesis of Duchenne muscular dystrophy (DMD). Accordingly, calpain inhibition may provide therapeutic benefit to DMD patients. In the present study, we sought to measure benefit from administration of a novel calpain inhibitor, C101, in a canine muscular dystrophy model. Specifically, we tested the hypothesis that treatment with C101 mitigates progressive weakness and severe muscle pathology observed in young dogs with golden retriever muscular dystrophy (GRMD). Young (6-week-old) GRMD dogs were treated daily with either C101 (17 mg/kg twice daily oral dose, n = 9) or placebo (vehicle only, n = 7) for 8 weeks. A battery of functional tests, including tibiotarsal joint angle, muscle/fat composition, and pelvic limb muscle strength were performed at baseline and every 2 weeks during the 8-week study. Results indicate that C101-treated GRMD dogs maintained strength in their cranial pelvic limb muscles (tibiotarsal flexors) while placebo-treated dogs progressively lost strength. However, concomitant improvement was not observed in posterior pelvic limb muscles (tibiotarsal extensors). C101 treatment did not mitigate force drop following repeated eccentric contractions and no improvement was seen in the development of joint contractures, lean muscle mass, or muscle histopathology. Taken together, these data do not support the hypothesis that treatment with C101 mitigates progressive weakness or ameliorates severe muscle pathology observed in young dogs with GRMD.
Collapse
Affiliation(s)
- Martin K Childers
- Department of Neurology, Wake Forest University Health Sciences Winston-Salem, NC, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Goyenvalle A, Seto JT, Davies KE, Chamberlain J. Therapeutic approaches to muscular dystrophy. Hum Mol Genet 2011; 20:R69-78. [PMID: 21436158 DOI: 10.1093/hmg/ddr105] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Muscular dystrophies are a heterogeneous group of genetic disorders characterized by muscle weakness and wasting. Duchenne muscular dystrophy (DMD) is the most common and severe form of muscular dystrophy, and although the molecular mechanisms of the disease have been extensively investigated since the discovery of the gene in 1986, there is currently no effective treatment. However, new gene-based therapies have recently emerged with particular noted advances in using conventional gene replacement strategies, RNA-based technology and pharmacological approaches. While the proof of principle has been demonstrated in animal models, several clinical trials have recently been undertaken to investigate the feasibility of these strategies in patients. In particular, antisense-mediated exon skipping has shown encouraging results and holds promise for the treatment of dystrophic muscle. Here, we summarize the recent progress in therapeutic approaches to muscular dystrophies, with an emphasis on gene therapy and exon skipping for DMD.
Collapse
Affiliation(s)
- Aurélie Goyenvalle
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
11
|
Jørgensen LH, Blain A, Greally E, Laval SH, Blamire AM, Davison BJ, Brinkmeier H, MacGowan GA, Schrøder HD, Bushby K, Straub V, Lochmüller H. Long-term blocking of calcium channels in mdx mice results in differential effects on heart and skeletal muscle. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:273-83. [PMID: 21224064 PMCID: PMC3016598 DOI: 10.1016/j.ajpath.2010.11.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/19/2010] [Accepted: 09/21/2010] [Indexed: 02/01/2023]
Abstract
The disease mechanisms underlying dystrophin-deficient muscular dystrophy are complex, involving not only muscle membrane fragility, but also dysregulated calcium homeostasis. Specifically, it has been proposed that calcium channels directly initiate a cascade of pathological events by allowing calcium ions to enter the cell. The objective of this study was to investigate the effect of chronically blocking calcium channels with the aminoglycoside antibiotic streptomycin from onset of disease in the mdx mouse model of Duchenne muscular dystrophy (DMD). Treatment in utero onwards delayed onset of dystrophic symptoms in the limb muscle of young mdx mice, but did not prevent degeneration and regeneration events occurring later in the disease course. Long-term treatment had a positive effect on limb muscle pathology, reduced fibrosis, increased sarcolemmal stability, and promoted muscle regeneration in older mice. However, streptomycin treatment did not show positive effects in diaphragm or heart muscle, and heart pathology was worsened. Thus, blocking calcium channels even before disease onset does not prevent dystrophy, making this an unlikely treatment for DMD. These findings highlight the importance of analyzing several time points throughout the life of the treated mice, as well as analyzing many tissues, to get a complete picture of treatment efficacy.
Collapse
Affiliation(s)
- Louise H. Jørgensen
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute of Clinical Research, University of Southern Denmark, Odense C, Denmark
| | - Alison Blain
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Elizabeth Greally
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Steve H. Laval
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew M. Blamire
- Institute of Cellular Medicine and Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Benjamin J. Davison
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Heinrich Brinkmeier
- Institute of Pathophysiology, Ernst Moritz Arndt University of Greifswald, Karlsburg, Germany
| | - Guy A. MacGowan
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Cardiology, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Henrik D. Schrøder
- Department of Clinical Pathology, University of Southern Denmark, Odense C, Denmark
| | - Kate Bushby
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Volker Straub
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hanns Lochmüller
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
- Address reprint requests to Professor Hanns Lochmüller, MD, Institute of Human Genetics, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, United Kingdom
| |
Collapse
|
12
|
Bhuiyan MS, Shioda N, Fukunaga K. Chronic beta-AR activation-induced calpain activation and impaired eNOS-Akt signaling mediates cardiac injury in ovariectomized female rats. Expert Opin Ther Targets 2009; 13:275-86. [PMID: 19236150 DOI: 10.1517/14728220902721312] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To address the pathophysiological relevance of ovarian hormones in chronic beta-adrenergic stimulation-induced myocardial injury, we assessed impairments of Ca(2+)-mediated cell signaling in the left ventricle of ovariectomized female rats. RESEARCH DESIGN/METHODS Female Wistar rats were subjected to bilateral ovariectomy and sham operation. Six weeks after ovariectomy (OVX), both OVX and sham rats were treated with isoproterenol (5mg/kg, intraperitoneally), a nonselective beta-adrenergic agonist, once a day for 28 days. RESULTS We found that chronic beta-adrenergic stimulation caused enhanced breakdown of sarcolemmal proteins such as dystrophin and utrophin in OVX rats compared to sham-operated rats. Generation of calpain-mediated 150 kDa-breakdown product of spectrin confirmed calpain activation following isoproterenol treatment. Marked breakdown of endogenous calpain inhibitor, calpastatin, in OVX rats was consistent with the calpain activation following chronic beta-adrenergic stimulation. In addition to calpain activation, we also found marked reduction of endothelial nitric oxide synthase (eNOS) activity with concomitant deregulation by heat shock proteins 90 kDa and caveolin 3, both of which are eNOS-associated proteins. Finally, we documented decreased Akt phosphorylation with concomitant increased glycogen synthase kinase 3beta phosphorylation underlying cell injury following chronic beta-adrenergic stimulation. CONCLUSION Taken together chronic beta-adrenergic stimulation caused severe cardiac injury in OVX rats through calpain activation and impairments of Akt and eNOS signaling pathways.
Collapse
Affiliation(s)
- Md Shenuarin Bhuiyan
- Department of Pharmacology, Tohoku University, Aramaki-Aoba Aoba-ku, Sendai 980 8578, Japan
| | | | | |
Collapse
|