1
|
Nagy S, Khan A, Machado PM, Houlden H. Inclusion body myositis: from genetics to clinical trials. J Neurol 2023; 270:1787-1797. [PMID: 36399165 PMCID: PMC9971047 DOI: 10.1007/s00415-022-11459-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022]
Abstract
Inclusion body myositis (IBM) belongs to the group of idiopathic inflammatory myopathies and is characterized by a slowly progressive disease course with asymmetric muscle weakness of predominantly the finger flexors and knee extensors. The disease leads to severe disability and most patients lose ambulation due to lack of curative or disease-modifying treatment options. Despite some genes reported to be associated with hereditary IBM (a distinct group of conditions), data on the genetic susceptibility of sporadic IBM are very limited. This review gives an overview of the disease and focuses on the current genetic knowledge and potential therapeutic implications.
Collapse
Affiliation(s)
- Sara Nagy
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK.
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Alaa Khan
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
- Molecular Diagnostic Unit, Clinical Laboratory Department, King Abdullah Medical City in Makkah, Mecca, Saudi Arabia
| | - Pedro M Machado
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
- Division of Medicine, Centre for Rheumatology, University College London, London, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
2
|
Zeng L, Chen K, Xiao F, Zhu CY, Bai JY, Tan S, Long L, Wang Y, Zhou Q. Potential common molecular mechanisms between Sjögren syndrome and inclusion body myositis: a bioinformatic analysis and in vivo validation. Front Immunol 2023; 14:1161476. [PMID: 37153570 PMCID: PMC10160489 DOI: 10.3389/fimmu.2023.1161476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
Background Inclusion body myositis (IBM) is a slowly progressive inflammatory myopathy that typically affects the quadriceps and finger flexors. Sjögren's syndrome (SS), an autoimmune disorder characterized by lymphocytic infiltration of exocrine glands has been reported to share common genetic and autoimmune pathways with IBM. However, the exact mechanism underlying their commonality remains unclear. In this study, we investigated the common pathological mechanisms involved in both SS and IBM using a bioinformatic approach. Methods IBM and SS gene expression profiles were obtained from the Gene Expression Omnibus (GEO). SS and IBM coexpression modules were identified using weighted gene coexpression network analysis (WGCNA), and differentially expressed gene (DEG) analysis was applied to identify their shared DEGs. The hidden biological pathways were revealed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Furthermore, protein-protein interaction (PPI) networks, cluster analyses, and hub shared gene identification were conducted. The expression of hub genes was validated by reverse transcription quantitative polymerase chain reaction (RT-qPCR). We then analyzed immune cell abundance patterns in SS and IBM using single-sample gene set enrichment analysis (ssGSEA) and investigated their association with hub genes. Finally, NetworkAnalyst was used to construct a common transcription factor (TF)-gene network. Results Using WGCNA, we found that 172 intersecting genes were closely related to viral infection and antigen processing/presentation. Based on DEG analysis, 29 shared genes were found to be upregulated and enriched in similar biological pathways. By intersecting the top 20 potential hub genes from the WGCNA and DEG sets, three shared hub genes (PSMB9, CD74, and HLA-F) were derived and validated to be active transcripts, which all exhibited diagnostic values for SS and IBM. Furthermore, ssGSEA showed similar infiltration profiles in IBM and SS, and the hub genes were positively correlated with the abundance of immune cells. Ultimately, two TFs (HDGF and WRNIP1) were identified as possible key TFs. Conclusion Our study identified that IBM shares common immunologic and transcriptional pathways with SS, such as viral infection and antigen processing/presentation. Furthermore, both IBM and SS have almost identical immune infiltration microenvironments, indicating similar immune responses may contribute to their association.
Collapse
Affiliation(s)
- Li Zeng
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kai Chen
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Xiao
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chun-yan Zhu
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jia-ying Bai
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Song Tan
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, Chengdu, China
| | - Li Long
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Qiao Zhou, ; Yi Wang, ; Li Long,
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Qiao Zhou, ; Yi Wang, ; Li Long,
| | - Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Qiao Zhou, ; Yi Wang, ; Li Long,
| |
Collapse
|
3
|
Zervou MI, Toitou M, Goulielmos GN. Comment on: Survival and associated comorbidities in inclusion body myositis. Rheumatology (Oxford) 2022; 61:e346-e347. [PMID: 35781560 DOI: 10.1093/rheumatology/keac378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Maria I Zervou
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Melpomeni Toitou
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - George N Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece.,Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Greece
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW To review the advances in our understanding of the genetics of inclusion body myositis (IBM) in the past year. RECENT FINDINGS One large genetic association study focusing on immune-related genes in IBM has refined the association within the human leukocyte antigen (HLA) region to HLA-DRB1 alleles, and identified certain amino acid positions in HLA-DRB1 that may explain this risk. A suggestive association with CCR5 may indicate genetic overlap with other autoimmune diseases. Sequencing studies of candidate genes involved in related neuromuscular or neurodegenerative diseases have identified rare variants in VCP and SQSTM1. Proteomic studies of rimmed vacuoles in IBM and subsequent genetic analyses of candidate genes identified rare missense variants in FYCO1. Complex, large-scale mitochondrial deletions in cytochrome c oxidase-deficient muscle fibres expand our understanding of mitochondrial abnormalities in IBM. SUMMARY The pathogenesis of IBM is likely multifactorial, including inflammatory and degenerative changes, and mitochondrial abnormalities. There has been considerable progress in our understanding of the genetic architecture of IBM, using complementary genetic approaches to investigate these different pathways.
Collapse
Affiliation(s)
- Simon Rothwell
- Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester
| | - James B. Lilleker
- Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester
- Greater Manchester Neurosciences Centre, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Stott Lane, Salford
| | - Janine A. Lamb
- Centre for Epidemiology, Division of Population Health, Health Services Research and Primary Care, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Needham M, Mastaglia F. Advances in inclusion body myositis: genetics, pathogenesis and clinical aspects. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1318056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Abstract
PURPOSE OF REVIEW To describe recent developments in the genetics of sporadic inclusion body myositis (sIBM). RECENT FINDINGS Genes located within major histocompatibility complex regions remain the strongest genetic association with sIBM. The rs10527454 polymorphism in the TOMM40 gene seems to have a disease modifying effect on sIBM by delaying the onset of symptoms, and this effect may be enhanced by the APOE ε3/ε3 genotype. Rare variants in the VCP and SQSTM1 genes have been identified in sIBM patients in two studies using targeted next-generation sequencing and whole-exome sequencing. Two studies have confirmed the correlation between the amount of cytochrome c oxidase -deficient fibres and the proportion of mitochondrial DNA (mtDNA) deletions in sIBM. Some rare variants in mtDNA-related nuclear genes have also been reported. SUMMARY There have been advances in the genetics of sIBM over the past 2 years facilitated by the use of next-generation sequencing. Genes that cause hereditary IBM, which has clinical or pathological features resembling sIBM, have provided clues to the genetic basis of sIBM. To date, genes located in major histocompatibility complex regions and genes involved in protein homeostasis or mtDNA maintenance have been implicated in sIBM. Whole-exome sequencing-association studies, RNA sequencing, and whole-genome sequencing in large sIBM cohorts will be key tools to unravel the genetics of sIBM and its contribution to disease aetiopathogenesis.
Collapse
|
7
|
Kazamel M, Sorenson EJ, Milone M. Clinical and Electrophysiological Findings in Hereditary Inclusion Body Myopathy Compared With Sporadic Inclusion Body Myositis. J Clin Neuromuscul Dis 2016; 17:190-196. [PMID: 27224433 DOI: 10.1097/cnd.0000000000000113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To compare the clinical and electrophysiological findings in hereditary inclusion body myopathy (hIBM) and sporadic inclusion body myositis (sIBM) patients. METHODS We retrospectively identified 8 genetically proven hIBM patients and 1 DNAJB6 myopathy with pathological features of hIBM, and compared their clinical, electromyographic, and serological data with a group of 51 pathologically proven sIBM patients. RESULTS hIBM patients had a younger mean age of onset (36 vs. 60 years, P = 0.0001). Diagnostic delay was shorter in sIBM (6 vs. 15 years, P = 0.0003). Wrist flexors (P = 0.02), digit flexors (P = 0.01), digit extensors (P = 0.02), and quadriceps (P = 0.008) muscles were more frequently affected in sIBM. Fibrillation potentials were more common in sIBM patients (P = 0.03). Electrical myotonia was found in 4 hIBM patients, not significantly different from sIBM patients (P = 0.45). Creatinine kinase was higher in sIBM patients (799 vs 232, P = 0.03). CONCLUSIONS sIBM and hIBM seem to have similar electromyographic changes. The combination of clinical, serological, and histopathological findings can guide genetic testing to the final diagnosis.
Collapse
|
8
|
Rygiel KA, Tuppen HA, Grady JP, Vincent A, Blakely EL, Reeve AK, Taylor RW, Picard M, Miller J, Turnbull DM. Complex mitochondrial DNA rearrangements in individual cells from patients with sporadic inclusion body myositis. Nucleic Acids Res 2016; 44:5313-29. [PMID: 27131788 PMCID: PMC4914118 DOI: 10.1093/nar/gkw382] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/26/2016] [Indexed: 01/26/2023] Open
Abstract
Mitochondrial DNA (mtDNA) rearrangements are an important cause of mitochondrial disease and age related mitochondrial dysfunction in tissues including brain and skeletal muscle. It is known that different mtDNA deletions accumulate in single cells, but the detailed nature of these rearrangements is still unknown. To evaluate this we used a complementary set of sensitive assays to explore the mtDNA rearrangements in individual cells from patients with sporadic inclusion body myositis, a late-onset inflammatory myopathy with prominent mitochondrial changes. We identified large-scale mtDNA deletions in individual muscle fibres with 20% of cytochrome c oxidase-deficient myofibres accumulating two or more mtDNA deletions. The majority of deletions removed only the major arc but ∼10% of all deletions extended into the minor arc removing the origin of light strand replication (OL) and a variable number of genes. Some mtDNA molecules contained two deletion sites. Additionally, we found evidence of mitochondrial genome duplications allowing replication and clonal expansion of these complex rearranged molecules. The extended spectrum of mtDNA rearrangements in single cells provides insight into the process of clonal expansion which is fundamental to our understanding of the role of mtDNA mutations in ageing and disease.
Collapse
Affiliation(s)
- Karolina A Rygiel
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK Newcastle University Centre for Ageing and Vitality, Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Helen A Tuppen
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - John P Grady
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Amy Vincent
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK Newcastle University Centre for Ageing and Vitality, Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Emma L Blakely
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Amy K Reeve
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK Newcastle University Centre for Ageing and Vitality, Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Department of Neurology and CTNI, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - James Miller
- Department of Neurology, Newcastle upon Tyne Hospitals NHS Foundation Trust Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - Doug M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK Newcastle University Centre for Ageing and Vitality, Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
9
|
Needham M, Mastaglia FL. Sporadic inclusion body myositis: A review of recent clinical advances and current approaches to diagnosis and treatment. Clin Neurophysiol 2015; 127:1764-73. [PMID: 26778717 DOI: 10.1016/j.clinph.2015.12.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/08/2015] [Accepted: 12/13/2015] [Indexed: 01/01/2023]
Abstract
Sporadic inclusion body myositis is the most frequent acquired myopathy of middle and later life and is distinguished from other inflammatory myopathies by its selective pattern of muscle involvement and slowly progressive course, and by the combination of inflammatory and degenerative muscle pathology and multi-protein deposits in muscle tissue. This review summarises the findings of recent studies that provide a more complete picture of the clinical phenotype and natural history of the disease and its global prevalence and genetic predisposition. Current diagnostic criteria, including the role of electrophysiological and muscle imaging studies and the recently identified anti-5'-nucleotidase (anti-cN1A) antibody in diagnosis are also discussed as well as current trends in the treatment of the disease.
Collapse
Affiliation(s)
- Merrilee Needham
- Institute for Immunology and Infectious Diseases, Murdoch University, Western Australia, Australia; Fiona Stanley Hospital, Murdoch, Western Australia, Australia; Notre Dame University, Fremantle, Western Australia, Australia.
| | - Frank L Mastaglia
- Institute for Immunology and Infectious Diseases, Murdoch University, Western Australia, Australia
| |
Collapse
|
10
|
Murnyák B, Bodoki L, Vincze M, Griger Z, Csonka T, Szepesi R, Kurucz A, Dankó K, Hortobágyi T. Inclusion body myositis - pathomechanism and lessons from genetics. Open Med (Wars) 2015; 10:188-193. [PMID: 28352694 PMCID: PMC5152972 DOI: 10.1515/med-2015-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 01/30/2015] [Indexed: 11/26/2022] Open
Abstract
Inclusion body myositis is a rare, late-onset myopathy. Both inflammatory and myodegenerative features play an important role in their pathogenesis. Overlapping clinicopathological entities are the familial inclusion body myopathies with or without dementia. These myopathies share several clinical and pathological features with the sporadic inflammatory disease. Therefore, better understanding of the genetic basis and pathomechanism of these rare familial cases may advance our knowledge and enable more effective treatment options in sporadic IBM, which is currently considered a relentlessly progressive incurable disease.
Collapse
Affiliation(s)
| | - Levente Bodoki
- Institute of Internal Medicine, Third Department of Internal Medicine, Division of Clinical Immunology
| | - Melinda Vincze
- Institute of Internal Medicine, Third Department of Internal Medicine, Division of Clinical Immunology
| | - Zoltán Griger
- Institute of Internal Medicine, Third Department of Internal Medicine, Division of Clinical Immunology
| | - Tamás Csonka
- Division of Neuropathology, Institute of Pathology
| | - Rita Szepesi
- Department of Neurology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | | | - Katalin Dankó
- Institute of Internal Medicine, Third Department of Internal Medicine, Division of Clinical Immunology
| | - Tibor Hortobágyi
- University of Debrecen, Faculty of Medicine, Institute of Pathology, Division of Neuropathology, 4032 Debrecen, Nagyerdei krt. 98. Tel.: + 36 52 255-248
| |
Collapse
|
11
|
Mastaglia FL, Needham M. Inclusion body myositis: a review of clinical and genetic aspects, diagnostic criteria and therapeutic approaches. J Clin Neurosci 2014; 22:6-13. [PMID: 25510538 DOI: 10.1016/j.jocn.2014.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 09/14/2014] [Indexed: 10/24/2022]
Abstract
Inclusion body myositis is the most common myopathy in patients over the age of 40 years encountered in neurological practice. Although it is usually sporadic, there is increasing awareness of the influence of genetic factors on disease susceptibility and clinical phenotype. The diagnosis is based on recognition of the distinctive pattern of muscle involvement and temporal profile of the disease, and the combination of inflammatory and myodegenerative changes and protein deposits in the muscle biopsy. The diagnostic importance of immunohistochemical staining for major histocompatibility complex I and II antigens, for the p62 protein, and of the recently identified anti-cN1A autoantibody in the serum, are discussed. The condition is generally poorly responsive to conventional immune therapies but there have been relatively few randomised controlled trials and most of these have been under-powered and of short duration. There is an urgent need for further well-designed multicentre trials of existing and novel therapies that may alter the natural history of the disease.
Collapse
Affiliation(s)
- Frank L Mastaglia
- Institute of Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia; Western Australian Neuroscience Research Institute, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands, WA 6009, Australia.
| | - Merrilee Needham
- Institute of Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia; Western Australian Neuroscience Research Institute, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands, WA 6009, Australia
| |
Collapse
|
12
|
Micropublications: a semantic model for claims, evidence, arguments and annotations in biomedical communications. J Biomed Semantics 2014; 5:28. [PMID: 26261718 PMCID: PMC4530550 DOI: 10.1186/2041-1480-5-28] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/16/2014] [Indexed: 11/10/2022] Open
Abstract
Background Scientific publications are documentary representations of defeasible arguments, supported by data and repeatable methods. They are the essential mediating artifacts in the ecosystem of scientific communications. The institutional “goal” of science is publishing results. The linear document publication format, dating from 1665, has survived transition to the Web. Intractable publication volumes; the difficulty of verifying evidence; and observed problems in evidence and citation chains suggest a need for a web-friendly and machine-tractable model of scientific publications. This model should support: digital summarization, evidence examination, challenge, verification and remix, and incremental adoption. Such a model must be capable of expressing a broad spectrum of representational complexity, ranging from minimal to maximal forms. Results The micropublications semantic model of scientific argument and evidence provides these features. Micropublications support natural language statements; data; methods and materials specifications; discussion and commentary; challenge and disagreement; as well as allowing many kinds of statement formalization. The minimal form of a micropublication is a statement with its attribution. The maximal form is a statement with its complete supporting argument, consisting of all relevant evidence, interpretations, discussion and challenges brought forward in support of or opposition to it. Micropublications may be formalized and serialized in multiple ways, including in RDF. They may be added to publications as stand-off metadata. An OWL 2 vocabulary for micropublications is available at http://purl.org/mp. A discussion of this vocabulary along with RDF examples from the case studies, appears as OWL Vocabulary and RDF Examples in Additional file
1. Conclusion Micropublications, because they model evidence and allow qualified, nuanced assertions, can play essential roles in the scientific communications ecosystem in places where simpler, formalized and purely statement-based models, such as the nanopublications model, will not be sufficient. At the same time they will add significant value to, and are intentionally compatible with, statement-based formalizations. We suggest that micropublications, generated by useful software tools supporting such activities as writing, editing, reviewing, and discussion, will be of great value in improving the quality and tractability of biomedical communications.
Collapse
|
13
|
Gang Q, Bettencourt C, Machado P, Hanna MG, Houlden H. Sporadic inclusion body myositis: the genetic contributions to the pathogenesis. Orphanet J Rare Dis 2014; 9:88. [PMID: 24948216 PMCID: PMC4071018 DOI: 10.1186/1750-1172-9-88] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/12/2014] [Indexed: 11/10/2022] Open
Abstract
Sporadic inclusion body myositis (sIBM) is the commonest idiopathic inflammatory muscle disease in people over 50 years old. It is characterized by slowly progressive muscle weakness and atrophy, with typical pathological changes of inflammation, degeneration and mitochondrial abnormality in affected muscle fibres. The cause(s) of sIBM are still unknown, but are considered complex, with the contribution of multiple factors such as environmental triggers, ageing and genetic susceptibility. This review summarizes the current understanding of the genetic contributions to sIBM and provides some insights for future research in this mysterious disease with the advantage of the rapid development of advanced genetic technology. An international sIBM genetic study is ongoing and whole-exome sequencing will be applied in a large cohort of sIBM patients with the aim of unravelling important genetic risk factors for sIBM.
Collapse
Affiliation(s)
- Qiang Gang
- Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| | | | | | | | | |
Collapse
|
14
|
Finsterer J, Stöllberger C, Kovacs GG, Sehnal E. Left ventricular hypertrabeculation/noncompaction coincidentally found in sporadic inclusion body myositis. Int J Cardiol 2013; 168:610-2. [DOI: 10.1016/j.ijcard.2013.01.221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/29/2012] [Accepted: 01/18/2013] [Indexed: 11/28/2022]
|
15
|
No D, Valles-Ayoub Y, Carbajo R, Khokher Z, Sandoval L, Stein B, Tarnopolsky MA, Mozaffar T, Darvish B, Pietruszka M, Darvish D. Novel GNE mutations in autosomal recessive hereditary inclusion body myopathy patients. Genet Test Mol Biomarkers 2013; 17:376-82. [PMID: 23437777 DOI: 10.1089/gtmb.2012.0408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hereditary Inclusion Body Myopathy (HIBM, IBM2, MIM:600737) is an autosomal recessive adult onset progressive muscle wasting disorder. It is associated with the degeneration of distal and proximal muscles, while often sparing the quadriceps. The bifunctional enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE/MNK), encoded by the GNE gene, catalyzes the first two committed, rate-limiting steps in the biosynthesis of N-acetylneunaminic acid (sialic acid). Affected individuals have been identified with mutations in the GNE gene. In the present study, the GNE coding region of 136 symptomatic patients were sequenced. A total of 41 patients were found to have GNE mutations. Eight novel mutations were discovered among seven patients. Of the eight novel mutations, seven were missense (p.I150V, p.Y186C, p.M265T, p.V315T, p.N317D, p.G669R, and p.S699L) and one was nonsense (p.W495X), all of which span the epimerase, kinase, and allosteric domains of GNE. In one patient, one novel mutation was found in the allosteric region and kinase domain of the GNE gene. Mutations in the allosteric region lead to a different disease, sialuria; however, this particular mutation has not been described in patients with sialuria. The pathological significance of this variation with GNE function remains unknown and further studies are needed to identify its connection with HIBM. These findings further expand the clinical and genetic spectrum of HIBM.
Collapse
Affiliation(s)
- Daniel No
- HIBM Research Group, Reseda, California 91335, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rojana-udomsart A, Mitrpant C, James I, Witt C, Needham M, Day T, Kiers L, Corbett A, Martinez P, Wilton SD, Mastaglia FL. Analysis of HLA-DRB3 alleles and supertypical genotypes in the MHC Class II region in sporadic inclusion body myositis. J Neuroimmunol 2013; 254:174-7. [DOI: 10.1016/j.jneuroim.2012.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/04/2012] [Accepted: 09/03/2012] [Indexed: 12/01/2022]
|
17
|
High-resolution HLA-DRB1 genotyping in an Australian inclusion body myositis (s-IBM) cohort: An analysis of disease-associated alleles and diplotypes. J Neuroimmunol 2012; 250:77-82. [DOI: 10.1016/j.jneuroim.2012.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 04/30/2012] [Accepted: 05/03/2012] [Indexed: 11/19/2022]
|
18
|
Rojana-udomsart A, Bundell C, James I, Castley A, Martinez P, Christiansen F, Hollingsworth P, Mastaglia F. Frequency of autoantibodies and correlation with HLA-DRB1 genotype in sporadic inclusion body myositis (s-IBM): A population control study. J Neuroimmunol 2012; 249:66-70. [DOI: 10.1016/j.jneuroim.2012.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/19/2012] [Accepted: 04/16/2012] [Indexed: 12/17/2022]
|
19
|
Scott AP, Laing NG, Mastaglia F, Dalakas M, Needham M, Allcock RJN. Investigation of NOTCH4 coding region polymorphisms in sporadic inclusion body myositis. J Neuroimmunol 2012; 250:66-70. [PMID: 22732452 DOI: 10.1016/j.jneuroim.2012.04.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/27/2012] [Accepted: 04/29/2012] [Indexed: 01/26/2023]
Abstract
The NOTCH4 gene, located within the MHC region, is involved in cellular differentiation and has varying effects dependent on tissue type. Coding region polymorphisms haplotypic of the sIBM-associated 8.1 ancestral haplotype were identified in NOTCH4 and genotyped in two different Caucasian sIBM cohorts. In both cohorts the frequency of the minor allele of rs422951 and the 12-repeat variation for rs72555375 was increased and was higher than the frequency of the sIBM-associated allele HLA-DRB1*0301. These NOTCH4 polymorphisms can be considered to be markers for sIBM susceptibility, but require further investigation to determine whether they are directly involved in the disease pathogenesis.
Collapse
Affiliation(s)
- Adrian P Scott
- School of Pathology and Laboratory Medicine, M504, University of Western Australia, Stirling Highway, Nedlands 6009, Perth, Australia.
| | | | | | | | | | | |
Collapse
|
20
|
Clinical, pathological, and genetic mutation analysis of sporadic inclusion body myositis in Japanese people. J Neurol 2012; 259:1913-22. [PMID: 22349865 DOI: 10.1007/s00415-012-6439-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/17/2011] [Accepted: 01/24/2012] [Indexed: 12/13/2022]
Abstract
Previous studies have identified several genetic loci associated with the development of familial inclusion body myopathy. However, there have been few genetic analyses of sporadic inclusion body myositis (sIBM). In order to explore the molecular basis of sIBM and to investigate genotype-phenotype correlations, we performed a clinicopathological analysis of 21 sIBM patients and screened for mutations in the Desmin, GNE, MYHC2A, VCP, and ZASP genes. All coding exons of the five genes were sequenced directly. Definite IBM was confirmed in 14 cases, probable IBM in three cases, and possible IBM in four cases. No cases showed missense mutations in the Desmin, GNE, or VCP genes. Three patients carried the missense mutation c.2542T>C (p.V805A) in the MYHC2A gene; immunohistochemical staining for MYHC isoforms in these three cases showed atrophy or loss of muscle fibers expressing MYHC IIa or IIx. One patient harbored the missense mutation c.1719G>A (p.V566M) in the ZASP gene; immunohistochemical studies of Z-band-associated proteins revealed Z-band abnormalities. Both of the novel heterogeneous mutations were located in highly evolutionarily conserved domains of their respective genes. Cumulatively, these findings have expanded our understanding of the molecular background of sIBM. However, we advocate further clinicopathology and investigation of additional candidate genes in a larger cohort.
Collapse
|
21
|
Increase in number of sporadic inclusion body myositis (sIBM) in Japan. J Neurol 2011; 259:554-6. [DOI: 10.1007/s00415-011-6185-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 07/12/2011] [Indexed: 11/30/2022]
|
22
|
Inclusion Body Myositis: Diagnosis, Pathogenesis, and Treatment Options. Rheum Dis Clin North Am 2011; 37:173-83, v. [DOI: 10.1016/j.rdc.2011.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Chai Y, Bertorini TE, McGrew FA. Hereditary inclusion-body myopathy associated with cardiomyopathy: report of two siblings. Muscle Nerve 2011; 43:133-6. [PMID: 21082694 DOI: 10.1002/mus.21839] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hereditary inclusion-body myopathy (HIBM) or distal myopathy with rimmed vacuoles (DMRV) is an autosomal recessive disorder characterized by preferential involvement of distal muscles in the lower extremities, especially the anterior compartment of the legs, with relative preservation of the quadriceps.This is referred to as quadriceps-sparing myopathy. Previous reports have revealed exclusive involvement in skeletal muscles. Herein we describe two siblings with typical HIBM/DMRV. The patients developed exertional dyspnea 20-26 years after disease onset. Echocardiogram revealed a cardiomyopathy in both patients. This is the first report of the association between HIBM/DMRV and cardiomyopathy.
Collapse
Affiliation(s)
- Yaohui Chai
- Department of Neurology, University of Tennessee Health Science Center, 415 Link Building, University of Tennessee Health Science Center, 855 Monroe Avenue, Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
24
|
Effects of nonsteroidal anti-inflammatory drugs on amyloid-beta pathology in mouse skeletal muscle. Neurobiol Dis 2010; 39:449-56. [PMID: 20493261 DOI: 10.1016/j.nbd.2010.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 04/26/2010] [Accepted: 05/11/2010] [Indexed: 10/19/2022] Open
Abstract
Sporadic inclusion body myositis (sIBM) is a common age-related inflammatory myopathy characterized by the presence of intracellular inclusions that contain the amyloid-beta (Abeta) peptide, a derivative of the amyloid precursor protein (APP). Abeta is believed to cause Alzheimer's disease (AD), suggesting that a link may exist between the two diseases. If AD and sIBM are linked, then treatments that lower Abeta in brain may prove useful for sIBM. To test this hypothesis, transgenic mice that overexpress APP in skeletal muscle were treated for 6 months with a variety of nonsteroidal anti-inflammatory drugs (NSAIDs; naproxen, ibuprofen, carprofen or R-flurbiprofen), a subset of which reduce Abeta in brain and cultured cells. Only ibuprofen lowered Abeta in muscle, and this was not accompanied by corresponding improvements in phenotype. These results indicate that the effects of NSAIDs in the brain may be different from other tissues and that Abeta alone cannot account for skeletal muscle dysfunction in these mice.
Collapse
|
25
|
Chinoy H, Lamb JA, Ollier WER, Cooper RG. An update on the immunogenetics of idiopathic inflammatory myopathies: major histocompatibility complex and beyond. Curr Opin Rheumatol 2010; 21:588-93. [PMID: 19730377 DOI: 10.1097/bor.0b013e3283315a22] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW To update the reader on immunogenetic advances in idiopathic inflammatory myopathy (IIM) over the past 18 months. RECENT FINDINGS In Caucasian IIM, despite a shared association with the human leukocyte antigen (HLA) 8.1 ancestral haplotype (HLA-DRB1*03-DQA1*05-DQB1*02), anti-Jo-1 and anti-PM-Scl antibody-positive cases have differing IIM clinical phenotypes. A study of the HLA-DPB1 region has shown that DPB1*0101 is associated with anti-Jo-1 positivity but not with anti-PM-Scl. IIM single nucleotide polymorphism studies have demonstrated associations in the protein tyrosine phosphatase, nonreceptor type 22, tumour necrosis factor alpha and interleukin-1 genes. The GM 13 allotype has been confirmed as a risk factor in Caucasian IIM. In inclusion body myositis, the HLA 8.1 ancestral haplotype may not only influence disease susceptibility but also disease expression. A follow-up study including a meta-analysis of the apolipoprotein E gene in inclusion body myositis suggests that this gene does not confer risk of disease. SUMMARY Although a substantial part of the genetic risk for developing adult and juvenile IIM lies within the major histocompatibility complex, recent research suggests that genetic regions outside of the major histocompatibility complex are also potentially involved in conferring IIM disease susceptibility, although with more modest effect sizes. An ongoing and internationally coordinated IIM genome-wide association scan may provide further insights into IIM immunogenetics.
Collapse
Affiliation(s)
- Hector Chinoy
- The University of Manchester Rheumatic Diseases Centre, Salford Royal NHS Foundation Trust, Salford, UK
| | | | | | | |
Collapse
|
26
|
Abstract
OBJECTIVE To understand belief in a specific scientific claim by studying the pattern of citations among papers stating it. DESIGN A complete citation network was constructed from all PubMed indexed English literature papers addressing the belief that beta amyloid, a protein accumulated in the brain in Alzheimer's disease, is produced by and injures skeletal muscle of patients with inclusion body myositis. Social network theory and graph theory were used to analyse this network. MAIN OUTCOME MEASURES Citation bias, amplification, and invention, and their effects on determining authority. RESULTS The network contained 242 papers and 675 citations addressing the belief, with 220,553 citation paths supporting it. Unfounded authority was established by citation bias against papers that refuted or weakened the belief; amplification, the marked expansion of the belief system by papers presenting no data addressing it; and forms of invention such as the conversion of hypothesis into fact through citation alone. Extension of this network into text within grants funded by the National Institutes of Health and obtained through the Freedom of Information Act showed the same phenomena present and sometimes used to justify requests for funding. CONCLUSION Citation is both an impartial scholarly method and a powerful form of social communication. Through distortions in its social use that include bias, amplification, and invention, citation can be used to generate information cascades resulting in unfounded authority of claims. Construction and analysis of a claim specific citation network may clarify the nature of a published belief system and expose distorted methods of social citation.
Collapse
Affiliation(s)
- Steven A Greenberg
- Children's Hospital Informatics Program and Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Inclusion Body Myositis: A View from the Caenorhabditis elegans Muscle. Mol Neurobiol 2008; 38:178-98. [DOI: 10.1007/s12035-008-8041-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 08/16/2008] [Indexed: 01/09/2023]
|
28
|
Current world literature. Curr Opin Neurol 2008; 21:615-24. [PMID: 18769258 DOI: 10.1097/wco.0b013e32830fb782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Needham M, Mastaglia F. Sporadic inclusion body myositis: a continuing puzzle. Neuromuscul Disord 2008; 18:6-16. [DOI: 10.1016/j.nmd.2007.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 10/29/2007] [Accepted: 11/07/2007] [Indexed: 11/29/2022]
|
30
|
Needham M, Hooper A, James I, van Bockxmeer F, Corbett A, Day T, Garlepp MJ, Mastaglia FL. Apolipoprotein epsilon alleles in sporadic inclusion body myositis: a reappraisal. Neuromuscul Disord 2007; 18:150-2. [PMID: 18060780 DOI: 10.1016/j.nmd.2007.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 08/24/2007] [Accepted: 09/06/2007] [Indexed: 10/22/2022]
Abstract
Previous studies have differed as to whether APOE epsilon4 is a susceptibility factor for developing sporadic inclusion body myositis (sIBM), with a positive association being found only in an Australian cohort of cases. We have now re-examined this in a larger cohort of 57 sIBM cases and have also carried out a meta-analysis of all the published studies looking for evidence of a risk association or effect of APOE alleles on disease expression. Our findings argue against a specific role for any APOE alleles in conferring susceptibility to sIBM but have demonstrated a non-significant trend towards an earlier age-of-onset in patients with the epsilon2 allele.
Collapse
Affiliation(s)
- Merrilee Needham
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Queen Elizabeth II Medical Centre, Perth, Australia.
| | | | | | | | | | | | | | | |
Collapse
|