1
|
Tempol Supplementation Restores Diaphragm Force and Metabolic Enzyme Activities in mdx Mice. Antioxidants (Basel) 2017; 6:antiox6040101. [PMID: 29210997 PMCID: PMC5745511 DOI: 10.3390/antiox6040101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/19/2017] [Accepted: 11/28/2017] [Indexed: 12/29/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by striated muscle weakness, cardiomyopathy, and respiratory failure. Since oxidative stress is recognized as a secondary pathology in DMD, the efficacy of antioxidant intervention, using the superoxide scavenger tempol, was examined on functional and biochemical status of dystrophin-deficient diaphragm muscle. Diaphragm muscle function was assessed, ex vivo, in adult male wild-type and dystrophin-deficient mdx mice, with and without a 14-day antioxidant intervention. The enzymatic activities of muscle citrate synthase, phosphofructokinase, and lactate dehydrogenase were assessed using spectrophotometric assays. Dystrophic diaphragm displayed mechanical dysfunction and altered biochemical status. Chronic tempol supplementation in the drinking water increased diaphragm functional capacity and citrate synthase and lactate dehydrogenase enzymatic activities, restoring all values to wild-type levels. Chronic supplementation with tempol recovers force-generating capacity and metabolic enzyme activity in mdx diaphragm. These findings may have relevance in the search for therapeutic strategies in neuromuscular disease.
Collapse
|
2
|
Dosier LBM, Vaughn BV, Fan Z. Sleep Disorders in Childhood Neurogenetic Disorders. CHILDREN-BASEL 2017; 4:children4090082. [PMID: 28895939 PMCID: PMC5615272 DOI: 10.3390/children4090082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 01/13/2023]
Abstract
enetic advances in the past three decades have transformed our understanding and treatment of many human diseases including neurogenetic disorders. Most neurogenetic disorders can be classified as "rare disease," but collectively neurogenetic disorders are not rare and are commonly encountered in general pediatric practice. The authors decided to select eight relatively well-known neurogenetic disorders including Down syndrome, Angelman syndrome, Prader-Willi syndrome, Smith-Magenis syndrome, congenital central hypoventilation syndrome, achondroplasia, mucopolysaccharidoses, and Duchenne muscular dystrophy. Each disorder is presented in the following format: overview, clinical characteristics, developmental aspects, associated sleep disorders, management and research/future directions.
Collapse
Key Words
- Neurogenetic, Sleep, Neurodevelopmental, Angelman, Down syndrome, Trisomy 21, Smith–Magenis, Muchopolysaccharidosis, Achondroplasia, Duchenne, Congenital Central Hypoventilation
Collapse
Affiliation(s)
- Laura Beth Mann Dosier
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Bradley V Vaughn
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Zheng Fan
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Abstract
This review aims to explain the inevitable imbalance between respiratory load, drive, and muscular force that occurs in the natural aging of Duchenne muscular dystrophy and that predisposes these patients to sleep disordered breathing (SDB). In DMD, SDB is characterized by oxygen desaturation, apneas, hypercapnia, and hypoventilation during sleep and ultimately develops into respiratory failure during wakefulness. It can be present in all age groups. Young patients risk obstructive apneas because of weight gain, secondary to progressive physical inactivity and prolonged corticosteroid therapy; older patients hypoventilate and desaturate because of respiratory muscle weakness, in particular the diaphragm. These conditions are further exacerbated during REM sleep, the phase of maximal muscle hypotonia during which the diaphragm has to provide most of the ventilation. Evidence is given to the daytime predictors of early symptoms of SDB, important indicators for the proper time to initiate mechanical ventilation.
Collapse
|
4
|
O'Halloran KD, Lewis P. Respiratory muscle dysfunction in animal models of hypoxic disease: antioxidant therapy goes from strength to strength. HYPOXIA 2017; 5:75-84. [PMID: 28770235 PMCID: PMC5529115 DOI: 10.2147/hp.s141283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The striated muscles of breathing play a critical role in respiratory homeostasis governing blood oxygenation and pH regulation. Upper airway dilator and thoracic pump muscles retain a remarkable capacity for plasticity throughout life, both in health and disease states. Hypoxia, whatever the cause, is a potent driver of respiratory muscle remodeling with evidence of adaptive and maladaptive outcomes for system performance. The pattern, duration, and intensity of hypoxia are key determinants of respiratory muscle structural-, metabolic-, and functional responses and adaptation. Age and sex also influence respiratory muscle tolerance of hypoxia. Redox stress emerges as the principal protagonist driving respiratory muscle malady in rodent models of hypoxic disease. There is a growing body of evidence demonstrating that antioxidant intervention alleviates hypoxia-induced respiratory muscle dysfunction, and that N-acetyl cysteine, approved for use in humans, is highly effective in preventing hypoxia-induced respiratory muscle weakness and fatigue. We posit that oxygen homeostasis is a key driver of respiratory muscle form and function. Hypoxic stress is likely a major contributor to respiratory muscle malaise in diseases of the lungs and respiratory control network. Animal studies provide an evidence base in strong support of the need to explore adjunctive antioxidant therapies for muscle dysfunction in human respiratory disease.
Collapse
Affiliation(s)
- Ken D O'Halloran
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - Philip Lewis
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Preventative Research, University Hospital of Cologne, Germany
| |
Collapse
|
5
|
O’Halloran KD. Chronic intermittent hypoxia creates the perfect storm with calamitous consequences for respiratory control. Respir Physiol Neurobiol 2016; 226:63-7. [DOI: 10.1016/j.resp.2015.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 11/27/2022]
|
6
|
Basoudan N, Shadgan B, Guenette JA, Road J, Reid WD. Effect of acute hypoxia on inspiratory muscle oxygenation during incremental inspiratory loading in healthy adults. Eur J Appl Physiol 2016; 116:841-50. [PMID: 26892509 DOI: 10.1007/s00421-016-3334-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/22/2016] [Indexed: 11/25/2022]
Abstract
PURPOSE To non-invasively examine the effect of acute hypoxia and inspiratory threshold loading (ITL) on inspiratory muscles [sternocleidomastoid (SCM), scalene (SA) and parasternal (PS)] oxygenation in healthy adults using near-infrared spectroscopy (NIRS). METHODS Twenty healthy adults (12 M/8 F) were randomly assigned to perform two ITL tests while breathing a normoxic or hypoxic (FIO2 = 15 %) gas mixture. NIRS devices were placed over the SCM, PS, SA, and a control muscle, tibialis anterior (TA), to monitor oxygenated (O2Hb), deoxygenated (HHb), total hemoglobin (tHb) and tissue saturation index (TSI). With the nose occluded, subjects breathed normally for 4 min through a mouthpiece that was connected to a weighted threshold loading device. ITL began by adding a 100-g weight to the ITL device. Then, every 2 min 50-g was added until task failure. Vital signs, ECG and ventilatory measures were monitored throughout the protocol. RESULT Participants were 31 ± 12 year and had normal spirometry. At task failure, the maximum load and ventilatory parameters did not differ between the hypoxic and normoxic ITL. At hypoxic ITL task failure, SpO2 was significantly lower, and ∆HHb increased more so in SA, SCM and PS than normoxic values. SCM ∆TSI decreased more so during hypoxic compared to normoxic ITL. ∆tHb in the inspiratory muscles (SCM, PS and SA) increased significantly compared to the decrease in TA during both hypoxic and normoxic ITL. CONCLUSION The SCM, an accessory inspiratory muscle was the most vulnerable to deoxygenation during incremental loading and this response was accentuated by acute hypoxia.
Collapse
Affiliation(s)
- Nada Basoudan
- Department of Physical Therapy, University of British Columbia (UBC), Vancouver, Canada.
- College of Health and Rehabilitation Sciences, Princess Nora Bint Abdul Rahman University, Riyadh, Saudi Arabia.
| | - Babak Shadgan
- International Collaboration on Repair Discoveries, Vancouver, Canada
| | - Jordan A Guenette
- Department of Physical Therapy, University of British Columbia (UBC), Vancouver, Canada
- Centre for Heart Lung Innovation, UBC and St. Paul's Hospital, Vancouver, Canada
| | - Jeremy Road
- Division of Respiratory Medicine, Department of Medicine, UBC, Vancouver, Canada
| | - W Darlene Reid
- Physical Therapy Department, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Stelter Z, Strakova J, Yellamilli A, Fischer K, Sharpe K, Townsend D. Hypoxia-induced cardiac injury in dystrophic mice. Am J Physiol Heart Circ Physiol 2016; 310:H938-48. [PMID: 26851247 DOI: 10.1152/ajpheart.00917.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a disease of progressive destruction of striated muscle, resulting in muscle weakness with progressive respiratory and cardiac failure. Respiratory and cardiac disease are the leading causes of death in DMD patients. Previous studies have suggested an important link between cardiac dysfunction and hypoxia in the dystrophic heart; these studies aim to understand the mechanism underlying this connection. Here we demonstrate that anesthetized dystrophic mice display significant mortality following acute exposure to hypoxia. This increased mortality is associated with a significant metabolic acidosis, despite having significantly higher levels of arterial Po2 Chronic hypoxia does not result in mortality, but rather is characterized by marked cardiac fibrosis. Studies in isolated hearts reveal that the contractile function of dystrophic hearts is highly susceptible to short bouts of ischemia, but these hearts tolerate prolonged acidosis better than wild-type hearts, indicating an increased sensitivity of the dystrophic heart to hypoxia. Dystrophic hearts display decreased cardiac efficiency and oxygen extraction. Isolated dystrophic cardiomyocytes and hearts have normal levels of FCCP-induced oxygen consumption, and mitochondrial morphology and content are normal in the dystrophic heart. These studies demonstrate reductions in cardiac efficiency and oxygen extraction of the dystrophic heart. The underlying cause of this reduced oxygen extraction is not clear; however, the current studies suggest that large disruptions of mitochondrial respiratory function or coronary flow regulation are not responsible. This finding is significant, as hypoxia is a common and largely preventable component of DMD that may contribute to the progression of the cardiac disease in DMD patients.
Collapse
Affiliation(s)
- Zachary Stelter
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Jana Strakova
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Amritha Yellamilli
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Kaleb Fischer
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Katharine Sharpe
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
8
|
The Effects of Experimental Sleep Apnea on Cardiac and Respiratory Functions in 6 and 18 Month Old Dystrophic (mdx) Mice. PLoS One 2016; 11:e0147640. [PMID: 26808526 PMCID: PMC4726600 DOI: 10.1371/journal.pone.0147640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/05/2016] [Indexed: 11/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal disease where over 90% of patients succumb to respiratory or cardiac failure. Sleep apnea and sleep disordered breathing (SDB) are noted in a plurality of DMD patients, and the resulting nocturnal episodic hypoxia (EH) cannot be ruled out as a contributing factor to cardiac and respiratory dysfunction. In this study, we investigated the impact of long-term episodic hypoxia, which mimics the cyclic hypoxia seen in sleep apnea, on cardiac and respiratory function in a murine model of DMD (mdx mice). Since the severity and prevalence of sleep apnea in DMD increases with age, we studied the impact of EH on young (6-month) and on older (18-month) mdx mice. Mice were either exposed for 12 weeks to EH (8 hours/day, 5 days/week) or to room air. We noted a significant increase in left ventricular (LV) dilatation (transthoracic echocardiography) on EH exposure in both age groups, but reduced LV contractility was seen only in 6-month old mice. With EH exposure, an increased fibrosis (hydroxyproline) was noted in both cardiac and diaphragm muscle in 18-month but not 6-month old mice. No significant change in relative diaphragm strength (in-vitro) was noted on EH exposure in 18-month old mice. In contrast, EH exposed 6-month old mice showed a significant increase in relative diaphragm strength. EH exposure did not result in any significant change in ventilatory parameters (barometric plethysmography) in awake 6-month old mdx mice. In contrast, 18-month old mdx mice showed considerable ventilatory dysfunction, consistent with reduced ventilatory reserve. Our findings highlight that sleep apnea impacts respiratory and cardiac function in muscular dystrophy, and that EH can have divergent effects on both systems. To our knowledge, this is the first comprehensive study to investigate the impact of EH on cardiac and respiratory function in mdx mice.
Collapse
|
9
|
Burns DP, O'Halloran KD. Evidence of hypoxic tolerance in weak upper airway muscle from young mdx mice. Respir Physiol Neurobiol 2015; 226:68-75. [PMID: 26691169 DOI: 10.1016/j.resp.2015.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/16/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease characterised by deficiency in the protein dystrophin. The respiratory system is weakened and patients suffer from sleep disordered breathing and hypoventilation culminating in periods of hypoxaemia. We examined the effects of an acute (6h) hypoxic stress on sternohyoid muscle function (representative pharyngeal dilator). 8 week old male, wild-type (WT; C57BL/10ScSnJ; n=18) and mdx (C57BL/10ScSn-Dmd(mdx)/J; n=16) mice were exposed to sustained hypoxia (FIO2=0.10) or normoxia. Muscle functional properties were examined ex vivo. Additional WT (n=5) and mdx (n=5) sternohyoid muscle was exposed to an anoxic challenge. Sternohyoid dysfunction was observed in mdx mice with significant reductions in force and power. Following exposure to the acute in vivo hypoxic stress, WT sternohyoid muscle showed evidence of functional impairment (reduced force, work and power). Conversely, mdx sternohyoid showed an apparent tolerance to the acute hypoxic stress. This tolerance was not maintained for mdx following a severe hypoxic stress. A dysfunctional upper airway muscle phenotype is present at 8 weeks of age in the mdx mouse, which may have implications for the control of airway patency in DMD. Hypoxic tolerance in mdx respiratory muscle is suggestive of adaptation to chronic hypoxia, which could be present due to respiratory morbidity. We speculate a role for hypoxia in mdx respiratory muscle morbidity.
Collapse
Affiliation(s)
- David P Burns
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland.
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
LoMauro A, D'Angelo MG, Aliverti A. Assessment and management of respiratory function in patients with Duchenne muscular dystrophy: current and emerging options. Ther Clin Risk Manag 2015; 11:1475-88. [PMID: 26451113 PMCID: PMC4592047 DOI: 10.2147/tcrm.s55889] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked myopathy resulting in progressive weakness and wasting of all the striated muscles including the respiratory muscles. The consequences are loss of ambulation before teen ages, cardiac involvement and breathing difficulties, the main cause of death. A cure for DMD is not currently available. In the last decades the survival of patients with DMD has improved because the natural history of the disease can be changed thanks to a more comprehensive therapeutic approach. This comprises interventions targeted to the manifestations and complications of the disease, particularly in the respiratory care. These include: 1) pharmacological intervention, namely corticosteroids and idebenone that significantly reduce the decline of spirometric parameters; 2) rehabilitative intervention, namely lung volume recruitment techniques that help prevent atelectasis and slows the rate of decline of pulmonary function; 3) scoliosis treatment, namely steroid therapy that is used to reduce muscle inflammation/degeneration and prolong ambulation in order to delay the onset of scoliosis, being an additional contribution to the restrictive lung pattern; 4) cough assisted devices that improve airway clearance thus reducing the risk of pulmonary infections; and 5) non-invasive mechanical ventilation that is essential to treat nocturnal hypoventilation, sleep disordered breathing, and ultimately respiratory failure. Without any intervention death occurs within the first 2 decades, however, thanks to this multidisciplinary therapeutic approach life expectancy of a newborn with DMD nowadays can be significantly prolonged up to his fourth decade. This review is aimed at providing state-of-the-art methods and techniques for the assessment and management of respiratory function in DMD patients.
Collapse
Affiliation(s)
- Antonella LoMauro
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | | | - Andrea Aliverti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
11
|
Abstract
Duchenne muscular dystrophy (DMD) is a progressive striated muscle disease that is characterized by skeletal muscle weakness with progressive respiratory and cardiac failure. Together respiratory and cardiac disease account for the majority of mortality in the DMD patient population. However, little is known regarding the effects of respiratory dysfunction on the dystrophic heart. The studies described here examine the effects of acute hypoxia on cardiac function. These studies demonstrate, for the first time, that a mouse model of DMD displays significant mortality following acute exposure to hypoxia. This mortality is characterized by a steady decline in systolic function. Retrospective analysis reveals that significant decreases in diastolic dysfunction, especially in the right ventricle, precede the decline in systolic pressure. The initial hemodynamic response to acute hypoxia in the mouse is similar to that observed in larger species, with significant increases in right ventricular afterload and decreases in left ventricular preload being observed. Significant increases in heart rate and contractility suggest hypoxia-induced activation of the sympathetic nervous system. These studies provide evidence that while hypoxia presents significant hemodynamic challenges to the dystrophic right ventricle, global cardiac dysfunction precedes hypoxia-induced mortality in the dystrophic heart. These findings are clinically relevant as the respiratory insufficiency evident in patients with DMD results in significant bouts of hypoxia. The results of these studies indicate that hypoxia may contribute to the acceleration of the heart disease in DMD patients. Importantly, hypoxia can be avoided through the use of ventilatory support.
Collapse
Affiliation(s)
- DeWayne Townsend
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
12
|
Plantié E, Migocka-Patrzałek M, Daczewska M, Jagla K. Model organisms in the fight against muscular dystrophy: lessons from drosophila and Zebrafish. Molecules 2015; 20:6237-53. [PMID: 25859781 PMCID: PMC6272363 DOI: 10.3390/molecules20046237] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 01/01/2023] Open
Abstract
Muscular dystrophies (MD) are a heterogeneous group of genetic disorders that cause muscle weakness, abnormal contractions and muscle wasting, often leading to premature death. More than 30 types of MD have been described so far; those most thoroughly studied are Duchenne muscular dystrophy (DMD), myotonic dystrophy type 1 (DM1) and congenital MDs. Structurally, physiologically and biochemically, MDs affect different types of muscles and cause individual symptoms such that genetic and molecular pathways underlying their pathogenesis thus remain poorly understood. To improve our knowledge of how MD-caused muscle defects arise and to find efficacious therapeutic treatments, different animal models have been generated and applied. Among these, simple non-mammalian Drosophila and zebrafish models have proved most useful. This review discusses how zebrafish and Drosophila MD have helped to identify genetic determinants of MDs and design innovative therapeutic strategies with a special focus on DMD, DM1 and congenital MDs.
Collapse
Affiliation(s)
- Emilie Plantié
- GReD (Genetics, Reproduction and Development laboratory), INSERM U1103, CNRS UMR6293, University of Clermont-Ferrand, 28 place Henri-Dunant, 63000 Clermont-Ferrand, France; E-Mail:
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland; E-Mails: (M.M.-P.); (M.D.)
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland; E-Mails: (M.M.-P.); (M.D.)
| | - Krzysztof Jagla
- GReD (Genetics, Reproduction and Development laboratory), INSERM U1103, CNRS UMR6293, University of Clermont-Ferrand, 28 place Henri-Dunant, 63000 Clermont-Ferrand, France; E-Mail:
| |
Collapse
|
13
|
Muscle atrophy reversed by growth factor activation of satellite cells in a mouse muscle atrophy model. PLoS One 2014; 9:e100594. [PMID: 24963862 PMCID: PMC4070942 DOI: 10.1371/journal.pone.0100594] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/29/2014] [Indexed: 11/23/2022] Open
Abstract
Muscular dystrophies comprise a large group of inherited disorders that lead to progressive muscle wasting. We wanted to investigate if targeting satellite cells can enhance muscle regeneration and thus increase muscle mass. We treated mice with hepatocyte growth factor and leukemia inhibitory factor under three conditions: normoxia, hypoxia and during myostatin deficiency. We found that hepatocyte growth factor treatment led to activation of the Akt/mTOR/p70S6K protein synthesis pathway, up-regulation of the myognic transcription factors MyoD and myogenin, and subsequently the negative growth control factor, myostatin and atrophy markers MAFbx and MuRF1. Hypoxia-induced atrophy was partially restored by hepatocyte growth factor combined with leukemia inhibitory factor treatment. Dividing satellite cells were three-fold increased in the treatment group compared to control. Finally, we demonstrated that myostatin regulates satellite cell activation and myogenesis in vivo following treatment, consistent with previous findings in vitro. Our results suggest, not only a novel in vivo pharmacological treatment directed specifically at activating the satellite cells, but also a myostatin dependent mechanism that may contribute to the progressive muscle wasting seen in severely affected patients with muscular dystrophy and significant on-going regeneration. This treatment could potentially be applied to many conditions that feature muscle wasting to increase muscle bulk and strength.
Collapse
|
14
|
Ventilatory chemosensory drive is blunted in the mdx mouse model of Duchenne Muscular Dystrophy (DMD). PLoS One 2013; 8:e69567. [PMID: 23922741 PMCID: PMC3726676 DOI: 10.1371/journal.pone.0069567] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 06/06/2013] [Indexed: 12/13/2022] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is caused by mutations in the DMD gene resulting in an absence of dystrophin in neurons and muscle. Respiratory failure is the most common cause of mortality and previous studies have largely concentrated on diaphragmatic muscle necrosis and respiratory failure component. Here, we investigated the integrity of respiratory control mechanisms in the mdx mouse model of DMD. Whole body plethysmograph in parallel with phrenic nerve activity recordings revealed a lower respiratory rate and minute ventilation during normoxia and a blunting of the hypoxic ventilatory reflex in response to mild levels of hypoxia together with a poor performance on a hypoxic stress test in mdx mice. Arterial blood gas analysis revealed low PaO2 and pH and high PaCO2 in mdx mice. To investigate chemosensory respiratory drive, we analyzed the carotid body by molecular and functional means. Dystrophin mRNA and protein was expressed in normal mice carotid bodies however, they are absent in mdx mice. Functional analysis revealed abnormalities in Dejours test and the early component of the hypercapnic ventilatory reflex in mdx mice. Together, these results demonstrate a malfunction in the peripheral chemosensory drive that would be predicted to contribute to the respiratory failure in mdx mice. These data suggest that investigating and monitoring peripheral chemosensory drive function may be useful for improving the management of DMD patients with respiratory failure.
Collapse
|
15
|
Shortt CM, Fredsted A, Bradford A, O'Halloran KD. Diaphragm muscle remodeling in a rat model of chronic intermittent hypoxia. J Histochem Cytochem 2013; 61:487-99. [PMID: 23640977 DOI: 10.1369/0022155413490947] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Respiratory muscle remodeling occurs in human sleep apnea--a common respiratory disorder characterized by chronic intermittent hypoxia (CIH) due to recurrent apnea during sleep. We sought to determine if CIH causes remodeling in rat sternohyoid (upper airway dilator) and diaphragm muscles. Adult male Wistar rats were exposed to CIH (n=8), consisting of 90 sec of hypoxia (5% at the nadir; SaO₂ ~80%)/90 sec of normoxia, 8 hr per day, for 7 consecutive days. Sham animals (n=8) were exposed to alternating air/air cycles in parallel. The effect of CIH on myosin heavy-chain (MHC) isoform (1, 2a, 2x, 2b) distribution, sarcoplasmic reticulum calcium ATPase (SERCA) isoform distribution, succinate dehydrogenase activity, glycerol phosphate dehydrogenase activity, and Na⁺/K⁺ ATPase pump content was determined. Sternohyoid muscle structure was unaffected by CIH treatment. CIH did not alter oxidative/glycolytic capacity or the Na⁺/K⁺-ATPase pump content of the diaphragm. CIH significantly increased the areal density of MHC 2b fibers in the rat diaphragm, and this was associated with a shift in SERCA proteins from SERCA2 to SERCA1. We conclude that CIH causes a slow-to-fast fiber transition in the rat diaphragm after just 7 days of treatment. Respiratory muscle functional remodeling may drive aberrant functional plasticity such as decreased muscle endurance, which is a feature of human sleep apnea.
Collapse
Affiliation(s)
- Christine M Shortt
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
| | | | | | | |
Collapse
|
16
|
Skelly JR, Edge D, Shortt CM, Jones JFX, Bradford A, O'Halloran KD. Respiratory control and sternohyoid muscle structure and function in aged male rats: decreased susceptibility to chronic intermittent hypoxia. Respir Physiol Neurobiol 2011; 180:175-82. [PMID: 22122888 DOI: 10.1016/j.resp.2011.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/11/2011] [Accepted: 11/12/2011] [Indexed: 11/30/2022]
Abstract
Obstructive sleep apnoea syndrome (OSAS) is a common respiratory disorder characterized by chronic intermittent hypoxia (CIH). We have shown that CIH causes upper airway muscle dysfunction in the rat due to oxidative stress. Ageing is an independent risk factor for the development of OSAS perhaps due to respiratory muscle remodelling and increased susceptibility to hypoxia. We sought to examine the effects of CIH on breathing and pharyngeal dilator muscle structure and function in aged rats. Aged (18-20 months), male Wistar rats were exposed to alternating cycles of normoxia and hypoxia (90 s each; F(I)O(2)=5% O(2) at nadir) or sham treatment for 8h/day for 9 days. Following CIH exposure, breathing was assessed by whole-body plethysmography. In addition, sternohyoid muscle contractile and endurance properties were examined in vitro. Muscle fibre type and cross-sectional area, and the activity of key oxidative and glycolytic enzymes were determined. CIH had no effect on basal breathing or ventilatory responses to hypoxia or hypercapnia. CIH did not alter succinate dehydrogenase or glycerol phosphate dehydrogenase enzyme activities, myosin heavy chain fibre areal density or cross-sectional area. Sternohyoid muscle force and endurance were unaffected by CIH exposure. Since we have established that this CIH paradigm causes sternohyoid muscle weakness in adult male rats, we conclude that aged rats have decreased susceptibility to CIH-induced stress. We suggest that structural remodelling with improved hypoxic tolerance in upper airway muscles may partly compensate for impaired neural regulation of the upper airway and increased propensity for airway collapse in aged mammals.
Collapse
Affiliation(s)
- J Richard Skelly
- UCD School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | |
Collapse
|
17
|
Skelly JR, Edge D, Shortt CM, Jones JFX, Bradford A, O'Halloran KD. Tempol ameliorates pharyngeal dilator muscle dysfunction in a rodent model of chronic intermittent hypoxia. Am J Respir Cell Mol Biol 2011; 46:139-48. [PMID: 21868712 DOI: 10.1165/rcmb.2011-0084oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Respiratory muscle dysfunction is implicated in the pathophysiology of obstructive sleep apnea syndrome (OSAS), an oxidative stress disorder prevalent in men. Pharmacotherapy for OSAS is an attractive option, and antioxidant treatments may prove beneficial. We examined the effects of chronic intermittent hypoxia (CIH) on breathing and pharyngeal dilator muscle structure and function in male and female rats. Additionally, we tested the efficacy of antioxidant treatment in preventing (chronic administration) or reversing (acute administration) CIH-induced effects in male rats. Adult male and female Wistar rats were exposed to alternating cycles of normoxia and hypoxia (90 s each; Fi(O(2)) = 5% O(2) at nadir; Sa(O(2)) ∼ 80%) or sham treatment for 8 h/d for 9 days. Tempol (1 mM, superoxide dismutase mimetic) was administered to subgroups of sham- and CIH-treated animals. Breathing was assessed by whole-body plethysmography. Sternohyoid muscle contractile and endurance properties were examined in vitro. Muscle fiber type and cross-sectional area and the activity of key metabolic enzymes were determined. CIH decreased sternohyoid muscle force in male rats only. This was not attributable to fiber transitions or alterations in oxidative or glycolytic enzyme activity. Muscle weakness after CIH was prevented by chronic Tempol supplementation and was reversed by acute antioxidant treatment in vitro. CIH increased normoxic ventilation in male rats only. Sex differences exist in the effects of CIH on the respiratory system, which may contribute to the higher prevalence of OSAS in male subjects. Antioxidant treatment may be beneficial as an adjunct OSAS therapy.
Collapse
Affiliation(s)
- J Richard Skelly
- Department of Physiology, University College Cork, Western Gateway Building, Western Road, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
18
|
Mosqueira M, Willmann G, Ruohola-Baker H, Khurana TS. Chronic hypoxia impairs muscle function in the Drosophila model of Duchenne's muscular dystrophy (DMD). PLoS One 2010; 5:e13450. [PMID: 20975992 PMCID: PMC2958114 DOI: 10.1371/journal.pone.0013450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 09/24/2010] [Indexed: 12/14/2022] Open
Abstract
Duchenne's muscular dystrophy (DMD) is a severe progressive myopathy caused by mutations in the DMD gene leading to a deficiency of the dystrophin protein. Due to ongoing muscle necrosis in respiratory muscles late-stage DMD is associated with respiratory insufficiency and chronic hypoxia (CH). To understand the effects of CH on dystrophin-deficient muscle in vivo, we exposed the Drosophila model for DMD (dmDys) to CH during a 16-day ascent to the summit of Mount Denali/McKinley (6194 meters above sea level). Additionally, dmDys and wild type (WT) flies were also exposed to CH in laboratory simulations of high altitude hypoxia. Expression profiling was performed using Affymetrix GeneChips® and validated using qPCR. Hypoxic dmDys differentially expressed 1281 genes, whereas the hypoxic WT flies differentially expressed 56 genes. Interestingly, a number of genes (e.g. heat shock proteins) were discordantly regulated in response to CH between dmDys and WT. We tested the possibility that the disparate molecular responses of dystrophin-deficient tissues to CH could adversely affect muscle by performing functional assays in vivo. Normoxic and CH WT and dmDys flies were challenged with acute hypoxia and time-to-recover determined as well as subjected to climbing tests. Impaired performance was noted for CH-dmDys compared to normoxic dmDys or WT flies (rank order: Normoxic-WT ≈ CH-WT> Normoxic-dmDys> CH-dmDys). These data suggest that dystrophin-deficiency is associated with a disparate, pathological hypoxic stress response(s) and is more sensitive to hypoxia induced muscle dysfunction in vivo. We hypothesize that targeting/correcting the disparate molecular response(s) to hypoxia may offer a novel therapeutic strategy in DMD.
Collapse
Affiliation(s)
- Matias Mosqueira
- Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Gabriel Willmann
- Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Hannele Ruohola-Baker
- Department of Biochemistry and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Tejvir S. Khurana
- Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
19
|
Pistilli EE, Bogdanovich S, Mosqueira M, Lachey J, Seehra J, Khurana TS. Pretreatment with a soluble activin type IIB receptor/Fc fusion protein improves hypoxia-induced muscle dysfunction. Am J Physiol Regul Integr Comp Physiol 2009; 298:R96-R103. [PMID: 19864340 DOI: 10.1152/ajpregu.00138.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypoxia, or reduced oxygen, occurs in a variety of clinical and environmental situations. Hypoxic exposure is associated with decreased muscle mass and a concomitant reduction in exercise capacity, although the exact mechanisms are not completely understood. The activin type IIB receptor (ActRIIB) is a receptor for transforming growth factor-beta (TGFbeta) superfamily members that are involved in the negative regulation of lean tissue mass. Given that hypoxia has negative effects on muscle mass and function and that modulation of the ActRIIB has been shown to increase muscle mass, we tested the hypothesis that pharmacological targeting of the ActRIIB for 2 wk would attenuate the loss of muscle mass and function in mice after exposure to normobaric hypoxia. ActRIIB modulation was achieved using a soluble activin receptor/Fc fusion protein (sActRIIB) in mice housed in a hypoxic chamber for 1 or 2 wk. Hypoxia induced a reduction in body weight in PBS- and sActRIIB-treated mice, although sActRIIB-treated mice remained larger throughout the hypoxic exposure. The absolute forces generated by extensor digitorum longus muscles were also significantly greater in sActRIIB- than PBS-treated mice and were more resistant to eccentric contraction-induced force drop after eccentric lengthening contractions. In summary, sActRIIB pretreatment attenuated hypoxia-induced muscle dysfunction. These data suggest that targeting the ActRIIB is an effective strategy to counter hypoxia-induced muscle dysfunction and to preacclimatize to hypoxia in clinical or high-altitude settings.
Collapse
Affiliation(s)
- Emidio E Pistilli
- Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
20
|
Liu YH, Li W, Song WH. Effects of oestrogen on sarcoplasmic reticulum Ca2+-ATPase activity and gene expression in genioglossus in chronic intermittent hypoxia rat. Arch Oral Biol 2009; 54:322-8. [PMID: 19230861 DOI: 10.1016/j.archoralbio.2009.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 11/28/2022]
Abstract
This study was designed to investigate the effects of oestrogen on sarcoplasmic reticulum (SR) Ca(2+)-ATPase activity and gene expression in ovariectomised rats under the condition of chronic intermittent hypoxia (CIH). Thirty-two female Sprague-Dawley rats were randomly divided into four groups: the normal control group (NC), the CIH group (CIH), the CIH-ovariectomised group (CIH+OVX), and the group of CIH-ovariectomised rats receiving estradiol replacement (CIH+OVX+E(2)). Rats in the latter three groups were exposed to CIH for 5 weeks. The animals were killed before genioglossus (GG) was rapidly excised, and their body and uterus mass were determined. Estradiol level was detected by radioimmunoassay. SR Ca(2+)-ATPase (SERCA) activity was observed by detecting inorganic phosphorus ion, and the SERCA mRNA level was measured using real-time quantitative polymerase chain reaction (real-time PCR). It was found that, compared with the NC group, the SERCA activity and mRNA level were remarkably reduced (p<.01) in the CIH group. And compared with the CIH group, the SERCA activity and mRNA level were also significantly reduced (p<.01) in the CIH+OVX group. Meanwhile, the SERCA activity and mRNA level significantly increased (p<.01) in the CIH+OVX+E(2) group compared with the CIH+OVX group, but lower than those in the NC group (p<.01). The results showed that CIH could reduce the SERCA activity and mRNA expression, and oestrogen-deficiency could exacerbate this effect; whilst estradiol replacement can partially reverse the effect of CIH in ovariectomised rats.
Collapse
Affiliation(s)
- Yue-Hua Liu
- Department of Orthodontics, School of Stomatology, Tongji University, 399 Yanchang Ave, Shanghai, China.
| | | | | |
Collapse
|