1
|
Ando R. Association of the rate of torque development and joint angle with passive muscle stiffness. Eur J Appl Physiol 2024; 124:2665-2673. [PMID: 38630263 DOI: 10.1007/s00421-024-05483-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/03/2024] [Indexed: 09/02/2024]
Abstract
PURPOSE The purpose of this study was to statistically compare the rate of torque development normalized by maximal strength (relative RTD) across ankle angles. Additionally, this study was aimed at exploring the correlation coefficients between relative RTD and passive stiffness of the medial gastrocnemius (MG) at different ankle angles. METHODS Twenty-two healthy men and women (age: 31 ± 4 years) performed randomly-ordered explosive isometric plantar flexions at plantarflexed (15°), neutral (0°), and dorsiflexed (- 15°) angles; relative RTD comprised the slope of the time-torque curve normalized to maximal torque. The shear wave velocity (SWV; index of stiffness) of the MG at rest was measured at each angle using ultrasound shear wave elastography. RESULTS The relative RTD was greater at 15° than - 15° for 0-50, 0-100, and 0-150 ms time-windows and at 15° than 0° for the 0-150 ms time-window (P < 0.05), although peak torque was lower at 15° than 0° and - 15° (P < 0.05). The relative RTD for the 0-50 ms time-window correlated with SWV at - 15° (rs = 0.475, P < 0.05), but not at 15º and 0º. Furthermore, the correlation coefficient of RTD for the 0-100 ms time-window with SWV was significantly greater at - 15° (rs = 0.420) than 0 ° (rs = - 0.109). CONCLUSIONS A greater relative RTD occurs at plantarflexed angles (i.e., the ascending limb of the force-length curve) in the triceps surae, and relative RTD is strongly related to passive MG stiffness at dorsiflexed angles (i.e., longer muscle lengths).
Collapse
Affiliation(s)
- Ryosuke Ando
- Department of Sport Science and Research, Japan Institute of Sports Sciences (JISS), 3-15-1, Nishigaoka, Kita-Ku, Tokyo, 115-0056, Japan.
| |
Collapse
|
2
|
Fischer J, Paternoster FK. Post-Activation-Performance Enhancement: Possible Contributing Factors. J Sports Sci Med 2024; 23:34-45. [PMID: 38455437 PMCID: PMC10915613 DOI: 10.52082/jssm.2024.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/13/2023] [Indexed: 03/09/2024]
Abstract
This study aimed to narrow down the possible mechanisms of Post-Activation Performance Enhancement (PAPE), especially if they are exclusively found in the muscle. It was therefore investigated whether (1) the PAPE effect is influenced by neural factors and (2) if Post-Activation-Potentiation (PAP) influences PAPE. Thirteen strength-trained participants (26.5 ± 3.2 years) took part in at least one of three interventions (PAP, PAPE-Electrical (PAPEE), and PAPE-Voluntary (PAPEV)). Conditioning contractions (CC) and testing involved isometric knee extensions performed on an isokinetic device at an 80° knee flexion angle. The CC was either performed voluntarily (PAP, PAPEV) or was evoked through electrical stimulation (PAPEE). Testing was performed at baseline and after two seconds, four minutes, eight minutes, and twelve minutes of the CC. Maximum voluntary isometric contractions (MVIC) for the PAPE trials and supramaximal twitches for the PAP trial were used for testing. Parameters of interest were peak torque and rate of torque development (RTD), and electromyography (EMG) amplitude of the quadriceps (only PAPE). Repeated measures ANOVA and simple contrast comparisons were used for statistical analysis. Peak torque (p < 0.001, η2p = 0.715) and RTD (p = 0. 005, η2p = 0.570) increased significantly during the PAP protocol immediately two seconds after the CC and decreased to near baseline values for the following time points (p > 0.05). Peak torque, RTD, and peak EMG showed no significant differences during PAPEE and PAPEV trials (p > 0.05). Due to the lack of a visible PAPE effect, the question of whether neural mechanisms influence PAPE cannot be answered. Due to the time course of the PAP analysis, it is questionable if these mechanisms play a role in PAPE. The assumption that the PAP mechanism influences PAPE cannot be confirmed for the same reason.
Collapse
Affiliation(s)
- Josef Fischer
- Department of Biomechanics in Sports, Faculty of Sport and Health Science, Technical University of Munich, Germany
- Institute of Human Movement Science, Sport and Health, Graz University, Austria
| | - Florian K Paternoster
- Department of Biomechanics in Sports, Faculty of Sport and Health Science, Technical University of Munich, Germany
| |
Collapse
|
3
|
Zero AM, Paris MT, Rice CL. Frequency dependent coexistence of muscle fatigue and potentiation assessed by concentric isotonic contractions in human plantar flexors. J Appl Physiol (1985) 2022; 133:490-505. [PMID: 35796610 DOI: 10.1152/japplphysiol.00214.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose was to investigate whether post-activation potentiation (PAP) mitigates power (i.e., torque x angular velocity) loss during dynamic fatiguing contractions and subsequent recovery by enhancing either muscle torque or angular velocity in human plantar flexors. In 12 participants, electrically stimulated (1, 10 and 50 Hz) dynamic contractions were done during a voluntary isotonic fatiguing protocol (20 and 50% voluntary decreases) until a 75% loss in voluntary peak power, and throughout 30 minutes of recovery. At the initial portion of fatigue (20% decrease), power responses of evoked low frequencies (1 and 10 Hz) were enhanced due to PAP (156 and 137%, respectively, P<0.001), while voluntary maximal efforts were depressed due to fatiguing mechanisms. Following the fatiguing task, prolonged low-frequency force depression (PLFFD) was evident by reduced 10:50 Hz peak power ratios (21 - 24%) from 3-min onwards during the 30-min recovery (P<0.005). Inducing PAP with maximal voluntary contractions during PLFFD enhanced the peak power responses of low frequencies (1 and 10 Hz) by 128 - 160 %, P<0.01. This PAP response mitigated the effects of PLFFD as the 1:50 (P<0.05) and 10:50 (P>0.4) Hz peak power ratios were greater or not different from the pre-fatigue values. Additionally, PAP enhanced peak torque more than peak angular velocity during both baseline and fatigue measurements (P<0.03). These results indicate that PAP can ameliorate PLFFD acutely when evaluated during concentric isotonic contractions and that peak torque is enhanced to a greater degree compared to peak angular velocity at baseline and in a fatigued state.
Collapse
Affiliation(s)
- Alexander M Zero
- School of Kinesiology, Faculty of Health Sciences, grid.39381.30Western University, London, ON, Canada
| | - Michael T Paris
- School of Kinesiology, Faculty of Health Sciences, grid.39381.30Western University, London, ON, Canada
| | - Charles L Rice
- Department of Anatomy and Cell Biology, grid.443228.bWestern University, London, Ontario, Canada
| |
Collapse
|
4
|
Thompson KMA, Whinton AK, Ferth S, Spriet LL, Burr JF. Moderate Load Resisted Sprints Do Not Improve Subsequent Sprint Performance in Varsity-Level Sprinters. J Strength Cond Res 2021; 35:72-77. [PMID: 29570579 DOI: 10.1519/jsc.0000000000002524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Thompson, K, Whinton, AK, Ferth, S, Spriet, LL, and Burr, JF. Moderate load resisted sprints do not improve subsequent sprint performance in varsity-level sprinters. J Strength Cond Res 35(1): 72-77, 2021-Resisted sprint training (RST) is commonly used for performance enhancement in athletics and team sports to develop acceleration ability. Evidence suggests that RST may be effective as a short-term intervention to improve successive sprints. Although these improvements have been measured in team sport athletes, limited research has considered the acute effects of RST training in sprint-trained athletes. Therefore, the aim of the current study was to determine whether performing RST with varsity-level sprinters using sled-equivalent resistive loads of ∼45% body mass results in a potentiation effect, leading to improvements in subsequent maximal sprint performance over 0-5 m and 0-20 m. Competitive sprinters (n = 20) were randomly assigned to perform a pre/post maximal 20-m sprint separated by either 3 resisted (RST group) or unresisted (URS group) sprints. The RST or URS protocol was performed on 4 occasions separated by at least 7 days. No significant differences were observed between the RST and URS groups comparing changes in sprint times over 0-5 m (URS Δ <0.01 ± 0.03 seconds, RST Δ <0.01 ± 0.03 seconds) and 0-20 m (URS Δ 0.013 ± 0.04 seconds, RST Δ <0.01 ± 0.04 seconds). We conclude that resisted sprints using sled-equivalent loads of 45% body mass are ineffective at inducing a potentiating effect on subsequent sprint performance in varsity-level sprinters. In this population of trained athletes, greater loads may be necessary to induce a potentiating effect.
Collapse
Affiliation(s)
- Kyle M A Thompson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|
5
|
Effects of Pre-Activation with Variable Intra-Repetition Resistance on Throwing Velocity in Female Handball Players: a Methodological Proposal. J Hum Kinet 2021; 77:235-244. [PMID: 34168707 PMCID: PMC8008303 DOI: 10.2478/hukin-2021-0022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The purpose of this study was to investigate the acute effect of pre-activation with Variable Intra-Repetition Resistance and isometry on the overhead throwing velocity in handball players. Fourteen female handball players took part in the study (age: 21.2 ± 2.7 years, experience: 10.9 ± 3.5 years). For Post-Activation Potentiation, two pre-activation methods were used: (I) Variable Intra-Repetition Resistance: 1 x 5 maximum repetitions at an initial velocity of 0.6 m·s-1 and a final velocity of 0.9 m·s-1; (II) Isometry: 1 x 5 s of maximum voluntary isometric contraction. Both methods were "standing unilateral bench presses" with the dominant arm, using a functional electromechanical dynamometer. The variable analysed was the mean of the three overhead throws. Ball velocity was measured with a radar (Stalker ATS). The statistical analysis was performed using ANOVA with repeated measures. No significant differences were found for either method (variable resistance intra-repetition: p = 0.194, isometry: p = 0.596). Regarding the individual responses, the analysis showed that 86% of the sample increased throwing velocity with the variable resistance intra-repetition method, while 93% of the sample increased throwing velocity with the isometric method. Both the variable intra-repetition resistance and isometric methods show improvements in ball velocity in female handball players. However, the authors recommend checking individual responses, since the results obtained were influenced by the short rest interval between the pre-activation and the experimental sets.
Collapse
|
6
|
Uwamahoro R, Sundaraj K, Subramaniam ID. Assessment of muscle activity using electrical stimulation and mechanomyography: a systematic review. Biomed Eng Online 2021; 20:1. [PMID: 33390158 PMCID: PMC7780389 DOI: 10.1186/s12938-020-00840-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 12/11/2020] [Indexed: 11/10/2022] Open
Abstract
This research has proved that mechanomyographic (MMG) signals can be used for evaluating muscle performance. Stimulation of the lost physiological functions of a muscle using an electrical signal has been determined crucial in clinical and experimental settings in which voluntary contraction fails in stimulating specific muscles. Previous studies have already indicated that characterizing contractile properties of muscles using MMG through neuromuscular electrical stimulation (NMES) showed excellent reliability. Thus, this review highlights the use of MMG signals on evaluating skeletal muscles under electrical stimulation. In total, 336 original articles were identified from the Scopus and SpringerLink electronic databases using search keywords for studies published between 2000 and 2020, and their eligibility for inclusion in this review has been screened using various inclusion criteria. After screening, 62 studies remained for analysis, with two additional articles from the bibliography, were categorized into the following: (1) fatigue, (2) torque, (3) force, (4) stiffness, (5) electrode development, (6) reliability of MMG and NMES approaches, and (7) validation of these techniques in clinical monitoring. This review has found that MMG through NMES provides feature factors for muscle activity assessment, highlighting standardized electromyostimulation and MMG parameters from different experimental protocols. Despite the evidence of mathematical computations in quantifying MMG along with NMES, the requirement of the processing speed, and fluctuation of MMG signals influence the technique to be prone to errors. Interestingly, although this review does not focus on machine learning, there are only few studies that have adopted it as an alternative to statistical analysis in the assessment of muscle fatigue, torque, and force. The results confirm the need for further investigation on the use of sophisticated computations of features of MMG signals from electrically stimulated muscles in muscle function assessment and assistive technology such as prosthetics control.
Collapse
Affiliation(s)
- Raphael Uwamahoro
- Fakulti Kejuruteraan Elektronik & Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Tunggal, Malaysia
- Regional Centre of Excellence in Biomedical Engineering and E-Health, University of Rwanda, PO BOX 4285, Kigali, Rwanda
| | - Kenneth Sundaraj
- Fakulti Kejuruteraan Elektronik & Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Tunggal, Malaysia.
| | - Indra Devi Subramaniam
- Pusat Bahasa & Pembangunan Insan, Universiti Teknikal Malaysia Melaka, Tunggal, Malaysia
| |
Collapse
|
7
|
Kohn S, Smart RR, Jakobi JM. Voluntary activation and twitch potentiation of the elbow flexors across supinated, neutral, and pronated forearm orientations. Physiol Rep 2018; 6:e13560. [PMID: 29333724 PMCID: PMC5789656 DOI: 10.14814/phy2.13560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 12/02/2022] Open
Abstract
Elbow flexion force depends on forearm orientation with supinated and neutral being stronger than pronated. The purpose of this study was to assess the influence of forearm orientation on voluntary activation (VA), postactivation potentiation (PAP), and twitch properties. Eleven males (23 ± 3 years) performed isometric elbow flexion maximal voluntary contractions (MVC) in supinated, neutral, and pronated forearm orientations with supramaximal stimulation to the biceps brachii muscle belly before, during, and after the MVC. MVC and VA were higher in supinated (213.6 ± 49.6 N; 93.0 ± 5.2%) and neutral (243.6 ± 48.0 N; 96.1 ± 3.2%) compared with pronated (113.6 ± 21.3 N; 70.9 ± 20.4%) (P < 0.05), while PAP did not differ across the three orientations (71.6 ± 42.2%) (P > 0.05). In the rested state, pronated peak tension (PT) was less compared with supinated (42%). In the potentiated state, pronated PT was less than supinated (50%) and neutral (53%) (P < 0.05). Reduced strength in the pronated orientation is partially attributed to reduced drive; however, reductions in peak tension indicate that there also is a mechanical disadvantage when the forearm is placed into a pronated orientation, and this does not alter PAP.
Collapse
Affiliation(s)
- Sienna Kohn
- School of Health and Exercise SciencesHealthy Exercise and Aging Lab GroupUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
| | - Rowan R. Smart
- School of Health and Exercise SciencesHealthy Exercise and Aging Lab GroupUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
| | - Jennifer M. Jakobi
- School of Health and Exercise SciencesHealthy Exercise and Aging Lab GroupUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
| |
Collapse
|
8
|
Gago P, Arndt A, Ekblom MM. Post Activation Potentiation of the Plantarflexors: Implications of Knee Angle Variations. J Hum Kinet 2017; 57:29-38. [PMID: 28713456 PMCID: PMC5504576 DOI: 10.1515/hukin-2017-0044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Flexing the knee to isolate the single joint soleus from the biarticular gastrocnemius is a strategy for investigating individual plantarflexor’s post activation potentiation (PAP). We investigated the implications of testing plantarflexor PAP at different knee angles and provided indirect quantification of the contribution of gastrocnemius potentiation to the overall plantarflexor enhancements post conditioning. Plantarflexor supramaximal twitches were measured in ten male power athletes before and after a maximal isometric plantarflexion (MVIC) at both flexed and extended knee angles. Mean torque and soleus (SOLRMS) and medial gastrocnemius (MGRMS) activity were measured during the MVIC. The mean torque and MGRMS of the MVIC were lower (by 33.9 and 42.4%, respectively) in the flexed compared to the extended position, with no significant difference in SOLRMS. After the MVIC, twitch peak torque (PT) and the rate of torque development (RTR) potentiated significantly more (by 17.4 and 14.7% respectively) in the extended as compared to the flexed knee position, but only immediately (5 s) after the MVIC. No significant differences were found in the twitch rate of torque development (RTD) potentiation between positions. It was concluded that knee joint configuration should be taken into consideration when comparing studies of plantarflexor PAP. Furthermore, results reflect a rather brief contribution of the gastrocnemius potentiation to the overall plantarflexor twitch enhancements.
Collapse
Affiliation(s)
- Paulo Gago
- The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden.,Research Center for Sport, Health and Human Development, (CIDESD), Coimbra, Portugal
| | - Anton Arndt
- The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden.,Department of CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Maria M Ekblom
- The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Tsoukos A, Bogdanis GC, Terzis G, Veligekas P. Acute Improvement of Vertical Jump Performance After Isometric Squats Depends on Knee Angle and Vertical Jumping Ability. J Strength Cond Res 2016; 30:2250-7. [PMID: 26808841 DOI: 10.1519/jsc.0000000000001328] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tsoukos, A, Bogdanis, GC, Terzis, G, and Veligekas, P. Acute improvement of vertical jump performance after isometric squats depends on knee angle and vertical jumping ability. J Strength Cond Res 30(8): 2250-2257, 2016-This study examined the acute effects of maximum isometric squats at 2 different knee angles (90 or 140°) on countermovement jump (CMJ) performance in power athletes. Fourteen national-level male track and field power athletes completed 3 main trials (2 experimental and 1 control) in a randomized and counterbalanced order 1 week apart. Countermovement jump performance was evaluated using a force-plate before and 15 seconds, 3, 6, 9, and 12 minutes after 3 sets of 3 seconds maximum isometric contractions with 1-minute rest in between, from a squat position with knee angle set at 90 or 140°. Countermovement jump performance was improved compared with baseline only in the 140° condition by 3.8 ± 1.2% on the 12th minute of recovery (p = 0.027), whereas there was no change in CMJ height in the 90° condition. In the control condition, there was a decrease in CMJ performance over time, reaching -3.6 ± 1.2% (p = 0.049) after 12 minutes of recovery. To determine the possible effects of baseline jump performance on subsequent CMJ performance, subjects were divided into 2 groups ("high jumpers" and "low jumpers"). The baseline CMJ values of "high jumpers" and "low jumpers" differed significantly (CMJ: 45.1 ± 2.2 vs. 37.1 ± 3.9 cm, respectively, p = 0.001). Countermovement jump was increased only in the "high jumpers" group by 5.4 ± 1.4% (p = 0.001) and 7.4 ± 1.2% (p = 0.001) at the knee angles of 90 and 140°, respectively. This improvement was larger at the 140° angle (p = 0.049). Knee angle during isometric squats and vertical jumping ability are important determinants of the acute CMJ performance increase observed after a conditioning activity.
Collapse
Affiliation(s)
- Athanasios Tsoukos
- Athletics Laboratory, Faculty of Physical Education and Sports Science, University of Athens, Greece
| | | | | | | |
Collapse
|
10
|
Mina MA, Blazevich AJ, Giakas G, Kay AD. Influence of variable resistance loading on subsequent free weight maximal back squat performance. J Strength Cond Res 2014; 28:2988-95. [PMID: 24796978 DOI: 10.1519/jsc.0000000000000471] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of the study was to determine the potentiating effects of variable resistance (VR) exercise during a warm-up on subsequent free-weight resistance (FWR) maximal squat performance. In the first session, 16 recreationally active men (age = 26.0 ± 7.8 years; height = 1.7 ± 0.2 m; mass = 82.6 ± 12.7 kg) were familiarized with the experimental protocols and tested for 1 repetition maximum (1RM) squat lift. The subjects then visited the laboratory on 2 further occasions under either control or experimental conditions. During these conditions, 2 sets of 3 repetitions of either FWR (control) or VR (experimental) squat lifts at 85% of 1RM were performed; during the experimental condition, 35% of the load was generated from band tension. After a 5-minute rest, 1RM, 3D knee joint kinematics, and vastus medialis, vastus lateralis, rectus femoris, and semitendinosus electromyogram (EMG) signals were recorded simultaneously. No subject increased 1RM after FWR, however, 13 of 16 (81%) subjects increased 1RM after VR (mean = 7.7%; p < 0.01). Lower peak and mean eccentric (16-19%; p ≤ 0.05) and concentric (12-21%; p ≤ 0.05) knee angular velocities were observed during the 1RM following VR when compared with FWR, however, no differences in knee flexion angle (1.8°; p > 0.05) or EMG amplitudes (mean = 5.9%; p > 0.05) occurred. Preconditioning using VR significantly increased 1RM without detectable changes in knee extensor muscle activity or knee flexion angle, although eccentric and concentric velocities were reduced. Thus, VR seems to potentiate the neuromuscular system to enhance subsequent maximal lifting performance. Athletes could thus use VR during warm-up routines to maximize squat performance.
Collapse
Affiliation(s)
- Minas A Mina
- 1School of Sport, Exercise and Human Performance, University of Derby, Buxton, United Kingdom; 2Centre for Exercise and Sports Science Research, School of Exercise and Health Sciences, Edith Cowan University, Joondalup, Western Australia; 3Department of Physical Education and Sport Science, University of Thessaly, Greece; and 4Sport, Exercise and Life Sciences, The University of Northampton, Northampton, United Kingdom
| | | | | | | |
Collapse
|
11
|
Abstract
The aim of this study was to measure the extent to which potentiation changes in response to an isometric maximal voluntary contraction. Eleven physically active subjects participated in two separate studies. Single stimulus of electrical stimulation of the femoral nerve was used to measure torque at rest in unpotentiated quadriceps muscles (study 1 and 2), and potentiated quadriceps muscles torque in a 10 min period after a 5 s isometric maximal voluntary contraction of the quadriceps muscles (study 1). Additionally, potentiated quadriceps muscles torque was measured every min after a further 10 maximal voluntary contractions repeated every min (study 2). Electrical stimulation repeated several times without previous maximal voluntary contraction showed similar peak twitch torque. Peak twitch torque 4 s after a 5 s maximal voluntary contraction increased by 45±13% (study 1) and by 56±10% (study 2), the rate of torque development by 53±13% and 82±29%, and the rate of relaxation by 50±17% and 59±22%, respectively, but potentiation was lost already two min after a 5 s maximal voluntary contraction. There was a tendency for peak twitch torque to increase for the first five repeated maximal voluntary contractions, suggesting increased potentiation with additional maximal voluntary contractions. Correlations for peak twitch torque vs the rate of torque development and for the rate of relaxation were r2= 0.94 and r2=0.97. The correlation between peak twitch torque, the rate of torque development and the rate of relaxation suggests that potentiation is due to instantaneous changes in skeletal muscle contractility and relaxation.
Collapse
|
12
|
MIYAMOTO NAOKAZU, WAKAHARA TAKU, EMA RYOICHI, KAWAKAMI YASUO. Further Potentiation of Dynamic Muscle Strength after Resistance Training. Med Sci Sports Exerc 2013; 45:1323-30. [DOI: 10.1249/mss.0b013e3182874c0e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Miyamoto N, Kanehisa H, Kawakami Y. Potentiation of maximal voluntary concentric torque in human quadriceps femoris. Med Sci Sports Exerc 2013; 44:1738-46. [PMID: 22460473 DOI: 10.1249/mss.0b013e318256b813] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Previous studies have shown that one bout of 6-s maximal voluntary contraction (MVC) can enhance subsequent dynamic joint performance with maximal voluntary effort. However, the conditioning contraction also induces central fatigue, which attenuates the enhancement of the subsequent voluntary joint performance. Here, as a modality for minimizing the fatigue while enhancing joint performance, we examined the effects of one bout of a short-duration isometric MVC and neuromuscular electrical stimulation (NMES). METHODS In the first experiment, the optimal duration of NMES for inducing twitch potentiation of the quadriceps femoris muscle was determined, which was found to be 5 s. Then in the second experiment, 13 subjects performed maximal voluntary isokinetic concentric knee extensions at 210° · s(-1) in the following sequence: before and immediately after each of the 3-, 5-, and 10-s MVCs and 5-s NMES of knee extension and 1, 3, and 5 min thereafter. RESULTS When the isometric MVC was used as a conditioning contraction, the maximal voluntary concentric torque was significantly enhanced at 1 and 3 min after MVC only in the 5-s MVC trial (106.6% ± 2.3% and 107.2% ± 2.6% of the initial value, respectively) but not in the 3- and 10-s MVC trials. In the 5-s NMES trial, the voluntary concentric torque was significantly increased immediately after the conditioning contraction (105.1% ± 2.2%) as well as 1 and 3 min thereafter (107.5% ± 3.3% and 107.8% ± 2.7%, respectively). CONCLUSIONS These results suggest that conditioning contraction of around 5 s, performed with isometric MVC or NMES, can be a modality to enhance dynamic voluntary joint performance, with the latter having a more immediate effect.
Collapse
Affiliation(s)
- Naokazu Miyamoto
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan.
| | | | | |
Collapse
|
14
|
Crewther BT, Kilduff LP, Cook CJ, Middleton MK, Bunce PJ, Yang GZ. The acute potentiating effects of back squats on athlete performance. J Strength Cond Res 2012; 25:3319-25. [PMID: 22076086 DOI: 10.1519/jsc.0b013e318215f560] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Crewther, BT, Kilduff, LP, Cook, CJ, Middleton, MK, Bunce, PJ, and Yang, G-Z. The acute potentiating effects of back squats on athlete performance. J Strength Cond Res 25(12): 3319-3325, 2011-This study examined the acute potentiating effects of back squats on athlete performance with a specific focus on movement specificity and the individual timing of potentiation. Nine subelite male rugby players performed 3 protocols on separate occasions using a randomized, crossover, and counterbalanced design. Each protocol consisted of performance testing before a single set of 3 repetition maximum (3RM) back squats, followed by retesting at ∼15 seconds, 4, 8, 12, and 16 minutes. The 3 tests were countermovement jumps (CMJs), sprint performance (5 and 10 m), and 3-m horizontal sled pushes with a 100-kg load. Relationships between the individual changes in salivary testosterone and cortisol concentrations and performance were also examined. The 3RM squats significantly (p < 0.001) improved CMJ height at 4 (3.9 ± 1.9%), 8 (3.5 ± 1.5%), and 12 (3.0 ± 1.4%) minutes compared with baseline values, but no temporal changes in sprinting and sled times were identified. On an individual level, the peak relative changes in CMJ height (6.4 ± 2.1%, p < 0.001) were greater than the 3-m sled (1.4 ± 0.6%), 5-m (2.6 ± 1.0%), and 10-m sprint tests (1.8 ± 1.0%). In conclusion, a single set of 3RM squats was found effective in acutely enhancing CMJ height in the study population, especially when the recovery period was individualized for each athlete. The study results also suggest that the potentiating effects of squats may exhibit some degree of movement specificity, being greater for those exercises with similar movement patterns. The current findings have practical implications for prescribing warm-up exercises, individualizing training programs, and for interpreting postactivation potentiation research.
Collapse
Affiliation(s)
- Blair T Crewther
- Hamlyn Center, Institute of Global Health Innovation, Faculty of Engineering, Imperial College, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
15
|
Miyamoto N. Warm-up procedures to enhance dynamic muscular performance. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2012. [DOI: 10.7600/jpfsm.1.155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Miyamoto N, Fukutani A, Yanai T, Kawakami Y. Twitch potentiation after voluntary contraction and neuromuscular electrical stimulation at various frequencies in human quadriceps femoris. Muscle Nerve 2011; 45:110-5. [DOI: 10.1002/mus.22259] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Smith CB, Cheng AJ, Rice CL. Potentiation of the triceps brachii during voluntary submaximal contractions. Muscle Nerve 2011; 43:859-65. [PMID: 21462211 DOI: 10.1002/mus.21993] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2010] [Indexed: 11/07/2022]
Abstract
INTRODUCTION The effects of postactivation potentiation (PAP) on evoked contractions are well understood, but less is known about the effect of PAP on voluntary submaximal contractions. Using a measure of neuromuscular efficiency (NME) [NME = (mV EMG / Nm torque)] we explored the effects of PAP in the triceps brachii at two muscle lengths. METHODS Evoked twitch and NME were compared at short (40° elbow flexion) and long (120°) muscle lengths. At each length, 12 subjects performed a contraction of 25% maximum voluntary contraction (MVC) torque before and after a potentiating MVC. RESULTS Twitch torque potentiated more at short length (216.9 ± 169.3%) than at long length (77.3 ± 32.6%), but PAP moderately improved NME only at short length (12.2 ± 8.7%). CONCLUSIONS The greater capacity for PAP at the short length is reflected by greater NME. Compared with evoked responses, the relatively small change in NME suggests a different and more modest role of PAP during voluntary submaximal contractions.
Collapse
Affiliation(s)
- Cameron B Smith
- School of Kinesiology, Arthur and Sonia Labatt Health Sciences Building, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | | | | |
Collapse
|
18
|
Miyamoto N, Yanai T, Kawakami Y. Twitch potentiation induced by stimulated and voluntary isometric contractions at various torque levels in human knee extensor muscles. Muscle Nerve 2011; 43:360-6. [DOI: 10.1002/mus.21871] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|