1
|
Kissane RWP, Askew GN. Conserved mammalian muscle mechanics during eccentric contractions. J Physiol 2024; 602:1105-1126. [PMID: 38400808 DOI: 10.1113/jp285549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/01/2024] [Indexed: 02/26/2024] Open
Abstract
Skeletal muscle has a broad range of biomechanical functions, including power generation and energy absorption. These roles are underpinned by the force-velocity relationship, which comprises two distinct components: a concentric and an eccentric force-velocity relationship. The concentric component has been extensively studied across a wide range of muscles with different muscle properties. However, to date, little progress has been made in accurately characterising the eccentric force-velocity relationship in mammalian muscle with varying muscle properties. Consequently, mathematical models of this muscle behaviour are based on a poorly understood phenomenon. Here, we present a comprehensive assessment of the concentric force-velocity and eccentric force-velocity relationships of four mammalian muscles (soleus, extensor digitorum longus, diaphragm and digastric) with varying biomechanical functions, spanning three orders of magnitude in body mass (mouse, rat and rabbits). The force-velocity relationship was characterised using a hyperbolic-linear equation for the concentric component a hyperbolic equation for the eccentric component, at the same time as measuring the rate of force development in the two phases of force development in relation to eccentric lengthening velocity. We demonstrate that, despite differences in the curvature and plateau height of the eccentric force-velocity relationship, the rates of relative force development were consistent for the two phases of the force-time response during isovelocity lengthening ramps, in relation to lengthening velocity, in the four muscles studied. Our data support the hypothesis that this relationship depends on cross-bridge and titin activation. Hill-type musculoskeletal models of the eccentric force-velocity relationship for mammalian muscles should incorporate this biphasic force response. KEY POINTS: The capacity of skeletal muscle to generate mechanical work and absorb energy is underpinned by the force-velocity relationship. Despite identification of the lengthening (eccentric) force-velocity relationship over 80 years ago, no comprehensive study has been undertaken to characterise this relationship in skeletal muscle. We show that the biphasic force response seen during active muscle lengthening is conserved over three orders of magnitude of mammalian skeletal muscle mass. Using mice with a small deletion in titin, we show that part of this biphasic force profile in response to muscle lengthening is reliant on normal titin activation. The rate of force development during muscle stretch may be a more reliable way to describe the forces experienced during eccentric muscle contractions compared to the traditional hyperbolic curve fitting, and functions as a novel predictor of force-velocity characteristics that may be used to better inform hill-type musculoskeletal models and assess pathophysiological remodelling.
Collapse
Affiliation(s)
- Roger W P Kissane
- Department of Musculoskeletal & Ageing Science, University of Liverpool, Liverpool, UK
| | - Graham N Askew
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Horslen BC, Milburn GN, Blum KP, Simha SN, Campbell KS, Ting LH. History-dependent muscle resistance to stretch remains high after small, posturally relevant pre-movements. J Exp Biol 2023; 226:jeb245456. [PMID: 37661732 PMCID: PMC10560558 DOI: 10.1242/jeb.245456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
The contributions of intrinsic muscle fiber resistance during mechanical perturbations to standing and other postural behaviors are unclear. Muscle short-range stiffness is known to vary depending on the current level and history of the muscle's activation, as well as the muscle's recent movement history; this property has been referred to as history dependence or muscle thixotropy. However, we currently lack sufficient data about the degree to which muscle stiffness is modulated across posturally relevant characteristics of muscle stretch and activation. We characterized the history dependence of muscle's resistance to stretch in single, permeabilized, activated, muscle fibers in posturally relevant stretch conditions and activation levels. We used a classic paired muscle stretch paradigm, varying the amplitude of a 'conditioning' triangular stretch-shorten cycle followed by a 'test' ramp-and-hold imposed after a variable inter-stretch interval. We tested low (<15%), intermediate (15-50%) and high (>50%) muscle fiber activation levels, evaluating short-range stiffness and total impulse in the test stretch. Muscle fiber resistance to stretch remained high at conditioning amplitudes of <1% optimal fiber length, L0, and inter-stretch intervals of >1 s, characteristic of healthy standing postural sway. An ∼70% attenuation of muscle resistance to stretch was reached at conditioning amplitudes of >3% L0 and inter-stretch intervals of <0.1 s, characteristic of larger, faster postural sway in balance-impaired individuals. The thixotropic changes cannot be predicted solely on muscle force at the time of stretch. Consistent with the disruption of muscle cross-bridges, muscle resistance to stretch during behavior can be substantially attenuated if the prior motion is large enough and/or frequent enough.
Collapse
Affiliation(s)
- Brian C. Horslen
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and The Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gregory N. Milburn
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Kyle P. Blum
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and The Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Surabhi N. Simha
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and The Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Lena H. Ting
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and The Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Lloyd EM, Pinniger GJ, Murphy RM, Grounds MD. Slow or fast: Implications of myofibre type and associated differences for manifestation of neuromuscular disorders. Acta Physiol (Oxf) 2023; 238:e14012. [PMID: 37306196 DOI: 10.1111/apha.14012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Many neuromuscular disorders can have a differential impact on a specific myofibre type, forming the central premise of this review. The many different skeletal muscles in mammals contain a spectrum of slow- to fast-twitch myofibres with varying levels of protein isoforms that determine their distinctive contractile, metabolic, and other properties. The variations in functional properties across the range of classic 'slow' to 'fast' myofibres are outlined, combined with exemplars of the predominantly slow-twitch soleus and fast-twitch extensor digitorum longus muscles, species comparisons, and techniques used to study these properties. Other intrinsic and extrinsic differences are discussed in the context of slow and fast myofibres. These include inherent susceptibility to damage, myonecrosis, and regeneration, plus extrinsic nerves, extracellular matrix, and vasculature, examined in the context of growth, ageing, metabolic syndrome, and sexual dimorphism. These many differences emphasise the importance of carefully considering the influence of myofibre-type composition on manifestation of various neuromuscular disorders across the lifespan for both sexes. Equally, understanding the different responses of slow and fast myofibres due to intrinsic and extrinsic factors can provide deep insight into the precise molecular mechanisms that initiate and exacerbate various neuromuscular disorders. This focus on the influence of different myofibre types is of fundamental importance to enhance translation for clinical management and therapies for many skeletal muscle disorders.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Gavin J Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
4
|
Hahn D, Han SW, Joumaa V. The history-dependent features of muscle force production: A challenge to the cross-bridge theory and their functional implications. J Biomech 2023; 152:111579. [PMID: 37054597 DOI: 10.1016/j.jbiomech.2023.111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
The cross-bridge theory predicts that muscle force is determined by muscle length and the velocity of active muscle length changes. However, before the formulation of the cross-bridge theory, it had been observed that the isometric force at a given muscle length is enhanced or depressed depending on active muscle length changes before that given length is reached. These enhanced and depressed force states are termed residual force enhancement (rFE) and residual force depression (rFD), respectively, and together they are known as the history-dependent features of muscle force production. In this review, we introduce early attempts in explaining rFE and rFD before we discuss more recent research from the past 25 years which has contributed to a better understanding of the mechanisms underpinning rFE and rFD. Specifically, we discuss the increasing number of findings on rFE and rFD which challenge the cross-bridge theory and propose that the elastic element titin plays a role in explaining muscle history-dependence. Accordingly, new three-filament models of force production including titin seem to provide better insight into the mechanism of muscle contraction. Complementary to the mechanisms behind muscle history-dependence, we also show various implications for muscle history-dependence on in-vivo human muscle function such as during stretch-shortening cycles. We conclude that titin function needs to be better understood if a new three-filament muscle model which includes titin, is to be established. From an applied perspective, it remains to be elucidated how muscle history-dependence affects locomotion and motor control, and whether history-dependent features can be changed by training.
Collapse
Affiliation(s)
- Daniel Hahn
- Human Movement Science, Faculty of Sport Science, Ruhr University, Bochum, Germany; School of Human Movement and Nutrition Sciences, University of Queensland, Australia
| | - Seong-Won Han
- Institute of Physiology II, Faculty of Medicine, University of Münster, Germany.
| | - Venus Joumaa
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| |
Collapse
|
5
|
Contento VS, Power GA. Eccentric exercise-induced muscle weakness amplifies the history dependence of force. Eur J Appl Physiol 2023; 123:749-767. [PMID: 36447012 DOI: 10.1007/s00421-022-05105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022]
Abstract
INTRODUCTION Following active lengthening or shortening contractions, isometric steady-state torque is increased (residual force enhancement; rFE) or decreased (residual force depression; rFD), respectively, compared to fixed-end isometric contractions at the same muscle length and level of activation. Though the mechanisms underlying this history dependence of force have been investigated extensively, little is known about the influence of exercise-induced muscle weakness on rFE and rFD. PURPOSE Assess rFE and rFD in the dorsiflexors at 20%, 60%, and 100% maximal voluntary torque (MVC) and activation matching, and electrically stimulated at 20% MVC, prior to, 1 h following, and 24 h following 150 maximal eccentric dorsiflexion contractions. METHODS Twenty-six participants (13 male, 24.7 ± 2.0y; 13 female, 22.5 ± 3.6y) were seated in a dynamometer with their right hip and knee angle set to 110° and 140°, respectively, with an ankle excursion set between 0° and 40° plantar flexion (PF). MVC torque, peak twitch torque, and prolonged low frequency force depression were used to assess eccentric exercise-induced neuromuscular impairments. History-dependent contractions consisted of a 1 s isometric (40°PF or 0°PF) phase, a 1 s shortening or lengthening phase (40°/s), and an 8 s isometric (0°PF or 40°PF) phase. RESULTS Following eccentric exercise; MVC torque was decreased, prolonged low frequency force depression was present, and both rFE and rFD increased for all maximal and submaximal conditions. CONCLUSIONS The history dependence of force during voluntary torque and activation matching, and electrically stimulated contractions is amplified following eccentric exercise. It appears that a weakened neuromuscular system amplifies the magnitude of the history-dependence of force.
Collapse
Affiliation(s)
- Vincenzo S Contento
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
6
|
Andersen OE, Kristensen AM, Nielsen OB, Overgaard K. Force potentiation during eccentric contractions in rat skeletal muscle. J Appl Physiol (1985) 2023; 134:777-785. [PMID: 36759160 DOI: 10.1152/japplphysiol.00676.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Postactivation potentiation refers to an acute enhancement of contractile properties following muscle activity. Previously, the effects of prior muscle activation on eccentric force at tetanic activation frequencies have only been sparsely reported. This paper aimed to study acute activity-induced effects on eccentric force of slow and fast-twitch muscles and characterize them in relation to postactivation potentiation. We elicited eccentric contractions in isolated rat extensor digitorum longus and soleus muscles by actively lengthening muscles at a constant velocity. We assessed contractile properties by measuring force over shortly interspaced, identical eccentric, and isometric contractions. We then analyzed stretch force, isometric peak force, rate of force development, and relaxation times. Finally, we compared the time courses for the development and cessation of changes in stretch force to known features of postactivation potentiation. In extensor digitorum longus, muscles stretch force consistently increased in a contraction-to-contraction manner by up to 49% [95% confidence interval (CI): 35-64%] whereas isometric peak force simultaneously showed minor declines (8%, 95% CI: 5-10%). The development and cessation of eccentric force potentiation coincided with the development of twitch potentiation and increases in rate of force development. In soleus muscles we found no consistent eccentric potentiation. Characterization of the increase in eccentric force revealed that force only increased in the very beginning of an active stretch. Eccentric force at tetanic activation frequencies potentiates substantially in extensor digitorum longus muscles over consecutive contractions with a time course coinciding with postactivation potentiation. Such eccentric potentiation may be important in sport performance.NEW & NOTEWORTHY Force during eccentric contractions can increase to a magnitude that may have profound consequences for our understanding of skeletal muscle locomotion. This increase in eccentric force occurs over consecutive, shortly interspaced, tetanic contractions in rat extensor digitorum longus muscles-not in rat soleus muscles-and coincides with well-known traits of postactivation potentiation. Eccentric force potentiation may significantly enhance muscle performance in activities involving stretch-shortening cycles.
Collapse
Affiliation(s)
- Ole Emil Andersen
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University, Aarhus, Denmark
| | | | - Ole B Nielsen
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
7
|
Residual force enhancement is attenuated for quick stretch conditions. J Biomech 2022; 136:111076. [DOI: 10.1016/j.jbiomech.2022.111076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022]
|
8
|
Fukutani A, Herzog W. Differences in stretch-shortening cycle and residual force enhancement between muscles. J Biomech 2020; 112:110040. [PMID: 32980750 DOI: 10.1016/j.jbiomech.2020.110040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 01/18/2023]
Abstract
It has been suggested that cross bridge kinetics and residual force enhancement (RFE) affect force in the stretch-shortening cycle (SSC). Because cross bridge kinetics and titin isoforms, which are thought to be related to RFE, differ between muscles, the SSC effect may be also muscle-dependent. Thus, we compared the SSC effect between psoas and soleus muscles, which have a distinct fiber type distribution and different titin isoforms. Four tests (SSC, SSC control, RFE, RFE control) were conducted using isolated, skinned fibers of psoas and soleus. In the SSC tests, fibers were activated at an average sarcomere length of 2.4 μm, stretched to 3.0 μm, and shortened to 2.4 μm. In the SSC control tests, fibers were activated at an average sarcomere length of 3.0 μm and then shortened to 2.4 μm. The relative increase in mechanical work obtained during shortening between tests was defined as the SSC effect. In the RFE tests, fibers were activated at an average sarcomere length of 2.4 μm and then stretched to 3.0 μm, while the RFE control tests consisted of an isometric contraction at 3.0 μm. The difference in steady-state isometric force between tests was defined as RFE. The SSC effect was greater in soleus than in psoas, while the RFE was the same for both muscles. Since the SSC effect was greater in soleus, while the RFE was the same, the observed greater SSC effect is probably not directly caused by RFE, but may be related to differences in cross bridge kinetics.
Collapse
Affiliation(s)
- Atsuki Fukutani
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan.
| | - Walter Herzog
- Faculty of Kinesiology, The University of Calgary, 2500 University Drive, NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
9
|
Power GA, Hinks A, Mashouri P, Contento VS, Chen J. The long and short of residual force enhancement non-responders. Eur J Appl Physiol 2020; 120:2565-2567. [DOI: 10.1007/s00421-020-04511-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Chen J, Mashouri P, Fontyn S, Valvano M, Elliott-Mohamed S, Noonan AM, Brown SHM, Power GA. The influence of training-induced sarcomerogenesis on the history dependence of force. J Exp Biol 2020; 223:jeb218776. [PMID: 32561632 DOI: 10.1242/jeb.218776] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 06/09/2020] [Indexed: 12/21/2022]
Abstract
The increase or decrease in isometric force following active muscle lengthening or shortening, relative to a reference isometric contraction at the same muscle length and level of activation, are referred to as residual force enhancement (rFE) and residual force depression (rFD), respectively. The purpose of these experiments was to investigate the trainability of rFE and rFD on the basis of serial sarcomere number (SSN) alterations to history-dependent force properties. Maximal rFE/rFD measures from the soleus and extensor digitorum longus (EDL) of rats were compared after 4 weeks of uphill or downhill running with a no-running control. SSN adapted to the training: soleus SSN was greater with downhill compared with uphill running, while EDL demonstrated a trend towards more SSN for downhill compared with no running. In contrast, rFE and rFD did not differ across training groups for either muscle. As such, it appears that training-induced SSN adaptations do not modify rFE or rFD at the whole-muscle level.
Collapse
Affiliation(s)
- Jackey Chen
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Parastoo Mashouri
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stephanie Fontyn
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mikella Valvano
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shakeap Elliott-Mohamed
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alex M Noonan
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stephen H M Brown
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
11
|
Miyamoto N, Hirata K, Inoue K, Hashimoto T. Muscle Stiffness of the Vastus Lateralis in Sprinters and Long-Distance Runners. Med Sci Sports Exerc 2020; 51:2080-2087. [PMID: 31525172 DOI: 10.1249/mss.0000000000002024] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The stiffness of muscle-tendon units and of tendons in the lower legs plays important roles in sprinting and long-distance running. However, the association of muscle stiffness with sprinting and running remains unknown. This study aimed to identify the characteristics of muscle stiffness in sprinters and long-distance runners, and to determine how muscle stiffness is related to the performance of these athletes. METHODS In 22 male sprinters (SPR group), 22 male long-distance runners (LDR group), and 19 healthy untrained control male subjects (CON group), the muscle shear wave speed (a proxy for stiffness) of the vastus lateralis (VL) was measured under passive (resting) and active (contracting the knee extensors at 50% of maximal voluntary contraction) conditions, by using ultrasound shear wave elastography. RESULTS The passive VL shear wave speed in SPR group was significantly lower than that in LDR group (P = 0.039). The active VL shear wave speed in LDR group was significantly higher than that in SPR (P = 0.022) and CON (P < 0.001) groups. In SPR group, the 100-m race time was negatively correlated to the passive VL shear wave speed (r = -0.483, P = 0.023) and positively correlated to the active VL shear wave speed (r = 0.522, P = 0.013). In the LDR group, the 5000-m race time was positively correlated to the passive VL shear wave speed (r = 0.438, P = 0.047) but not to the active VL shear wave speed. CONCLUSION The muscles of sprinters and long-distance runners exhibit characteristic stiffness that can be beneficial to their athletic performance. Passive and active muscle stiffness may play different roles in human locomotion, depending on locomotion speeds.
Collapse
Affiliation(s)
- Naokazu Miyamoto
- Graduate School of Health and Sports Science, Juntendo University, Chiba, JAPAN.,Department of Sports and Life Sciences, National Institute of Fitness and Sports in Kanoya, Kanoya, JAPAN
| | - Kosuke Hirata
- Department of Sports and Life Sciences, National Institute of Fitness and Sports in Kanoya, Kanoya, JAPAN.,Japan Society for the Promotion of Science, Tokyo, JAPAN.,Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, JAPAN
| | - Kakeru Inoue
- Graduate School of Health and Sports Science, Juntendo University, Chiba, JAPAN.,Faculty of Sport and Health Science, Ritsumeikan University, JAPAN
| | | |
Collapse
|
12
|
Laitila JM, McNamara EL, Wingate CD, Goullee H, Ross JA, Taylor RL, van der Pijl R, Griffiths LM, Harries R, Ravenscroft G, Clayton JS, Sewry C, Lawlor MW, Ottenheijm CAC, Bakker AJ, Ochala J, Laing NG, Wallgren-Pettersson C, Pelin K, Nowak KJ. Nebulin nemaline myopathy recapitulated in a compound heterozygous mouse model with both a missense and a nonsense mutation in Neb. Acta Neuropathol Commun 2020; 8:18. [PMID: 32066503 PMCID: PMC7027239 DOI: 10.1186/s40478-020-0893-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/05/2020] [Indexed: 12/31/2022] Open
Abstract
Nemaline myopathy (NM) caused by mutations in the gene encoding nebulin (NEB) accounts for at least 50% of all NM cases worldwide, representing a significant disease burden. Most NEB-NM patients have autosomal recessive disease due to a compound heterozygous genotype. Of the few murine models developed for NEB-NM, most are Neb knockout models rather than harbouring Neb mutations. Additionally, some models have a very severe phenotype that limits their application for evaluating disease progression and potential therapies. No existing murine models possess compound heterozygous Neb mutations that reflect the genotype and resulting phenotype present in most patients. We aimed to develop a murine model that more closely matched the underlying genetics of NEB-NM, which could assist elucidation of the pathogenetic mechanisms underlying the disease. Here, we have characterised a mouse strain with compound heterozygous Neb mutations; one missense (p.Tyr2303His), affecting a conserved actin-binding site and one nonsense mutation (p.Tyr935*), introducing a premature stop codon early in the protein. Our studies reveal that this compound heterozygous model, NebY2303H, Y935X, has striking skeletal muscle pathology including nemaline bodies. In vitro whole muscle and single myofibre physiology studies also demonstrate functional perturbations. However, no reduction in lifespan was noted. Therefore, NebY2303H,Y935X mice recapitulate human NEB-NM and are a much needed addition to the NEB-NM mouse model collection. The moderate phenotype also makes this an appropriate model for studying NEB-NM pathogenesis, and could potentially be suitable for testing therapeutic applications.
Collapse
|
13
|
The MyoRobot technology discloses a premature biomechanical decay of skeletal muscle fiber bundles derived from R349P desminopathy mice. Sci Rep 2019; 9:10769. [PMID: 31341183 PMCID: PMC6656739 DOI: 10.1038/s41598-019-46723-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/03/2019] [Indexed: 01/05/2023] Open
Abstract
Mutations in the Des gene coding for the muscle-specific intermediate filament protein desmin lead to myopathies and cardiomyopathies. We previously generated a R349P desmin knock-in mouse strain as a patient-mimicking model for the corresponding most frequent human desmin mutation R350P. Since nothing is known about the age-dependent changes in the biomechanics of affected muscles, we investigated the passive and active biomechanics of small fiber bundles from young (17–23 wks), adult (25–45 wks) and aged (>60 wks) heterozygous and homozygous R349P desmin knock-in mice in comparison to wild-type littermates. We used a novel automated biomechatronics platform, the MyoRobot, to perform coherent quantitative recordings of passive (resting length-tension curves, visco-elasticity) and active (caffeine-induced force transients, pCa-force, ‘slack-tests’) parameters to determine age-dependent effects of the R349P desmin mutation in slow-twitch soleus and fast-twitch extensor digitorum longus small fiber bundles. We demonstrate that active force properties are not affected by this mutation while passive steady-state elasticity is vastly altered in R349P desmin fiber bundles compatible with a pre-aged phenotype exhibiting stiffer muscle preparations. Visco-elasticity on the other hand, was not altered. Our study represents the first systematic age-related characterization of small muscle fiber bundle preparation biomechanics in conjunction with inherited desminopathy.
Collapse
|
14
|
Pinnell RA, Mashouri P, Mazara N, Weersink E, Brown SH, Power GA. Residual force enhancement and force depression in human single muscle fibres. J Biomech 2019; 91:164-169. [DOI: 10.1016/j.jbiomech.2019.05.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/27/2022]
|
15
|
Terrill JR, Pinniger GJ, Nair KV, Grounds MD, Arthur PG. Beneficial effects of high dose taurine treatment in juvenile dystrophic mdx mice are offset by growth restriction. PLoS One 2017; 12:e0187317. [PMID: 29095865 PMCID: PMC5667875 DOI: 10.1371/journal.pone.0187317] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/17/2017] [Indexed: 11/28/2022] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a fatal muscle wasting disease manifested in young boys, for which there is no current cure. We have shown that the amino acid taurine is safe and effective at preventing dystropathology in the mdx mouse model for DMD. This study aimed to establish if treating growing mdx mice with a higher dose of taurine was more effective at improving strength and reducing inflammation and oxidative stress. Mice were treated with a dose of taurine estimated to be 16 g/kg/day, in drinking water from 1-6 weeks of age, after which in vivo and ex vivo muscle strength was assessed, as were measures of inflammation, oxidative stress and taurine metabolism. While the dose did decrease inflammation and protein oxidation in dystrophic muscles, there was no improvement in muscle strength (in contrast with benefits observed with the lower dose) and growth of the young mice was significantly restricted. We present novel data that a high taurine dose increases the cysteine content of both mdx liver and plasma, a possible result of down regulation of the taurine synthesis pathway in the liver (which functions to dispose of excess cysteine, which is toxic). These data caution that a high dose of taurine can have adverse effects and may be less efficacious than lower taurine doses. Therefore, monitoring of taurine dosage needs to be considered in future pre-clinical trials, in anticipation of using taurine as a clinical therapy for growing DMD boys (and other conditions).
Collapse
Affiliation(s)
- Jessica R. Terrill
- School of Molecular Sciences, the University of Western Australia, Perth, Western Australia, Australia
| | - Gavin J. Pinniger
- School of Human Sciences, the University of Western Australia, Perth, Western Australia, Australia
| | - Keshav V. Nair
- School of Human Sciences, the University of Western Australia, Perth, Western Australia, Australia
| | - Miranda D. Grounds
- School of Human Sciences, the University of Western Australia, Perth, Western Australia, Australia
| | - Peter G. Arthur
- School of Molecular Sciences, the University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
16
|
Fukutani A, Misaki J, Isaka T. Both the elongation of attached crossbridges and residual force enhancement contribute to joint torque enhancement by the stretch-shortening cycle. ROYAL SOCIETY OPEN SCIENCE 2017; 4:161036. [PMID: 28386453 PMCID: PMC5367297 DOI: 10.1098/rsos.161036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/19/2017] [Indexed: 06/07/2023]
Abstract
This study examined the influence of the elongation of attached crossbridges and residual force enhancement on joint torque enhancement by the stretch-shortening cycle (SSC). Electrically evoked submaximal tetanic plantar flexions were adopted. Concentric contractions were evoked in the following three conditions: after 2 s isometric preactivation (ISO condition), after 1 s isometric then 1 s eccentric preactivation (ECC condition), and after 1 s eccentric then 1 s isometric preactivation (TRAN condition). Joint torque and fascicle length were measured during the concentric contraction phase. While no differences in fascicle length were observed among conditions at any time points, joint torque was significantly higher in the ECC than TRAN condition at the onset of concentric contraction. This difference would be caused by the dissipation of the elastic energy stored in the attached crossbridges induced by eccentric preactivation in TRAN condition due to 1 s transition phase. Furthermore, joint torques observed 0.3 and 0.6 s after concentric contraction were significantly larger in the ECC and TRAN conditions than in the ISO condition while no difference was observed between the ECC and TRAN conditions. Since the elastic energy stored in the attached crossbridges would have dissipated over this time frame, this result suggests that residual force enhancement induced by eccentric preactivation also contributes to joint torque enhancement by the SSC.
Collapse
Affiliation(s)
- Atsuki Fukutani
- Faculty of Kinesiology, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, CanadaT2N 1N4
- Japan Society for the Promotion of Science, Postdoctoral Fellow for Research Abroad, 5-3-1, Chiyoda-ku, Tokyo 102-0083, Japan
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Jun Misaki
- Graduate School of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Tadao Isaka
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
17
|
The effects of a skeletal muscle titin mutation on walking in mice. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 203:67-76. [PMID: 27986994 DOI: 10.1007/s00359-016-1137-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/22/2016] [Accepted: 11/28/2016] [Indexed: 01/10/2023]
Abstract
Titin contributes to sarcomere assembly, muscle signaling, and mechanical properties of muscle. The mdm mouse exhibits a small deletion in the titin gene resulting in dystrophic mutants and phenotypically normal heterozygotes. We examined the effects of this mutation on locomotion to assess how, and if, changes to muscle phenotype explain observed locomotor differences. Mutant mice are much smaller in size than their siblings and gait abnormalities may be driven by differences in limb proportions and/or by changes to muscle phenotype caused by the titin mutation. We quantified differences in walking gait among mdm genotypes and also determined whether genotypes vary in limb morphometrics. Mice were filmed walking, and kinematic and morphological variables were measured. Mutant mice had a smaller range of motion at the ankle, shorter stride lengths, and shorter stance duration, but walked at the same relative speeds as the other genotypes. Although phenotypically similar to wildtype mice, heterozygous mice frequently exhibited intermediate gait mechanics. Morphological differences among genotypes in hindlimb proportions were small and do not explain the locomotor differences. We suggest that differences in locomotion among mdm genotypes are due to changes in muscle phenotype caused by the titin mutation.
Collapse
|
18
|
Colombini B, Nocella M, Bagni MA. Non-crossbridge stiffness in active muscle fibres. ACTA ACUST UNITED AC 2016; 219:153-60. [PMID: 26792325 DOI: 10.1242/jeb.124370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Stretching of an activated skeletal muscle induces a transient tension increase followed by a period during which the tension remains elevated well above the isometric level at an almost constant value. This excess of tension in response to stretching has been called 'static tension' and attributed to an increase in fibre stiffness above the resting value, named 'static stiffness'. This observation was originally made, by our group, in frog intact muscle fibres and has been confirmed more recently, by us, in mammalian intact fibres. Following stimulation, fibre stiffness starts to increase during the latent period well before crossbridge force generation and it is present throughout the whole contraction in both single twitches and tetani. Static stiffness is dependent on sarcomere length in a different way from crossbridge force and is independent of stretching amplitude and velocity. Static stiffness follows a time course which is distinct from that of active force and very similar to the myoplasmic calcium concentration time course. We therefore hypothesize that static stiffness is due to a calcium-dependent stiffening of a non-crossbridge sarcomere structure, such as the titin filament. According to this hypothesis, titin, in addition to its well-recognized role in determining the muscle passive tension, could have a role during muscle activity.
Collapse
Affiliation(s)
- Barbara Colombini
- Department of Experimental and Clinical Medicine, University of Florence, Viale G.B. Morgagni 63, 50134 Florence, Italy
| | - Marta Nocella
- Department of Experimental and Clinical Medicine, University of Florence, Viale G.B. Morgagni 63, 50134 Florence, Italy
| | - Maria Angela Bagni
- Department of Experimental and Clinical Medicine, University of Florence, Viale G.B. Morgagni 63, 50134 Florence, Italy
| |
Collapse
|
19
|
Terrill JR, Pinniger GJ, Graves JA, Grounds MD, Arthur PG. Increasing taurine intake and taurine synthesis improves skeletal muscle function in the mdx mouse model for Duchenne muscular dystrophy. J Physiol 2016; 594:3095-110. [PMID: 26659826 DOI: 10.1113/jp271418] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/18/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease associated with increased inflammation, oxidative stress and myofibre necrosis. Cysteine precursor antioxidants such as N-acetyl cysteine (NAC) and l-2-oxothiazolidine-4-carboxylate (OTC) reduce dystropathology in the mdx mouse model for DMD, and we propose this is via increased synthesis of the amino acid taurine. We compared the capacity of OTC and taurine treatment to increase taurine content of mdx muscle, as well as effects on in vivo and ex vivo muscle function, inflammation and oxidative stress. Both treatments increased taurine in muscles, and improved many aspects of muscle function and reduced inflammation. Taurine treatment also reduced protein thiol oxidation and was overall more effective, as OTC treatment reduced body and muscle weight, suggesting some adverse effects of this drug. These data suggest that increasing dietary taurine is a better candidate for a therapeutic intervention for DMD. ABSTRACT Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease for which there is no widely available cure. Whilst the mechanism of loss of muscle function in DMD and the mdx mouse model are not fully understood, disruptions in intracellular calcium homeostasis, inflammation and oxidative stress are implicated. We have shown that protein thiol oxidation is increased in mdx muscle, and that the indirect thiol antioxidant l-2-oxothiazolidine-4-carboxylate (OTC), which increases cysteine availability, decreases pathology and increases in vivo strength. We propose that the protective effects of OTC are a consequence of conversion of cysteine to taurine, which has itself been shown to be beneficial to mdx pathology. This study compares the efficacy of taurine with OTC in decreasing dystropathology in mdx mice by measuring in vivo and ex vivo contractile function and measurements of inflammation and protein thiol oxidation. Increasing the taurine content of mdx muscle improved both in vivo and ex vivo muscle strength and function, potentially via anti-inflammatory and antioxidant effects of taurine. OTC treatment increased taurine synthesis in the liver and taurine content of mdx muscle, improved muscle function and decreased inflammation. However, OTC was less effective than taurine treatment, with OTC also decreasing body and EDL muscle weights, suggesting that OTC had some detrimental effects. These data support continued research into the use of taurine as a therapeutic intervention for DMD, and suggest that increasing dietary taurine is the better strategy for increasing taurine content and decreasing severity of dystropathology.
Collapse
Affiliation(s)
- Jessica R Terrill
- School of Chemistry and Biochemistry, the University of Western Australia, Perth, Western Australia.,School of Anatomy, Physiology and Human Biology, the University of Western Australia, Perth, Western Australia
| | - Gavin J Pinniger
- School of Anatomy, Physiology and Human Biology, the University of Western Australia, Perth, Western Australia
| | - Jamie A Graves
- School of Anatomy, Physiology and Human Biology, the University of Western Australia, Perth, Western Australia
| | - Miranda D Grounds
- School of Anatomy, Physiology and Human Biology, the University of Western Australia, Perth, Western Australia
| | - Peter G Arthur
- School of Chemistry and Biochemistry, the University of Western Australia, Perth, Western Australia
| |
Collapse
|
20
|
Koppes RA, Swank DM, Corr DT. A new experimental model for force enhancement: steady-state and transient observations of the Drosophila jump muscle. Am J Physiol Cell Physiol 2015; 309:C551-7. [PMID: 26289752 DOI: 10.1152/ajpcell.00202.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/15/2015] [Indexed: 11/22/2022]
Abstract
The increase in steady-state force after active lengthening in skeletal muscle, termed force enhancement (FE), has been observed for nearly one century. Although demonstrated experimentally at various structural levels, the underlying mechanism(s) remain unknown. We recently showed that the Drosophila jump muscle is an ideal model for investigating mechanisms behind muscle physiological properties, because its mechanical characteristics, tested thus far, duplicate those of fast mammalian skeletal muscles, and Drosophila has the advantage that it can be more easily genetically modified. To determine if Drosophila would be appropriate to investigate FE, we performed classic FE experiments on this muscle. Steady-state FE (FESS), following active lengthening, increased by 3, 7, and 12% of maximum isometric force, with increasing stretch amplitudes of 5, 10, and 20% of optimal fiber length (FLOPT), yet was similar for stretches across increasing stretch velocities of 4, 20, and 200% FLOPT/s. These FESS characteristics of the Drosophila jump muscle closely mimic those observed previously. Jump muscles also displayed typical transient FE characteristics. The transient force relaxation following active stretch was fit with a double exponential, yielding two phases of force relaxation: a fast initial relaxation of force, followed by a slower recovery toward steady state. Our analyses identified a negative correlation between the slow relaxation rate and FESS, indicating that there is likely an active component contributing to FE, in addition to a passive component. Herein, we have established the Drosophila jump muscle as a new and genetically powerful experimental model to investigate the underlying mechanism(s) of FE.
Collapse
Affiliation(s)
- Ryan A Koppes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York; and
| | - Douglas M Swank
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York; and Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Study, Rensselaer Polytechnic Institute, Troy, New York
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York; and
| |
Collapse
|
21
|
Residual force enhancement in humans: Current evidence and unresolved issues. J Electromyogr Kinesiol 2015; 25:571-80. [DOI: 10.1016/j.jelekin.2015.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/09/2015] [Accepted: 04/16/2015] [Indexed: 11/23/2022] Open
|
22
|
Chin L, Kennedy BF, Kennedy KM, Wijesinghe P, Pinniger GJ, Terrill JR, McLaughlin RA, Sampson DD. Three-dimensional optical coherence micro-elastography of skeletal muscle tissue. BIOMEDICAL OPTICS EXPRESS 2014; 5:3090-102. [PMID: 25401023 PMCID: PMC4230882 DOI: 10.1364/boe.5.003090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/09/2014] [Accepted: 08/10/2014] [Indexed: 05/18/2023]
Abstract
In many muscle pathologies, impairment of skeletal muscle function is closely linked to changes in the mechanical properties of the muscle constituents. Optical coherence micro-elastography (OCME) uses optical coherence tomography (OCT) imaging of tissue under a quasi-static, compressive mechanical load to map variations in tissue mechanical properties on the micro-scale. We present the first study of OCME on skeletal muscle tissue. We show that this technique can resolve features of muscle tissue including fibers, fascicles and tendon, and can also detect necrotic lesions in skeletal muscle from the mdx mouse model of Duchenne muscular dystrophy. In many instances, OCME provides better or additional contrast complementary to that provided by OCT. These results suggest that OCME could provide new understanding and opportunity for assessment of skeletal muscle pathologies.
Collapse
Affiliation(s)
- Lixin Chin
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Crawley, Australia
| | - Brendan F. Kennedy
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Crawley, Australia
| | - Kelsey M. Kennedy
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Crawley, Australia
| | - Philip Wijesinghe
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Crawley, Australia
| | - Gavin J. Pinniger
- School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia
| | - Jessica R. Terrill
- School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia
- School of Biomedical, Biomolecular & Chemical Science, The University of Western Australia, Crawley, Australia
| | - Robert A. McLaughlin
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Crawley, Australia
| | - David D. Sampson
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Crawley, Australia
- Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, Crawley, Australia
| |
Collapse
|
23
|
Ditroilo M, Cully L, Boreham CA, De Vito G. Assessment of musculo-articular and muscle stiffness in young and older men. Muscle Nerve 2012; 46:559-65. [DOI: 10.1002/mus.23354] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Non-crossbridge calcium-dependent stiffness in slow and fast skeletal fibres from mouse muscle. J Muscle Res Cell Motil 2011; 32:403-9. [DOI: 10.1007/s10974-011-9274-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/31/2011] [Indexed: 10/15/2022]
|
25
|
Zuo L, Nogueira L, Hogan MC. Effect of pulmonary TNF-α overexpression on mouse isolated skeletal muscle function. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1025-31. [PMID: 21697519 DOI: 10.1152/ajpregu.00126.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TNF-α is a proinflammatory cytokine that is involved in numerous pathological processes including chronic obstructive pulmonary disease (COPD). In the present study, we used a transgenic mouse model that overexpresses TNF-α in the lung (Tg(+)) to test the hypothesis that chronic exposure to TNF-α (as seen in COPD) reduces skeletal muscle force production and fatigue resistance, particularly under low Po(2) conditions. At 7-12 mo, body and muscle weight of both extensor digitorum longus (EDL) and soleus were significantly smaller in Tg(+) compared with littermate wild-type (WT) mice; however, the body-to-muscle weight ratio was not different between groups. EDL and soleus muscles were subjected to in vitro fatiguing contractile periods under high (∼550 Torr) and low Po(2) (∼40 Torr). Although all muscles were less fatigue-resistant during low Po(2) compared with high Po(2), only the soleus fatigued more rapidly in Tg(+) mice (∼12%) compared with WT at high Po(2). The maximal tension of EDL was equally reduced in Tg(+) mice (28-34% decrease from WT under both Po(2) conditions); but for soleus this parameter was smaller only under low Po(2) in Tg(+) mice (∼31% decrease from WT). The peak rate of relaxation and the peak rate of contraction were both significantly reduced in Tg(+) EDL muscles compared with WT EDL under low Po(2) conditions, but not in soleus. These results demonstrate that TNF-α upregulation in the lung impairs peripheral skeletal muscle function but affects fast- and slow-twitch muscles differentially at high and low Po(2).
Collapse
Affiliation(s)
- Li Zuo
- Dept. of Medicine, Univ. of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0623, USA.
| | | | | |
Collapse
|