1
|
Burton A, Wang Z, Song D, Tran S, Hanna J, Ahmad D, Bakall J, Clausen D, Anderson J, Peralta R, Sandepudi K, Benedetto A, Yang E, Basrai D, Miller LE, Tresch MC, Gutruf P. Fully implanted battery-free high power platform for chronic spinal and muscular functional electrical stimulation. Nat Commun 2023; 14:7887. [PMID: 38036552 PMCID: PMC10689769 DOI: 10.1038/s41467-023-43669-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
Electrical stimulation of the neuromuscular system holds promise for both scientific and therapeutic biomedical applications. Supplying and maintaining the power necessary to drive stimulation chronically is a fundamental challenge in these applications, especially when high voltages or currents are required. Wireless systems, in which energy is supplied through near field power transfer, could eliminate complications caused by battery packs or external connections, but currently do not provide the harvested power and voltages required for applications such as muscle stimulation. Here, we introduce a passive resonator optimized power transfer design that overcomes these limitations, enabling voltage compliances of ± 20 V and power over 300 mW at device volumes of 0.2 cm2, thereby improving power transfer 500% over previous systems. We show that this improved performance enables multichannel, biphasic, current-controlled operation at clinically relevant voltage and current ranges with digital control and telemetry in freely behaving animals. Preliminary chronic results indicate that implanted devices remain operational over 6 weeks in both intact and spinal cord injured rats and are capable of producing fine control of spinal and muscle stimulation.
Collapse
Affiliation(s)
- Alex Burton
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Zhong Wang
- Department of Neuroscience, Northwestern University, Chicago, IL, 60611, USA
| | - Dan Song
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Sam Tran
- Department of Neuroscience, Northwestern University, Chicago, IL, 60611, USA
| | - Jessica Hanna
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Dhrubo Ahmad
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Jakob Bakall
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - David Clausen
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Jerry Anderson
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Roberto Peralta
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Kirtana Sandepudi
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Alex Benedetto
- Interdepartmental Neuroscience, Northwestern University, Chicago, IL, 60611, USA
| | - Ethan Yang
- Department of Neuroscience, Northwestern University, Chicago, IL, 60611, USA
| | - Diya Basrai
- Department of Neuroscience, Northwestern University, Chicago, IL, 60611, USA
| | - Lee E Miller
- Department of Neuroscience, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Interdepartmental Neuroscience, Northwestern University, Chicago, IL, 60611, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA
| | - Matthew C Tresch
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA.
- Shirley Ryan AbilityLab, Chicago, IL, 60611, USA.
| | - Philipp Gutruf
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA.
- Bio5 Institute and Department of Neurology, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
2
|
Aout T, Begon M, Jegou B, Peyrot N, Caderby T. Effects of Functional Electrical Stimulation on Gait Characteristics in Healthy Individuals: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:8684. [PMID: 37960383 PMCID: PMC10648660 DOI: 10.3390/s23218684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND This systematic review aimed to provide a comprehensive overview of the effects of functional electrical stimulation (FES) on gait characteristics in healthy individuals. METHODS Six electronic databases (PubMed, Embase, Epistemonikos, PEDro, COCHRANE Library, and Scopus) were searched for studies evaluating the effects of FES on spatiotemporal, kinematic, and kinetic gait parameters in healthy individuals. Two examiners evaluated the eligibility and quality of the included studies using the PEDro scale. RESULTS A total of 15 studies met the inclusion criteria. The findings from the literature reveal that FES can be used to modify lower-limb joint kinematics, i.e., to increase or reduce the range of motion of the hip, knee, and ankle joints. In addition, FES can be used to alter kinetics parameters, including ground reaction forces, center of pressure trajectory, or knee joint reaction force. As a consequence of these kinetics and kinematics changes, FES can lead to changes in spatiotemporal gait parameters, such as gait speed, step cadence, and stance duration. CONCLUSIONS The findings of this review improve our understanding of the effects of FES on gait biomechanics in healthy individuals and highlight the potential of this technology as a training or assistive solution for improving gait performance in this population.
Collapse
Affiliation(s)
- Thomas Aout
- Laboratoire IRISSE, EA4075, UFR des Sciences de l’Homme et de l’Environnement, Université de La Réunion, 97430 Le Tampon, France; (B.J.); (N.P.); (T.C.)
| | - Mickael Begon
- Laboratoire de Simulation et Modélisation du Mouvement, École de Kinésiologie et des Sciences de l’Activité Physique, Université de Montréal, Montreal, QC H3T 1J4, Canada;
- Centre de Recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Baptiste Jegou
- Laboratoire IRISSE, EA4075, UFR des Sciences de l’Homme et de l’Environnement, Université de La Réunion, 97430 Le Tampon, France; (B.J.); (N.P.); (T.C.)
| | - Nicolas Peyrot
- Laboratoire IRISSE, EA4075, UFR des Sciences de l’Homme et de l’Environnement, Université de La Réunion, 97430 Le Tampon, France; (B.J.); (N.P.); (T.C.)
- Mouvement-Interactions-Performance (MIP), Le Mans Université, EA 4334, 72000 Le Mans, France
| | - Teddy Caderby
- Laboratoire IRISSE, EA4075, UFR des Sciences de l’Homme et de l’Environnement, Université de La Réunion, 97430 Le Tampon, France; (B.J.); (N.P.); (T.C.)
| |
Collapse
|
3
|
Mercado-Gutierrez JA, Dominguez R, Hernandez-Popo I, Quinzaños-Fresnedo J, Vera-Hernandez A, Leija-Salas L, Gutierrez-Martinez J. A Flexible Pulse Generator Based on a Field Programmable Gate Array Architecture for Functional Electrical Stimulation. Front Neurosci 2022; 15:702781. [PMID: 35126033 PMCID: PMC8814338 DOI: 10.3389/fnins.2021.702781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 12/09/2021] [Indexed: 11/15/2022] Open
Abstract
Non-invasive Functional Electrical Stimulation (FES) is a technique applied for motor rehabilitation of patients with central nervous system injury. This technique requires programmable multichannel systems to configure the stimulation parameters (amplitude, frequency, and pulse width). Most FES systems are based on microcontrollers with fixed architecture; this limits the control of the parameters and the scaling to multiple channels. Although field programmable gate arrays (FPGA) have been used in FES systems as alternative to microcontrollers, most of them focus on signal acquisition, processing, or communication functions, or are for invasive stimulation. A few FES systems report using FPGAs for parameter configuration and pulse generation in non-invasive FES. However, generally they limit the value of the frequency or amplitude parameters to enable multichannel operation. This restricts free selection of parameters and implementation of modulation patterns, previously reported to delay FES-induced muscle fatigue. To overcome those limitations, this paper presents a proof-of-concept (technology readiness level three-TRL 3) regarding the technical feasibility and potential use of an FPGA-based pulse generator for non-invasive FES applications (PG-nFES). The main aims were: (1) the development of a flexible pulse generator for FES applications and (2) to perform a proof-of-concept of the system, comprising: electrical characterization of the stimulation parameters, and verification of its potential for upper limb FES applications. Biphasic stimulation pulses with high linearity (r2 > 0.9998) and repeatability (>0.81) were achieved by combining the PG-nFES with a current-controlled output stage. Average percentage error in the characterizations was under 3% for amplitude (1–48 mA) and pulse width (20–400 μs), and 0% for frequency (10–150 Hz). A six-channel version of the PG-nFES was implemented to demonstrate the scalability feature. The independence of parameters was tested with three patterns of co-modulation of two parameters. Moreover, two complete FES channels were implemented and the claimed features of the PG-nFES were verified by performing upper limb functional movements involving the hand and the arm. Finally, the system enabled implementation of a stimulation pattern with co-modulation of frequency and pulse width, applied successfully for efficient elbow during repetitions of a functional movement.
Collapse
Affiliation(s)
- Jorge A. Mercado-Gutierrez
- Departamento de Ingeniería Eléctrica, Sección Bioelectrónica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
- División de Investigación en Ingeniería Médica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Ricardo Dominguez
- Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana — Iztapalapa, Mexico City, Mexico
| | - Ignacio Hernandez-Popo
- CONACYT — Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Jimena Quinzaños-Fresnedo
- División de Rehabilitación Neurológica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Arturo Vera-Hernandez
- Departamento de Ingeniería Eléctrica, Sección Bioelectrónica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Lorenzo Leija-Salas
- Departamento de Ingeniería Eléctrica, Sección Bioelectrónica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Josefina Gutierrez-Martinez
- División de Investigación en Ingeniería Médica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
- *Correspondence: Josefina Gutierrez-Martinez,
| |
Collapse
|
4
|
A Review of Functional Electrical Stimulation Treatment in Spinal Cord Injury. Neuromolecular Med 2020; 22:447-463. [DOI: 10.1007/s12017-019-08589-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
|
5
|
Laubacher M, Aksoez EA, Brust AK, Baumberger M, Riener R, Binder-Macleod S, Hunt KJ. Stimulation of paralysed quadriceps muscles with sequentially and spatially distributed electrodes during dynamic knee extension. J Neuroeng Rehabil 2019; 16:5. [PMID: 30616683 PMCID: PMC6322281 DOI: 10.1186/s12984-018-0471-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During functional electrical stimulation (FES) tasks with able-bodied (AB) participants, spatially distributed sequential stimulation (SDSS) has demonstrated substantial improvements in power output and fatigue properties compared to conventional single electrode stimulation (SES). The aim of this study was to compare the properties of SDSS and SES in participants with spinal cord injury (SCI) in a dynamic isokinetic knee extension task simulating knee movement during recumbent cycling. METHOD Using a case-series design, m. vastus lateralis and medialis of four participants with motor and sensory complete SCI (AIS A) were stimulated for 6 min on both legs with both electrode setups. With SES, target muscles were stimulated by a pair of electrodes. In SDSS, the distal electrodes were replaced by four small electrodes giving the same overall stimulation frequency and having the same total surface area. Torque was measured during knee extension by a dynamometer at an angular velocity of 110 deg/s. Mean power of the left and right sides (PmeanL,R) was calculated from all stimulated extensions for initial, final and all extensions. Fatigue is presented as an index value with respect to initial power from 1 to 0, whereby 1 means no fatigue. RESULTS SDSS showed higher PmeanL,R values for all four participants for all extensions (increases of 132% in participant P1, 100% in P2, 36% in P3 and 18% in P4 compared to SES) and for the initial phase (increases of 84%, 59%, 66%, and 16%, respectively). Fatigue resistance was better with SDSS for P1, P2 and P4 but worse for P3 (0.47 vs 0.35, 0.63 vs 0.49, 0.90 vs 0.82 and 0.59 vs 0.77, respectively). CONCLUSION Consistently higher PmeanL,R was observed for all four participants for initial and overall contractions using SDSS. This supports findings from previous studies with AB participants. Fatigue properties were better in three of the four participants. The lower fatigue resistance with SDSS in one participant may be explained by a very low muscle activation level in this case. Further investigation in a larger cohort is warranted.
Collapse
Affiliation(s)
- Marco Laubacher
- Department of Physical Therapy, University of Delaware, Newark, United States of America.
| | - Efe A Aksoez
- Department of Physical Therapy, University of Delaware, Newark, United States of America
| | - Anne K Brust
- Department of Physical Therapy, University of Delaware, Newark, United States of America
| | - Michael Baumberger
- Institute for Rehabilitation and Performance Technology, Division of Mechanical Engineering, Department of Engineering and Information Technology, Bern University of Applied Sciences, Pestalozzistrasse 20, Burgdorf, 3400, Switzerland.,Sensory Motor Systems Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, 8000, Switzerland
| | - Robert Riener
- Institute for Rehabilitation and Performance Technology, Division of Mechanical Engineering, Department of Engineering and Information Technology, Bern University of Applied Sciences, Pestalozzistrasse 20, Burgdorf, 3400, Switzerland.,Sensory Motor Systems Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, 8000, Switzerland
| | | | | |
Collapse
|
6
|
Mettler JA, Magee DM, Doucet BM. Low-frequency electrical stimulation with variable intensity preserves torque. J Electromyogr Kinesiol 2018; 42:49-56. [DOI: 10.1016/j.jelekin.2018.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 01/05/2023] Open
|
7
|
Sharma N, Kirsch NA, Alibeji NA, Dixon WE. A Non-Linear Control Method to Compensate for Muscle Fatigue during Neuromuscular Electrical Stimulation. Front Robot AI 2017. [DOI: 10.3389/frobt.2017.00068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Doll BD, Kirsch NA, Bao X, Dicianno BE, Sharma N. Dynamic optimization of stimulation frequency to reduce isometric muscle fatigue using a modified Hill-Huxley model. Muscle Nerve 2017; 57:634-641. [PMID: 28833237 DOI: 10.1002/mus.25777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 08/07/2017] [Accepted: 08/12/2017] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Optimal frequency modulation during functional electrical stimulation (FES) may minimize or delay the onset of FES-induced muscle fatigue. METHODS An offline dynamic optimization method, constrained to a modified Hill-Huxley model, was used to determine the minimum number of pulses that would maintain a constant desired isometric contraction force. RESULTS Six able-bodied participants were recruited for the experiments, and their quadriceps muscles were stimulated while they sat on a leg extension machine. The force-time (F-T) integrals and peak forces after the pulse train was delivered were found to be statistically significantly greater than the force-time integrals and peak forces obtained after a constant frequency train was delivered. DISCUSSION Experimental results indicated that the optimized pulse trains induced lower levels of muscle fatigue compared with constant frequency pulse trains. This could have a potential advantage over current FES methods that often choose a constant frequency stimulation train. Muscle Nerve 57: 634-641, 2018.
Collapse
Affiliation(s)
- Brian D Doll
- Bechtel Marine Propulsion Corporation, Pittsburgh, Pennsylvania, USA
| | | | - Xuefeng Bao
- Department of Mechanical Engineering and Materials Science, 636 Benedum Hall, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Brad E Dicianno
- Department of Physical Medicine and Rehabilitation Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nitin Sharma
- Department of Mechanical Engineering and Materials Science, 636 Benedum Hall, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Laubacher M, Aksöz AE, Riener R, Binder-Macleod S, Hunt KJ. Power output and fatigue properties using spatially distributed sequential stimulation in a dynamic knee extension task. Eur J Appl Physiol 2017; 117:1787-1798. [PMID: 28674921 PMCID: PMC5556133 DOI: 10.1007/s00421-017-3675-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/28/2017] [Indexed: 11/06/2022]
Abstract
PURPOSE The low power output and fatigue resistance during functional electrical stimulation (FES) limits its use for functional applications. The aim of this study was to compare the power output and fatigue properties of spatially distributed sequential stimulation (SDSS) against conventional single electrode stimulation (SES) in an isokinetic knee extension task simulating knee movement during recumbent cycling. METHODS M. vastus lateralis and m. vastus medialis of eight able-bodied subjects were stimulated for 6 min on both legs with both setups. In the SES setup, target muscles were each stimulated by a pair of electrodes. In SDSS, four small electrodes replaced the SES active electrodes, but reference electrodes were the same. Torque was measured during knee extension movement by a dynamometer at an angular velocity of 110°/s. Mean power (P mean) was calculated from stimulated extensions for the first 10 extensions, the final 20 extensions and overall. Fatigue is presented as an index, calculated as the decrease with respect to initial power. RESULTS P mean was significantly higher for SDSS than for SES in the final phase (9.9 ± 4.0 vs. 7.4 ± 4.3 W, p = 0.035) and overall (11.5 ± 4.0 vs. 9.2 ± 4.5 W, p = 0.037). With SDSS, the reduction in P mean was significantly smaller compared to SES (from 14.9 to 9.9 vs. 14.6 to 7.4 W, p = 0.024). The absolute mean pulse width was substantially lower with SDSS (62.5 vs. 90.0 µs). CONCLUSION Although less stimulation was applied, SDSS showed a significantly higher mean power output than SES. SDSS also had improved fatigue resistance when compared to conventional stimulation. The SDSS approach may provide substantial performance benefits for cyclical FES applications.
Collapse
Affiliation(s)
- Marco Laubacher
- Division of Mechanical Engineering, Department of Engineering and Information Technology, Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, 3400, Burgdorf, Switzerland.
- Sensory Motor Systems Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Anil Efe Aksöz
- Division of Mechanical Engineering, Department of Engineering and Information Technology, Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, 3400, Burgdorf, Switzerland
- Sensory Motor Systems Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Robert Riener
- Sensory Motor Systems Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | - Kenneth J Hunt
- Division of Mechanical Engineering, Department of Engineering and Information Technology, Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, 3400, Burgdorf, Switzerland
| |
Collapse
|
10
|
Downey RJ, Merad M, Gonzalez EJ, Dixon WE. The Time-Varying Nature of Electromechanical Delay and Muscle Control Effectiveness in Response to Stimulation-Induced Fatigue. IEEE Trans Neural Syst Rehabil Eng 2016; 25:1397-1408. [PMID: 27845664 DOI: 10.1109/tnsre.2016.2626471] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neuromuscular electrical stimulation (NMES) and Functional Electrical Stimulation (FES) are commonly prescribed rehabilitative therapies. Closed-loop NMES holds the promise to yield more accurate limb control, which could enable new rehabilitative procedures. However, NMES/FES can rapidly fatigue muscle, which limits potential treatments and presents several control challenges. Specifically, the stimulation intensity-force relation changes as the muscle fatigues. Additionally, the delayed response between the application of stimulation and muscle force production, termed electromechanical delay (EMD), may increase with fatigue. This paper quantifies these effects. Specifically, open-loop fatiguing protocols were applied to the quadriceps femoris muscle group of able-bodied individuals under isometric conditions, and the resulting torque was recorded. Short pulse trains were used to measure EMD with a thresholding method while long duration pulse trains were used to induce fatigue, measure EMD with a cross-correlation method, and construct recruitment curves. EMD was found to increase significantly with fatigue, and the control effectiveness (i.e., the linear slope of the recruitment curve) decreased with fatigue. Outcomes of these experiments indicate an opportunity for improved closed-loop NMES/FES control development by considering EMD to be time-varying and by considering the muscle recruitment curve to be a nonlinear, time-varying function of the stimulation input.
Collapse
|
11
|
Koutsou AD, Moreno JC, del Ama AJ, Rocon E, Pons JL. Advances in selective activation of muscles for non-invasive motor neuroprostheses. J Neuroeng Rehabil 2016; 13:56. [PMID: 27296478 PMCID: PMC4907085 DOI: 10.1186/s12984-016-0165-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/07/2016] [Indexed: 11/10/2022] Open
Abstract
Non-invasive neuroprosthetic (NP) technologies for movement compensation and rehabilitation remain with challenges for their clinical application. Two of those major challenges are selective activation of muscles and fatigue management. This review discusses how electrode arrays improve the efficiency and selectivity of functional electrical stimulation (FES) applied via transcutaneous electrodes. In this paper we review the principles and achievements during the last decade on techniques for artificial motor unit recruitment to improve the selective activation of muscles. We review the key factors affecting the outcome of muscle force production via multi-pad transcutaneous electrical stimulation and discuss how stimulation parameters can be set to optimize external activation of body segments. A detailed review of existing electrode array systems proposed by different research teams is also provided. Furthermore, a review of the targeted applications of existing electrode arrays for control of upper and lower limb NPs is provided. Eventually, last section demonstrates the potential of electrode arrays to overcome the major challenges of NPs for compensation and rehabilitation of patient-specific impairments.
Collapse
Affiliation(s)
- Aikaterini D. Koutsou
- />Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council, Madrid, Spain
| | - Juan C. Moreno
- />Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council, Madrid, Spain
| | | | - Eduardo Rocon
- />Neural and Cognitive Engineering group, Centro de Automática y Robótica, CAR, Spanish National Research Council, CSIC-UPM, Madrid, Spain
| | - José L. Pons
- />Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council, Madrid, Spain
| |
Collapse
|
12
|
Downey RJ, Cheng TH, Bellman MJ, Dixon WE. Closed-Loop Asynchronous Neuromuscular Electrical Stimulation Prolongs Functional Movements in the Lower Body. IEEE Trans Neural Syst Rehabil Eng 2015; 23:1117-27. [PMID: 25935038 DOI: 10.1109/tnsre.2015.2427658] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Alexandre F, Derosiere G, Papaiordanidou M, Billot M, Varray A. Cortical motor output decreases after neuromuscular fatigue induced by electrical stimulation of the plantar flexor muscles. Acta Physiol (Oxf) 2015; 214:124-34. [PMID: 25740017 DOI: 10.1111/apha.12478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/29/2014] [Accepted: 03/02/2015] [Indexed: 11/30/2022]
Abstract
AIM Neuromuscular electrical stimulation (NMES) causes early onset of neuromuscular fatigue. Peripheral electrophysiological explorations suggest that supra-spinal alterations are involved through sensitive afferent pathways. As sensory input is projected over the primary somatosensory cortex (S1), S1 area involvement in inhibiting the central motor drive can be hypothesized. This study assessed cortical activity under a fatiguing NMES protocol at low frequency. METHODS Twenty healthy males performed five NMES sequences of 17 trains over the plantar flexors (30 Hz, 4 s on/6 s off). Before and after each sequence, neuromuscular tests composed of maximal voluntary contractions (MVCs) were carried out. Cortical activity was assessed during MVCs with functional near-infrared spectroscopy over S1 and primary motor (M1) areas, through oxy- [HbO] and deoxy-haemoglobin [HbR] variation. Electrophysiological data (H-reflex during MVC, EMG activity and level of voluntary activation) were also recorded. RESULTS MVC torque significantly decreased after the first 17 NMES trains (P < 0.001). The electrophysiological data were consistent with supra-spinal alterations. In addition, [HbO] declined significantly during the protocol over the S1 and M1 areas from the first 17 NMES trains (P < 0.01 and P < 0.001 respectively), while [HbR] increased (P < 0.05 and P < 0.01 respectively), indicating early decline in cortical activity over both primary cortical areas. CONCLUSIONS The declining cortical activity over the M1 area is highly consistent with the electrophysiological findings and supports motor cortex involvement in the loss of force after a fatiguing NMES protocol. In addition, the declining cortical activity over the S1 area indicates that the decreased motor output from M1 is not due to increased S1 inhibitory activity.
Collapse
Affiliation(s)
- F. Alexandre
- Movement To Health; Euromov; Montpellier University; Montpellier France
- Fontalvie; Clinique du Souffle ‘la Vallonie’; Lodève France
| | - G. Derosiere
- Movement To Health; Euromov; Montpellier University; Montpellier France
- Biomedical Engineering Research Group; National University of Ireland; Maynooth Ireland
| | - M. Papaiordanidou
- Movement To Health; Euromov; Montpellier University; Montpellier France
- Institut des Sciences du Mouvement; Aix-Marseille University; Marseille France
| | - M. Billot
- Movement To Health; Euromov; Montpellier University; Montpellier France
| | - A. Varray
- Movement To Health; Euromov; Montpellier University; Montpellier France
| |
Collapse
|
14
|
Downey RJ, Bellman MJ, Kawai H, Gregory CM, Dixon WE. Comparing the Induced Muscle Fatigue Between Asynchronous and Synchronous Electrical Stimulation in Able-Bodied and Spinal Cord Injured Populations. IEEE Trans Neural Syst Rehabil Eng 2014; 23:964-72. [PMID: 25350934 DOI: 10.1109/tnsre.2014.2364735] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neuromuscular electrical stimulation (NMES) has been shown to impart a number of health benefits and can be used to produce functional outcomes. However, one limitation of NMES is the onset of NMES-induced fatigue. Multi-channel asynchronous stimulation has been shown to reduce NMES-induced fatigue compared to conventional single-channel stimulation. However, in previous studies in man, the effect of stimulation frequency on the NMES-induced fatigue has not been examined for asynchronous stimulation. Low stimulation frequencies are known to reduce fatigue during conventional stimulation. Therefore, the aim of this study was to examine the fatigue characteristics of high- and low-frequency asynchronous stimulation as well as high- and low-frequency conventional stimulation. Experiments were performed in both able-bodied and spinal cord injured populations. Low frequency asynchronous stimulation is found to have significant fatigue benefits over high frequency asynchronous stimulation as well as high- and low-frequency conventional stimulation, motivating its use for rehabilitation and functional electrical stimulation (FES).
Collapse
|
15
|
Downey RJ, Tate M, Kawai H, Dixon WE. Comparing the force ripple during asynchronous and conventional stimulation. Muscle Nerve 2014; 50:549-55. [DOI: 10.1002/mus.24186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 01/07/2014] [Accepted: 01/20/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Ryan J. Downey
- Department of Mechanical and Aerospace Engineering; University of Florida; Gainesville Florida 32611-6250 USA
| | - Mark Tate
- Department of Mechanical and Aerospace Engineering; University of Florida; Gainesville Florida 32611-6250 USA
| | - Hiroyuki Kawai
- Department of Robotics; Kanazawa Institute of Technology; Ishikawa Japan
| | - Warren E. Dixon
- Department of Mechanical and Aerospace Engineering; University of Florida; Gainesville Florida 32611-6250 USA
| |
Collapse
|
16
|
del-Ama AJ, Gil-Agudo A, Pons JL, Moreno JC. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton. J Neuroeng Rehabil 2014; 11:27. [PMID: 24594302 PMCID: PMC3995973 DOI: 10.1186/1743-0003-11-27] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 02/12/2014] [Indexed: 12/14/2022] Open
Abstract
Robotic and functional electrical stimulation (FES) approaches are used for rehabilitation of walking impairment of spinal cord injured individuals. Although devices are commercially available, there are still issues that remain to be solved. Control of hybrid exoskeletons aims at blending robotic exoskeletons and electrical stimulation to overcome the drawbacks of each approach while preserving their advantages. Hybrid actuation and control have a considerable potential for walking rehabilitation but there is a need of novel control strategies of hybrid systems that adequately manage the balance between FES and robotic controllers. Combination of FES and robotic control is a challenging issue, due to the non-linear behavior of muscle under stimulation and the lack of developments in the field of hybrid control. In this article, a cooperative control strategy of a hybrid exoskeleton is presented. This strategy is designed to overcome the main disadvantages of muscular stimulation: electromechanical delay and change in muscle performance over time, and to balance muscular and robotic actuation during walking. Experimental results in healthy subjects show the ability of the hybrid FES-robot cooperative control to balance power contribution between exoskeleton and muscle stimulation. The robotic exoskeleton decreases assistance while adequate knee kinematics are guaranteed. A new technique to monitor muscle performance is employed, which allows to estimate muscle fatigue and implement muscle fatigue management strategies. Kinesis is therefore the first ambulatory hybrid exoskeleton that can effectively balance robotic and FES actuation during walking. This represents a new opportunity to implement new rehabilitation interventions to induce locomotor activity in patients with paraplegia. Acronym list: 10mWT: ten meters walking test; 6MWT: six minutes walking test; FSM: finite-state machine; t-FSM: time-domain FSM; c-FSM: cycle-domain FSM; FES: functional electrical stimulation; HKAFO: hip-knee-ankle-foot orthosis; ILC: iterative error-based learning control; MFE: muscle fatigue estimator; NILC: Normalized stimulation output from ILC controller; PID: Proportional-Integral-derivative Control; PW: Stimulation pulse width; QUEST: Quebec User Evaluation of Satisfaction with assistive Technology; SCI: Spinal cord injury; TTI: torque-time integral; VAS: Visual Analog Scale.
Collapse
Affiliation(s)
- Antonio J del-Ama
- Biomechanics and Technical Aids Unit, National Hospital for Spinal Cord Injury, SESCAM, Toledo, Spain.
| | | | | | | |
Collapse
|