1
|
Ito R, Igawa T, Urata R, Ito S, Suzuki K, Takahashi H, Toda M, Fujita M, Kubo A. Effects of simultaneous short-term neuromuscular electrical stimulation and static stretching on calf muscles. J Phys Ther Sci 2024; 36:447-451. [PMID: 39092412 PMCID: PMC11290863 DOI: 10.1589/jpts.36.447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/20/2024] [Indexed: 08/04/2024] Open
Abstract
[Purpose] The simultaneous application of static stretching and neuromuscular electrical stimulation (NMES) to calf muscles may enhance physiological parameters in young and healthy individuals; however, the efficacy of this intervention and potential sex variation remain to be elucidated. The present study aimed to investigate these aspects. [Participants and Methods] Thirty healthy university students (15 males and 15 females) participated in this study. All participants simultaneously underwent static stretching and NMES of the calf muscles for 4 min while lying on an upright and tilted table. The mean differences in the dorsiflexion angle (DFA), finger-floor distance (FFD), and straight leg raising (SLR) angle before and after the intervention were calculated. Sex variations were assessed using a two-way analysis of variance (ANOVA). [Results] The DFA, FFD, and SLR angle exhibited significant effects on time. No significant sex variations were observed between the groups. [Conclusion] Simultaneous static stretching and NMES of the calf muscles potentially enhanced the DFA, FFD, and SLR angle in healthy university students, irrespective of sex.
Collapse
Affiliation(s)
- Riyaka Ito
- Department of Physical Therapy, Graduate School of
International University of Health and Welfare: 2600-1 Kitakanemaru, Ohtawara, Tochigi
323-8501, Japan
- Department of Rehabilitation, International University of
Health and Welfare Hospital, Japan
| | - Tatsuya Igawa
- Department of Physical Therapy, Graduate School of
International University of Health and Welfare: 2600-1 Kitakanemaru, Ohtawara, Tochigi
323-8501, Japan
- Department of Rehabilitation, International University of
Health and Welfare Hospital, Japan
| | - Ryunosuke Urata
- Innovative-Rehabilitation Center, New Spine Clinic Tokyo,
Japan
| | - Shomaru Ito
- Department of Rehabilitation, International University of
Health and Welfare Narita Hospital, Japan
| | - Kosuke Suzuki
- Department of Rehabilitation, Yamagata Saisei Hospital,
Japan
| | - Hiroto Takahashi
- Department of Physical Therapy, Graduate School of
International University of Health and Welfare: 2600-1 Kitakanemaru, Ohtawara, Tochigi
323-8501, Japan
| | - Mika Toda
- Department of Physical Therapy, Graduate School of
International University of Health and Welfare: 2600-1 Kitakanemaru, Ohtawara, Tochigi
323-8501, Japan
- Department of Rehabilitation, International University of
Health and Welfare Hospital, Japan
| | - Mio Fujita
- Department of Physical Therapy, Graduate School of
International University of Health and Welfare: 2600-1 Kitakanemaru, Ohtawara, Tochigi
323-8501, Japan
- Department of Rehabilitation, International University of
Health and Welfare Hospital, Japan
| | - Akira Kubo
- Department of Physical Therapy, Graduate School of
International University of Health and Welfare: 2600-1 Kitakanemaru, Ohtawara, Tochigi
323-8501, Japan
| |
Collapse
|
2
|
Warneke K, Behm DG, Alizadeh S, Hillebrecht M, Konrad A, Wirth K. Discussing Conflicting Explanatory Approaches in Flexibility Training Under Consideration of Physiology: A Narrative Review. Sports Med 2024; 54:1785-1799. [PMID: 38819597 PMCID: PMC11258068 DOI: 10.1007/s40279-024-02043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
The mechanisms underlying range of motion enhancements via flexibility training discussed in the literature show high heterogeneity in research methodology and study findings. In addition, scientific conclusions are mostly based on functional observations while studies considering the underlying physiology are less common. However, understanding the underlying mechanisms that contribute to an improved range of motion through stretching is crucial for conducting comparable studies with sound designs, optimising training routines and accurately interpreting resulting outcomes. While there seems to be no evidence to attribute acute range of motion increases as well as changes in muscle and tendon stiffness and pain perception specifically to stretching or foam rolling, the role of general warm-up effects is discussed in this paper. Additionally, the role of mechanical tension applied to greater muscle lengths for range of motion improvement will be discussed. Thus, it is suggested that physical training stressors can be seen as external stimuli that control gene expression via the targeted stimulation of transcription factors, leading to structural adaptations due to enhanced protein synthesis. Hence, the possible role of serial sarcomerogenesis in altering pain perception, reducing muscle stiffness and passive torque, or changes in the optimal joint angle for force development is considered as well as alternative interventions with a potential impact on anabolic pathways. As there are limited possibilities to directly measure serial sarcomere number, longitudinal muscle hypertrophy remains without direct evidence. The available literature does not demonstrate the necessity of only using specific flexibility training routines such as stretching to enhance acute or chronic range of motion.
Collapse
Affiliation(s)
- Konstantin Warneke
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria.
- Department of Movement Sciences, Institute of Sport Science, University of Klagenfurt, Universitatsstraße 65, 9020, Klagenfurt Am Wörthersee, Austria.
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
- Human Performance Lab, Department of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Martin Hillebrecht
- University Sports Center, Carl Von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Andreas Konrad
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
- University Sports Center, Carl Von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Klaus Wirth
- University of Applied Sciences Wiener Neustadt, Vienna, Austria
| |
Collapse
|
3
|
Uçar N, Öner H, Kuş MA, Karaca H, Fırat T. The effect of neuromuscular electrical stimulation applied at different muscle lengths on muscle architecture and sarcomere morphology in rats. Anat Rec (Hoboken) 2024; 307:356-371. [PMID: 37194371 DOI: 10.1002/ar.25240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/04/2023] [Accepted: 04/26/2023] [Indexed: 05/18/2023]
Abstract
Neuromuscular electrical stimulation (NMES) is often used to increase muscle strength and functionality. Muscle architecture is important for the skeletal muscle functionality. The aim of this study was to investigate the effects of NMES applied at different muscle lengths on skeletal muscle architecture. Twenty-four rats were randomly assigned to four groups (two NMES groups and two control groups). NMES was applied on the extensor digitorum longus muscle at long muscle length, which is the longest and stretched position of the muscle at 170° plantar flexion, and at medium muscle length, which is the length of the muscle at 90° plantar flexion. A control group was created for each NMES group. NMES was applied for 8 weeks, 10 min/day, 3 days/week. After 8 weeks, muscle samples were removed at the NMES intervention lengths and examined macroscopically, and microscopically using a transmission electron microscope and streo-microscope. Muscle damage, and architectural properties of the muscle including pennation angle, fibre length, muscle length, muscle mass, physiological cross-sectional area, fibre length/muscle length, sarcomere length, sarcomere number were then evaluated. There was an increase in fibre length and sarcomere number, and a decrease in pennation angle at both lengths. In the long muscle length group, muscle length was increased, but widespread muscle damage was observed. These results suggest that the intervention of NMES at long muscle length can increase the muscle length but also causes muscle damage. In addition, the greater longitudinal increase in muscle length may be a result of the continuous degeneration-regeneration cycle.
Collapse
Affiliation(s)
- Nehir Uçar
- Department of Therapy and Rehabilitation, Vocational School of Health Sciences, University of Burdur Mehmet Akif Ersoy, Burdur, Turkey
| | - Hakan Öner
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Burdur Mehmet Akif Ersoy, Burdur, Turkey
| | - Murat Abdulgani Kuş
- Department of Emergency Aid and Disaster Management, University of Burdur Mehmet Akif Ersoy, Burdur, Turkey
| | - Harun Karaca
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Burdur Mehmet Akif Ersoy, Burdur, Turkey
| | - Tüzün Fırat
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
Meyer GA, Thomopoulos S, Abu-Amer Y, Shen KC. Tenotomy-induced muscle atrophy is sex-specific and independent of NFκB. eLife 2022; 11:e82016. [PMID: 36508247 PMCID: PMC9873255 DOI: 10.7554/elife.82016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The nuclear factor-κB (NFκB) pathway is a major thoroughfare for skeletal muscle atrophy and is driven by diverse stimuli. Targeted inhibition of NFκB through its canonical mediator IKKβ effectively mitigates loss of muscle mass across many conditions, from denervation to unloading to cancer. In this study, we used gain- and loss-of-function mouse models to examine the role of NFκB in muscle atrophy following rotator cuff tenotomy - a model of chronic rotator cuff tear. IKKβ was knocked down or constitutively activated in muscle-specific inducible transgenic mice to elicit a twofold gain or loss of NFκB signaling. Surprisingly, neither knockdown of IKKβ nor overexpression of caIKKβ significantly altered the loss of muscle mass following tenotomy. This finding was consistent across measures of morphological adaptation (fiber cross-sectional area, fiber length, fiber number), tissue pathology (fibrosis and fatty infiltration), and intracellular signaling (ubiquitin-proteasome, autophagy). Intriguingly, late-stage tenotomy-induced atrophy was exacerbated in male mice compared with female mice. This sex specificity was driven by ongoing decreases in fiber cross-sectional area, which paralleled the accumulation of large autophagic vesicles in male, but not female muscle. These findings suggest that tenotomy-induced atrophy is not dependent on NFκB and instead may be regulated by autophagy in a sex-specific manner.
Collapse
Affiliation(s)
- Gretchen A Meyer
- Program in Physical Therapy, Washington University School of MedicineSt. LouisUnited States
- Department of Orthopaedic Surgery, Washington University School of MedicineSt LouisUnited States
- Departments of Neurology and Biomedical Engineering, Washington University School of MedicineSt. LouisUnited States
| | - Stavros Thomopoulos
- Departments of Orthopaedic Surgery and Biomedical Engineering, Columbia UniversityNew YorkUnited States
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery, Washington University School of MedicineSt LouisUnited States
- Department of Cell Biology & Physiology, Washington University School of MedicineSt. LouisUnited States
- Shriners Hospital for ChildrenSt. LouisUnited States
| | - Karen C Shen
- Program in Physical Therapy, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
5
|
Mizuno T. Acute effects of combined static stretching and electrical stimulation on joint range of motion and passive stiffness. TRANSLATIONAL SPORTS MEDICINE 2021. [DOI: 10.1002/tsm2.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Takamasa Mizuno
- Research Center of Health, Physical Fitness and Sports Nagoya University Nagoya Japan
| |
Collapse
|
6
|
Mizuno T. Combined Effects of Static Stretching and Electrical Stimulation on Joint Range of Motion and Muscle Strength. J Strength Cond Res 2019; 33:2694-2703. [PMID: 29023326 DOI: 10.1519/jsc.0000000000002260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mizuno, T. Combined effects of static stretching and electrical stimulation on joint range of motion and muscle strength. J Strength Cond Res 33(10): 2694-2703, 2019-The purpose of this study was to examine the effects of the combination of static stretching (SS) and electrical stimulation (ES) for 8 weeks on joint range of motion (ROM), muscle strength, and muscle architecture. Thirty-one subjects were divided into 3 groups: the SS combined with ES (SS + ES) group, SS group, and control group. The SS + ES group performed calf stretching simultaneously with ES to the gastrocnemius medialis, whereas the SS group performed calf stretching only. The training regimen consisted of four 30-second sets of stretching, with 30-second rest intervals, 3 days per week for 8 weeks. The control group did not perform any intervention exercise. Before and after training, measurements were taken to determine the ankle ROM, plantar flexion 1 repetition maximum strength, muscle thickness, pennation angle, and circumference of the lower leg. The results showed that 8 weeks of training led to significant improvements in the ankle ROM and muscle thickness in both the SS + ES and SS groups. There were significant increases in plantar flexion 1 repetition maximum strength and pennation angle in all 3 groups. For all parameters, there was no difference between the SS + ES and SS groups. These results clarify that 8 weeks of SS improves joint ROM and muscle thickness and shows that there is no additional benefit gained by combining ES with SS in this particular training regime.
Collapse
Affiliation(s)
- Takamasa Mizuno
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
7
|
Coleman Wood KA, Lowndes BR, Buus RJ, Hallbeck MS. Evidence-based intraoperative microbreak activities for reducing musculoskeletal injuries in the operating room. Work 2018; 60:649-659. [DOI: 10.3233/wor-182772] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - Bethany R. Lowndes
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ryan J. Buus
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - M. Susan Hallbeck
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Kay AD, Rubley B, Talbot C, Mina M, Baross AW, Blazevich AJ. Stretch imposed on active muscle elicits positive adaptations in strain risk factors and exercise-induced muscle damage. Scand J Med Sci Sports 2018; 28:2299-2309. [DOI: 10.1111/sms.13251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/20/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Anthony David Kay
- Sport, Exercise and Life Sciences; University of Northampton; Northamptonshire UK
| | - Bethanee Rubley
- Sport, Exercise and Life Sciences; University of Northampton; Northamptonshire UK
| | - Chris Talbot
- Sport, Exercise and Life Sciences; University of Northampton; Northamptonshire UK
| | - Minas Mina
- School of Sport, Outdoor and Exercise Science; University of Derby; Derbyshire UK
| | | | - Anthony John Blazevich
- Centre for Exercise and Sports Science Research (CESSR); School of Exercise and Health Sciences; Edith Cowan University; Joondalup WA, Australia
| |
Collapse
|
9
|
Outcome of medial hamstring lengthening in children with spastic paresis: A biomechanical and morphological observational study. PLoS One 2018; 13:e0192573. [PMID: 29408925 PMCID: PMC5800595 DOI: 10.1371/journal.pone.0192573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 01/25/2018] [Indexed: 11/19/2022] Open
Abstract
To improve gait in children with spastic paresis due to cerebral palsy or hereditary spastic paresis, the semitendinosus muscle is frequently lengthened amongst other medial hamstring muscles by orthopaedic surgery. Side effects on gait due to weakening of the hamstring muscles and overcorrections have been reported. How these side effects relate to semitendinosus morphology is unknown. This study assessed the effects of bilateral medial hamstring lengthening as part of single-event multilevel surgery (SEMLS) on (1) knee joint mechanics (2) semitendinosus muscle morphology and (3) gait kinematics. All variables were assessed for the right side only. Six children with spastic paresis selected for surgery to counteract limited knee range of motion were measured before and about a year after surgery. After surgery, in most subjects popliteal angle decreased and knee moment-angle curves were shifted towards a more extended knee joint, semitendinosus muscle belly length was approximately 30% decreased, while at all assessed knee angles tendon length was increased by about 80%. In the majority of children muscle volume of the semitendinosus muscle decreased substantially suggesting a reduction of physiological cross-sectional area. Gait kinematics showed more knee extension during stance (mean change ± standard deviation: 34±13°), but also increased pelvic anterior tilt (mean change ± standard deviation: 23±5°). In most subjects, surgical lengthening of semitendinosus tendon contributed to more extended knee joint angle during static measurements as well as during gait, whereas extensibility of semitendinosus muscle belly was decreased. Post-surgical treatment to maintain muscle belly length and physiological cross-sectional area may improve treatment outcome of medial hamstring lengthening.
Collapse
|
10
|
Ruoss S, Möhl CB, Benn MC, von Rechenberg B, Wieser K, Meyer DC, Gerber C, Flück M. Costamere protein expression and tissue composition of rotator cuff muscle after tendon release in sheep. J Orthop Res 2018; 36:272-281. [PMID: 28574610 PMCID: PMC5873452 DOI: 10.1002/jor.23624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/24/2017] [Indexed: 02/04/2023]
Abstract
Previous studies suggested that degradation of contractile tissue requires cleavage of the costamere, a structural protein complex that holds sarcomeres in place. This study examined if costamere turnover is affected by a rotator cuff tear in a previously established ovine model. We found the activity of focal adhesion kinase (FAK), a main regulator of costamere turnover, was unchanged at 2 weeks but decreased by 27% 16 weeks after surgical release of the infraspinatus tendon. This was accompanied by cleavage of the costamere protein talin into a 190 kDa fragment while full length talin remained unchanged. At 2 weeks after tendon release, muscle volume decreased by 17 cm3 from an initial 185 cm3 , the fatty tissue volume was halved, and the contractile tissue volume remained unchanged. After 16 weeks, the muscle volume decreased by 36 cm3 , contractile tissue was quantitatively lost, and the fat content increased by 184%. Nandrolone administration mitigated the loss of contractile tissue by 26% and prevented fat accumulation, alterations in FAK activity, and talin cleavage. Taken together, these findings imply that muscle remodeling after tendon release occurs in two stages. The early decrease of muscle volume is associated with reduction of fat; while, the second stage is characterized by substantial loss of contractile tissue accompanied by massive fat accumulation. Regulation of costamere turnover is associated with the loss of contractile tissue and seems to be impacted by nandrolone treatment. Clinically, the costamere may represent a potential intervention target to mitigate muscle loss after a rotator cuff tear. © 2017 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 36:272-281, 2018.
Collapse
Affiliation(s)
- Severin Ruoss
- Laboratory for Muscle Plasticity, Balgrist CampusUniversity of ZurichZurichSwitzerland
| | - Christoph B. Möhl
- Laboratory for Muscle Plasticity, Balgrist CampusUniversity of ZurichZurichSwitzerland
| | - Mario C. Benn
- Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | | | - Karl Wieser
- Department of Orthopaedics, Balgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Dominik C. Meyer
- Department of Orthopaedics, Balgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Christian Gerber
- Department of Orthopaedics, Balgrist University HospitalUniversity of ZurichZurichSwitzerland
| | - Martin Flück
- Laboratory for Muscle Plasticity, Balgrist CampusUniversity of ZurichZurichSwitzerland
| |
Collapse
|
11
|
Kaneguchi A, Ozawa J, Moriyama H, Yamaoka K. Nociception contributes to the formation of myogenic contracture in the early phase of adjuvant-induced arthritis in a rat knee. J Orthop Res 2017; 35:1404-1413. [PMID: 27584936 DOI: 10.1002/jor.23412] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 08/25/2016] [Indexed: 02/04/2023]
Abstract
It is unknown how joint contracture is generated in inflamed joints. This study aimed to clarify the role of nociception on the formation of joint contracture secondary to arthritis. Monoarthritis was induced by intra-articular injections of complete Freund's adjuvant (CFA) into rat knees. On day 5 after CFA injection, the passive extension range of motion (ROM) of knee joints were measured, both before and after myotomy of knee flexors, to evaluate the extent of muscular contribution to CFA-induced joint contracture. The steroidal anti-inflammatory drug dexamethasone could prevent ROM restrictions completely, both before and after myotomy. On the other hand, the opioid analgesic drug morphine did not prevent the development of restricted ROM observed after myotomy, while it did before myotomy. This indicates that nociception contributes to joint contracture through alterations in muscular structure (myogenic factors). Next, we tested the hypothesis that nociception-induced reflexive flexor muscle contractions cause myogenic contracture in arthritic joints. To do this, chemical denervation was performed by Botulinum toxin type A (BTX-A) injections into knee flexor muscles, simultaneously with CFA injections into the knee. As expected, BTX-A could alleviate ROM restrictions observed before myotomy. These findings suggest that nociceptive-related muscle contractions play an essential role in the formation of joint contracture. Thus, our study indicates that analgesic management during an early stage of joint arthritis is an essential mean to prevent the formation of joint contracture. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1404-1413, 2017.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Major in Medical Engineering and Technology, Graduate School of Medical Technology and Health Welfare Sciences, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Junya Ozawa
- Faculty of Rehabilitation, Department of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Hideki Moriyama
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Tomogaoka 7-10-2, Suma-ku, Kobe, Hyogo, Japan
| | - Kaoru Yamaoka
- Faculty of Rehabilitation, Department of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
12
|
Seabra AD, Moraes SAS, Batista EJO, Garcia TB, Souza MC, Oliveira KRM, Herculano AM. Local inhibition of nitrergic activity in tenotomized rats accelerates muscle regeneration by increasing fiber area and decreasing central core lesions. ACTA ACUST UNITED AC 2017; 50:e5556. [PMID: 28225888 PMCID: PMC5333718 DOI: 10.1590/1414-431x20165556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/02/2016] [Indexed: 11/22/2022]
Abstract
Muscular atrophy is a progressive degeneration characterized by muscular proteolysis, loss of mass and decrease in fiber area. Tendon rupture induces muscular atrophy due to an intrinsic functional connection. Local inhibition of nitric oxide synthase (NOS) by Nω-nitro-L-arginine methyl ester (L-NAME) accelerates tendon histological recovery and induces functional improvement. Here we evaluate the effects of such local nitrergic inhibition on the pattern of soleus muscle regeneration after tenotomy. Adult male Wistar rats (240 to 280 g) were divided into four experimental groups: control (n=4), tenotomized (n=6), vehicle (n=6), and L-NAME (n=6). Muscular atrophy was induced by calcaneal tendon rupture in rats. Changes in muscle wet weight and total protein levels were determined by the Bradford method, and muscle fiber area and central core lesion (CCL) occurrence were evaluated by histochemical assays. Compared to tenotomized (69.3±22%) and vehicle groups (68.1%±17%), L-NAME treatment induced an increase in total protein level (108.3±21%) after 21 days post-injury. A reduction in fiber areas was observed in tenotomized (56.3±1.3%) and vehicle groups (53.9±3.9%). However, L-NAME treatment caused an increase in this parameter (69.3±1.6%). Such events were preceded by a remarkable reduction in the number of fibers with CCL in L-NAME-treated animals (12±2%), but not in tenotomized (21±2.5%) and vehicle groups (19.6±2.8%). Altogether, our data reveal that inhibition of tendon NOS contributed to the attenuation of atrophy and acceleration of muscle regeneration.
Collapse
Affiliation(s)
- A D Seabra
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - S A S Moraes
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - E J O Batista
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, PA, Brasil
| | - T B Garcia
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - M C Souza
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - K R M Oliveira
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - A M Herculano
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| |
Collapse
|
13
|
Nitzan DW, Palla S. "Closed Reduction" Principles Can Manage Diverse Conditions of Temporomandibular Joint Vertical Height Loss: From Displaced Condylar Fractures to Idiopathic Condylar Resorption. J Oral Maxillofac Surg 2017; 75:1163.e1-1163.e20. [PMID: 28257719 DOI: 10.1016/j.joms.2017.01.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/18/2017] [Accepted: 01/22/2017] [Indexed: 10/20/2022]
Abstract
PURPOSE The aim of this case series was to describe a modification of the classic "closed reduction" technique to manage unilateral or anterior open bite owing to a loss in vertical height (LVH) caused by several disorders and pathologies other than displaced condylar fractures. MATERIALS AND METHODS The protocol included insertion of an occlusal appliance to increase the height of the premature contact and the width of the open bite, stabilization of the dental arches by rigid arches, and the use, during sleep, of rubber bands in the open bite region to pull the mandible cranially. In addition, when awake, the patient performed physiotherapy exercises to guide the mandible into maximum intercuspation. The increased open bite enhanced the effect of the rubber bands in guiding the mandible into the original habitual occlusion and the rigid arches served to minimize tooth eruption. RESULTS The present cases showed the favorable outcome of this low-risk treatment in the re-establishment of the original habitual occlusion within 1 to 4 weeks and without reconstruction of the LVH. CONCLUSION The efficacy of this complication-free approach to correct occlusion in various conditions of LVH suggests that this protocol should be applied before venturing into surgical intervention.
Collapse
Affiliation(s)
- Dorrit W Nitzan
- Professor Emeritus, Department of Oral and Maxillofacial Surgery, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel.
| | - Sandro Palla
- Professor Emeritus, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
KAY ANTHONYDAVID, RICHMOND DOMINIC, TALBOT CHRIS, MINA MINAS, BAROSS ANTHONYWILLIAM, BLAZEVICH ANTHONYJOHN. Stretching of Active Muscle Elicits Chronic Changes in Multiple Strain Risk Factors. Med Sci Sports Exerc 2016; 48:1388-96. [DOI: 10.1249/mss.0000000000000887] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Winter JMD, Joureau B, Lee EJ, Kiss B, Yuen M, Gupta VA, Pappas CT, Gregorio CC, Stienen GJM, Edvardson S, Wallgren-Pettersson C, Lehtokari VL, Pelin K, Malfatti E, Romero NB, Engelen BGV, Voermans NC, Donkervoort S, Bönnemann CG, Clarke NF, Beggs AH, Granzier H, Ottenheijm CAC. Mutation-specific effects on thin filament length in thin filament myopathy. Ann Neurol 2016; 79:959-69. [PMID: 27074222 DOI: 10.1002/ana.24654] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 03/22/2016] [Accepted: 03/27/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Thin filament myopathies are among the most common nondystrophic congenital muscular disorders, and are caused by mutations in genes encoding proteins that are associated with the skeletal muscle thin filament. Mechanisms underlying muscle weakness are poorly understood, but might involve the length of the thin filament, an important determinant of force generation. METHODS We investigated the sarcomere length-dependence of force, a functional assay that provides insights into the contractile strength of muscle fibers as well as the length of the thin filaments, in muscle fibers from 51 patients with thin filament myopathy caused by mutations in NEB, ACTA1, TPM2, TPM3, TNNT1, KBTBD13, KLHL40, and KLHL41. RESULTS Lower force generation was observed in muscle fibers from patients of all genotypes. In a subset of patients who harbor mutations in NEB and ACTA1, the lower force was associated with downward shifted force-sarcomere length relations, indicative of shorter thin filaments. Confocal microscopy confirmed shorter thin filaments in muscle fibers of these patients. A conditional Neb knockout mouse model, which recapitulates thin filament myopathy, revealed a compensatory mechanism; the lower force generation that was associated with shorter thin filaments was compensated for by increasing the number of sarcomeres in series. This allowed muscle fibers to operate at a shorter sarcomere length and maintain optimal thin-thick filament overlap. INTERPRETATION These findings might provide a novel direction for the development of therapeutic strategies for thin filament myopathy patients with shortened thin filament lengths. Ann Neurol 2016;79:959-969.
Collapse
Affiliation(s)
- Josine M de Winter
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Barbara Joureau
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Eun-Jeong Lee
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Balázs Kiss
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Michaela Yuen
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Vandana A Gupta
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Christopher T Pappas
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Ger J M Stienen
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands.,Department of Physics and Astronomy, VU University, Amsterdam, the Netherlands
| | - Simon Edvardson
- Pediatric Neurology Unit, Hadassah University Hospital, Jerusalem, Israel
| | - Carina Wallgren-Pettersson
- Department of Medical and Clinical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland.,Folkhaelsan Institute of Genetics, Biomedicum Helsinki, Helsinki, Finland
| | - Vilma-Lotta Lehtokari
- Department of Medical and Clinical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland.,Folkhaelsan Institute of Genetics, Biomedicum Helsinki, Helsinki, Finland
| | - Katarina Pelin
- Folkhaelsan Institute of Genetics, Biomedicum Helsinki, Helsinki, Finland.,Division of Genetics, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Edoardo Malfatti
- Center for Research in Myology, Pitié-Salpêtrière Hospital Group, Paris, France
| | - Norma B Romero
- Center for Research in Myology, Pitié-Salpêtrière Hospital Group, Paris, France
| | - Baziel G van Engelen
- Department of Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicol C Voermans
- Department of Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Bethesda, MD
| | - C G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Bethesda, MD
| | - Nigel F Clarke
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Alan H Beggs
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Coen A C Ottenheijm
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands.,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
16
|
Fabis J, Danilewicz M, Zwierzchowski JT, Niedzielski K. Atrophy of type I and II muscle fibers is reversible in the case of grade >2 fatty degeneration of the supraspinatus muscle: an experimental study in rabbits. J Shoulder Elbow Surg 2016; 25:487-92. [PMID: 26549862 DOI: 10.1016/j.jse.2015.08.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/13/2015] [Accepted: 08/25/2015] [Indexed: 02/01/2023]
Abstract
BACKGROUND Although clinical investigations indicate that the limit of reversibility of rotator cuff muscles fibers type I and II atrophy is grade 2 of fatty degeneration (FD) according to the Goutallier computed tomography classification, little is known about the morphometric verification of these findings. METHODS The supraspinatus tendon was detached from the greater tubercle and the infraspinatus and subscapularis in 12 rabbits, and a 12-week observation period followed. This proved to be sufficient for development of grade >2 FD of the supraspinatus tendon. The tendon was then reinserted. The animals were euthanized 24 weeks after tendon reconstruction. The sections of middle part of supraspinatus were stained for adenosine triphosphatase reaction, and morphometric measurements were taken of type I and II muscle fiber diameters. The contralateral shoulders served as controls. RESULTS The macroscopic inspection of the supraspinatus tendons revealed complete healing in all cases. No statistically significant differences were found between controls and operated-on shoulders for type I (P = .13) and type II (P = .55) muscle fibers. CONCLUSIONS Atrophy of type I and II muscle fibers in rabbit supraspinatus muscle, characterized by grade >2 fatty degeneration according to the Goutallier computed tomography classification, is reversible after 24 weeks from reattachment of its tendon. A requirement for type I and II muscle fibers hypertrophy is a change in the biomechanical and functional conditions of the muscle after its tendon is reconstructed.
Collapse
Affiliation(s)
- Jaroslaw Fabis
- Department of Arthroscopy, Minimally Invasive Surgery and Sports Traumatology, Medical University of Łódź, Łódź, Poland; FMC Private Medical Centre, Łódź, Poland.
| | - Marian Danilewicz
- Morphometry Division, Department of Pathology, Medical University of Łódź, Łódź, Poland
| | - Jacek T Zwierzchowski
- Department of Arthroscopy, Minimally Invasive Surgery and Sports Traumatology, Medical University of Łódź, Łódź, Poland; FMC Private Medical Centre, Łódź, Poland
| | - Kryspin Niedzielski
- Clinic of Orthopaedics and Traumatology, Polish Mother's Memorial Hospital Research Institute, Łódź, Poland
| |
Collapse
|
17
|
Abstract
PURPOSE To investigate the effects of a standing program on the range of motion (ROM) of hip abduction in children with spastic diplegic cerebral palsy. METHODS The participants were 13 children, Gross Motor Functional Classification System level III, who received physical therapy and a daily standing program using a custom-fabricated stander from 12 to 14 months of age to the age of 5 years. Hip abduction ROM was goniometrically assessed at baseline and at 5 years. RESULTS Baseline hip abduction was 42° at baseline and 43° at 5 years. CONCLUSIONS This small difference was not clinically significant, but did demonstrate that it was possible to maintain hip abduction ROM in the spastic adductor muscles of children with cerebral palsy with a daily standing program during the children's first 5 years of development.
Collapse
|
18
|
Trudel G, Laneuville O, Coletta E, Goudreau L, Uhthoff HK. Quantitative and temporal differential recovery of articular and muscular limitations of knee joint contractures; results in a rat model. J Appl Physiol (1985) 2014; 117:730-7. [DOI: 10.1152/japplphysiol.00409.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Joint contractures alter the mechanical properties of articular and muscular structures. Reversibility of a contracture depends on the restoration of the elasticity of both structures. We determined the differential contribution of articular and muscular structures to knee flexion contractures during spontaneous recovery. Rats (250, divided into 24 groups) had one knee joint surgically fixed in flexion for six different durations, from 1 to 32 wk, creating joint contractures of various severities. After the fixation was removed, the animals were left to spontaneously recover for 1 to 48 wk. After the recovery periods, animals were killed and the knee extension was measured before and after division of the transarticular posterior muscles using a motorized arthrometer. No articular limitation had developed in contracture of recent onset (≤2 wk of fixation, P > 0.05); muscular limitations were responsible for the majority of the contracture (34 ± 8° and 38 ± 6°, respectively; both P < 0.05). Recovery for 1 and 8 wk reversed the muscular limitation of contractures of recent onset (1 and 2 wk of fixation, respectively). Long-lasting contractures (≥4 wk of fixation) presented articular limitations, irreversible in all 12 durations of recovery compared with controls (all 12 P < 0.05). Knee flexion contractures of recent onset were primarily due to muscular structures, and they were reversible during spontaneous recovery. Long-lasting contractures were primarily due to articular structures and were irreversible. Comprehensive temporal and quantitative data on the differential reversibility of mechanically significant alterations in articular and muscular structures represent novel evidence on which to base clinical practice.
Collapse
Affiliation(s)
- Guy Trudel
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Bone and Joint Research Laboratory, University of Ottawa, Ottawa, Ontario, Canada
| | - Odette Laneuville
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Elizabeth Coletta
- Bone and Joint Research Laboratory, University of Ottawa, Ottawa, Ontario, Canada
| | - Louis Goudreau
- Biomedical Engineering, The Ottawa Hospital Rehabilitation Centre, Ottawa, Ontario, Canada; and
| | - Hans K. Uhthoff
- Bone and Joint Research Laboratory, University of Ottawa, Ottawa, Ontario, Canada
- Division of Orthopedic Surgery, Department of Surgery, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Abstract
Objectives Although many clinical and experimental investigations have shed
light on muscle atrophy and intramuscular accumulation of fat after
rotator cuff disruption, none have reported on their onset in the
absence of muscle retraction. Methods In 30 rabbits, we detached one supraspinatus (SSP) tendon and
repaired it immediately, thus preventing muscle retraction. The
animals were killed in groups of 10 at one, two and six weeks. Both
shoulders of 15 non-operated rabbits served as controls. We measured
the weight and volume of SSP muscles and quantified the cross-sectional
area of intramuscular fat (i-fat) histologically. Results There was significant loss of muscle weight and volume after
one week (p = 0.004 and 0.003, respectively), and two weeks (both
p < 0.001) in the experimental group; which recovered to control
values after six weeks. I-fat accumulated one week after immediate repair,
greater than in the control group and statistically significant
at the mid-part of the muscle (mean 2.7% vs 1.5%,
p = 0.008). I-fat continued to accumulate up to six weeks at all sites
of the SSP muscle (all 3, p < 0.001). More fat accumulated closer
to the musculotendinous junction than at the mid-part after two
and six weeks (p = 0.012 and 0.019, respectively). Conclusion Muscle atrophy and i-fat accumulation occur early after SSP tendon
tear and immediate repair. While early repair benefitted muscle
recovery, it did not prevent fat accumulation. SSP muscle retraction
was not essential to the muscle alterations. The divergent evolution
of muscle and fat points to different pathophysiologies.
Collapse
Affiliation(s)
- H K Uhthoff
- University of Ottawa, Boneand Joint Research Lab, 451 Smyth Rd, Room 1319, Ottawa, Ontario, K1H8M5, Canada
| | | | | |
Collapse
|
20
|
Van Dyke JM, Bain JL, Riley DA. Stretch-activated signaling is modulated by stretch magnitude and contraction. Muscle Nerve 2013; 49:98-107. [DOI: 10.1002/mus.23880] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Jonathan M. Van Dyke
- Department of Cell Biology; Neurobiology & Anatomy, Medical College of Wisconsin; 8701 Watertown Plank Road Milwaukee Wisconsin 53226 USA
| | - James L.W. Bain
- Department of Cell Biology; Neurobiology & Anatomy, Medical College of Wisconsin; 8701 Watertown Plank Road Milwaukee Wisconsin 53226 USA
| | - Danny A. Riley
- Department of Cell Biology; Neurobiology & Anatomy, Medical College of Wisconsin; 8701 Watertown Plank Road Milwaukee Wisconsin 53226 USA
| |
Collapse
|
21
|
Abstract
Active stretch is necessary for regulating muscle fiber length (ie, the number of series sarcomeres). Elevated cytoplasmic calcium is the proposed component of contractile activity required to activate signaling pathways for sarcomere number regulation. Passive stretch reduces muscle tissue stiffness, most likely by signaling connective tissue remodeling via fibroblasts. Passive stretch may induce sarcomere addition if the muscle fibers are lengthened sufficiently to raise cytoplasmic calcium through stretch-activated calcium channels. The magnitude of stretch in vivo is limited by the physiologic range of movement and stretch pain tolerance. The greatest effect of stretching muscle fibers is expected when the lengthening exceeds the optimum fiber length (Lo).
Collapse
|