1
|
Kranjc Brezar S, Medved A, Matkovic U, Sersa G, Markelc B, Bozic T, Jurdana M, Cemazar M. Effect of electrochemotherapy on myogenesis of mouse C2C12 cells in vitro. Bioelectrochemistry 2023; 153:108487. [PMID: 37354641 DOI: 10.1016/j.bioelechem.2023.108487] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023]
Abstract
Electrochemotherapy (ECT) is a local ablative therapy for the treatment of different skin and subcutaneous tumors and certain tumors in internal organs. Skeletal muscle represents a major tumor- surrounding tissue, exposed to side effects of ECT. At the cellular level, side-effects of ECT on skeletal muscle and underlying mechanisms have not been examined yet. Thus, we aimed to determine the effect of ECT in the mouse muscle cell line C2C12 during in vitro myogenesis. We evaluated the electroporation efficiency and viability of C2C12 myotubes at increasing voltages (200-1300 V/cm) using propidium iodide (PI). Permeabilization of PI into the cells was voltage-dependent accounting up to 97 % efficiency at the highest voltage. High cell viability and myotube integrity were maintained until 4 days after electroporation. ECT with the cytostatic drugs bleomycin and cisplatin decreased the viability of C2C12 myoblasts and myotubes in a dose-dependent manner. However, myoblasts were more sensitive to ECT than myotubes. Increased secretion of IL-6, observed 3 days after ECT, confirming its effects on early myogenesis. Only minor effects of ECT were observed in treated myotubes. These results contribute to the safety profile of ECT in tumor treatment.
Collapse
Affiliation(s)
- Simona Kranjc Brezar
- Institute of Oncology Ljubljana, Zaloška 2, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana, Slovenia
| | - Ajda Medved
- Institute of Oncology Ljubljana, Zaloška 2, Ljubljana, Slovenia
| | - Urska Matkovic
- Institute of Oncology Ljubljana, Zaloška 2, Ljubljana, Slovenia
| | - Gregor Sersa
- Institute of Oncology Ljubljana, Zaloška 2, Ljubljana, Slovenia
| | - Bostjan Markelc
- Institute of Oncology Ljubljana, Zaloška 2, Ljubljana, Slovenia
| | - Tim Bozic
- Institute of Oncology Ljubljana, Zaloška 2, Ljubljana, Slovenia
| | - Mihaela Jurdana
- University of Primorska, Faculty of Health Sciences, Polje 42, Izola, Slovenia.
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Zaloška 2, Ljubljana, Slovenia; University of Primorska, Faculty of Health Sciences, Polje 42, Izola, Slovenia.
| |
Collapse
|
2
|
Chapotte-Baldacci CA, Cognard C, Bois P, Chatelier A, Sebille S. Handling a mature calcium signature through optogenetics improves the differentiation of primary murine myotubes. Cell Calcium 2022; 103:102546. [DOI: 10.1016/j.ceca.2022.102546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
|
3
|
Bernareggi A, Sciancalepore M, Lorenzon P. Interplay Between Cholinergic and Adenosinergic Systems in Skeletal Muscle. Neuroscience 2019; 439:41-47. [PMID: 31121259 DOI: 10.1016/j.neuroscience.2019.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
Abstract
Since the pioneering works of Ricardo Miledi, the neuromuscular junction represents the best example of a synapse where ACh is the neurotransmitter acting on nicotinic ACh receptors. ATP, co-released with ACh, is promptly degraded to Ado, which acts as a modulator of the cholinergic synaptic activity. Consequently, both ACh and adenosine play a crucial role in controlling the nerve-muscle communication. Apart from their role in the context of synaptic transmission, ACh and adenosine are autocrinally released by skeletal muscle cells, suggesting also a non nerve-driven function of these molecules. Indeed, the existence of cholinergic and adenosinergic systems has been widely described in many other non neuronal cell types. In this review, we will describe the two systems and their interplay in non-innervated differentiating skeletal muscle cells, and in innervated adult skeletal muscle fibers. We believe that the better comprehension of the interactions between the activity of nAChRs and adenosine could help the knowledge of skeletal muscle physiology. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Annalisa Bernareggi
- Department of Life Sciences, University of Trieste, Trieste, Italy; B.R.A.I.N., Centre for Neuroscience, Trieste, Italy.
| | - Marina Sciancalepore
- Department of Life Sciences, University of Trieste, Trieste, Italy; B.R.A.I.N., Centre for Neuroscience, Trieste, Italy
| | - Paola Lorenzon
- Department of Life Sciences, University of Trieste, Trieste, Italy; B.R.A.I.N., Centre for Neuroscience, Trieste, Italy
| |
Collapse
|
4
|
Enhanced skeletal muscle formation on microfluidic spun gelatin methacryloyl (GelMA) fibres using surface patterning and agrin treatment. J Tissue Eng Regen Med 2018; 12:2151-2163. [DOI: 10.1002/term.2738] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 03/19/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022]
|
5
|
Pietrangelo T, Di Filippo ES, Mancinelli R, Doria C, Rotini A, Fanò-Illic G, Fulle S. Low Intensity Exercise Training Improves Skeletal Muscle Regeneration Potential. Front Physiol 2015; 6:399. [PMID: 26733888 PMCID: PMC4689811 DOI: 10.3389/fphys.2015.00399] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/07/2015] [Indexed: 01/09/2023] Open
Abstract
Purpose: The aim of this study was to determine whether 12 days of low-to-moderate exercise training at low altitude (598 m a.s.l.) improves skeletal muscle regeneration in sedentary adult women. Methods: Satellite cells were obtained from the vastus lateralis skeletal muscle of seven women before and after this exercise training at low altitude. They were investigated for differentiation aspects, superoxide anion production, antioxidant enzymes, mitochondrial potential variation after a depolarizing insult, intracellular Ca2+ concentrations, and micro (mi)RNA expression (miR-1, miR-133, miR-206). Results: In these myogenic populations of adult stem cells, those obtained after exercise training, showed increased Fusion Index and intracellular Ca2+ concentrations. This exercise training also generally reduced superoxide anion production in cells (by 12–67%), although not in two women, where there was an increase of ~15% along with a reduced superoxide dismutase activity. miRNA expression showed an exercise-induced epigenetic transcription profile that was specific according to the reduced or increased superoxide anion production of the cells. Conclusions: The present study shows that low-to-moderate exercise training at low altitude improves the regenerative capacity of skeletal muscle in adult women. The differentiation of cells was favored by increased intracellular calcium concentration and increased the fusion index. This low-to-moderate training at low altitude also depicted the epigenetic signature of cells.
Collapse
Affiliation(s)
- Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-PescaraChieti, Italy; Laboratory of Functional Evaluation, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Centre for Aging Sciences, d'Annunzio FoundationChieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, Interuniversity Institute of MyologyChieti, Italy
| | - Ester S Di Filippo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-PescaraChieti, Italy; Centre for Aging Sciences, d'Annunzio FoundationChieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, Interuniversity Institute of MyologyChieti, Italy
| | - Rosa Mancinelli
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-PescaraChieti, Italy; Centre for Aging Sciences, d'Annunzio FoundationChieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, Interuniversity Institute of MyologyChieti, Italy
| | - Christian Doria
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-PescaraChieti, Italy; Laboratory of Functional Evaluation, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, Interuniversity Institute of MyologyChieti, Italy
| | - Alessio Rotini
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-PescaraChieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, Interuniversity Institute of MyologyChieti, Italy
| | - Giorgio Fanò-Illic
- Laboratory of Functional Evaluation, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Centre for Aging Sciences, d'Annunzio FoundationChieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, Interuniversity Institute of MyologyChieti, Italy
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-PescaraChieti, Italy; Laboratory of Functional Evaluation, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Centre for Aging Sciences, d'Annunzio FoundationChieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, Interuniversity Institute of MyologyChieti, Italy
| |
Collapse
|
6
|
Zhang BGX, Quigley AF, Bourke JL, Nowell CJ, Myers DE, Choong PFM, Kapsa RMI. Combination of agrin and laminin increase acetylcholine receptor clustering and enhance functional neuromuscular junction formation In vitro. Dev Neurobiol 2015; 76:551-65. [PMID: 26251299 DOI: 10.1002/dneu.22331] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/23/2015] [Accepted: 08/01/2015] [Indexed: 01/07/2023]
Abstract
Clustering of acetylcholine receptors (AChR) at the postsynaptic membrane is a crucial step in the development of neuromuscular junctions (NMJ). During development and after denervation, aneural AChR clusters form on the sarcolemma. Recent studies suggest that these receptors are critical for guiding and initiating synaptogenesis. The aim of this study is to investigate the effect of agrin and laminin-1; agents with known AChR clustering activity; on NMJ formation and muscle maturation. Primary myoblasts were differentiated in vitro on collagen, laminin or collagen and laminin-coated surfaces in the presence or absence of agrin and laminin. The pretreated cells were then subject to innervation by PC12 cells. The number of neuromuscular junctions was assessed by immunocytochemical co-localization of AChR clusters and the presynaptic marker synaptophysin. Functional neuromuscular junctions were quantitated by analysis of the level of spontaneous as well as neuromuscular blocker responsive contractile activity and muscle maturation was assessed by the degree of myotube striation. Agrin alone did not prime muscle for innervation while a combination of agrin and laminin pretreatment increased the number of neuromuscular junctions formed and enhanced acetylcholine based neurotransmission and myotube striation. This study has direct clinical relevance for treatment of denervation injuries and creating functional neuromuscular constructs for muscle tissue repair.
Collapse
Affiliation(s)
- Bill G X Zhang
- Department of Orthopaedics, St. Vincent's Hospital Melbourne and the University of Melbourne, Fitzroy, VIC, 3065, Australia.,Department of Surgery, St. Vincent's Hospital Melbourne and the University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Anita F Quigley
- Department of Medicine, the University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC, 3065, Australia.,ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Justin L Bourke
- Department of Medicine, the University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC, 3065, Australia
| | - Cameron J Nowell
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
| | - Damian E Myers
- Department of Orthopaedics, St. Vincent's Hospital Melbourne and the University of Melbourne, Fitzroy, VIC, 3065, Australia.,Department of Surgery, St. Vincent's Hospital Melbourne and the University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Peter F M Choong
- Department of Orthopaedics, St. Vincent's Hospital Melbourne and the University of Melbourne, Fitzroy, VIC, 3065, Australia.,Department of Surgery, St. Vincent's Hospital Melbourne and the University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Robert M I Kapsa
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
7
|
Bernareggi A, Luin E, Pavan B, Parato G, Sciancalepore M, Urbani R, Lorenzon P. Adenosine enhances acetylcholine receptor channel openings and intracellular calcium 'spiking' in mouse skeletal myotubes. Acta Physiol (Oxf) 2015; 214:467-80. [PMID: 25683861 DOI: 10.1111/apha.12473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/23/2014] [Accepted: 02/11/2015] [Indexed: 12/26/2022]
Abstract
AIMS The autocrine activity of the embryonic isoform of the nicotinic acetylcholine receptor is crucial for the correct differentiation and trophism of skeletal muscle cells before innervation. The functional activity of extracellular adenosine and adenosine receptor subtypes expressed in differentiating myotubes is still unknown. In this study, we performed a detailed analysis of the role of adenosine receptor-mediated effects on the autocrine-mediated nicotinic acetylcholine receptor channel openings and the associated spontaneous intracellular calcium 'spikes' generated in differentiating mouse myotubes in vitro. METHODS Cell-attached patch-clamp recordings and intracellular calcium imaging experiments were performed in contracting myotubes derived from mouse satellite cells. RESULTS The endogenous extracellular adenosine and the adenosine receptor-mediated activity modulated the properties of the embryonic isoform of the nicotinic acetylcholine receptor in myotubes in vitro, by increasing the mean open time and the open probability of the ion channel, and sustaining nicotinic acetylcholine receptor-driven intracellular [Ca(2+) ]i 'spikes'. The pharmacological characterization of the adenosine receptor-mediated effects suggested a prevalent involvement of the A2B adenosine receptor subtype. CONCLUSION We propose that the interplay between endogenous adenosine and nicotinic acetylcholine receptors represents a potential novel strategy to improve differentiation/regeneration of skeletal muscle.
Collapse
Affiliation(s)
- A. Bernareggi
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
- B.R.A.I.N. Centre for Neuroscience; via Fleming 22 Trieste I-34127 Italy
| | - E. Luin
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
- B.R.A.I.N. Centre for Neuroscience; via Fleming 22 Trieste I-34127 Italy
| | - B. Pavan
- Department of Life Sciences and Biotechnology; University of Ferrara; Via L. Borsari 46 Ferrara I-44121 Italy
| | - G. Parato
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
- B.R.A.I.N. Centre for Neuroscience; via Fleming 22 Trieste I-34127 Italy
| | - M. Sciancalepore
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
- B.R.A.I.N. Centre for Neuroscience; via Fleming 22 Trieste I-34127 Italy
| | - R. Urbani
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
| | - P. Lorenzon
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
- B.R.A.I.N. Centre for Neuroscience; via Fleming 22 Trieste I-34127 Italy
| |
Collapse
|
8
|
García-Parra P, Naldaiz-Gastesi N, Maroto M, Padín JF, Goicoechea M, Aiastui A, Fernández-Morales JC, García-Belda P, Lacalle J, Álava JI, García-Verdugo JM, García AG, Izeta A, López de Munain A. Murine muscle engineered from dermal precursors: an in vitro model for skeletal muscle generation, degeneration, and fatty infiltration. Tissue Eng Part C Methods 2013; 20:28-41. [PMID: 23631552 DOI: 10.1089/ten.tec.2013.0146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle can be engineered by converting dermal precursors into muscle progenitors and differentiated myocytes. However, the efficiency of muscle development remains relatively low and it is currently unclear if this is due to poor characterization of the myogenic precursors, the protocols used for cell differentiation, or a combination of both. In this study, we characterized myogenic precursors present in murine dermospheres, and evaluated mature myotubes grown in a novel three-dimensional culture system. After 5-7 days of differentiation, we observed isolated, twitching myotubes followed by spontaneous contractions of the entire tissue-engineered muscle construct on an extracellular matrix (ECM). In vitro engineered myofibers expressed canonical muscle markers and exhibited a skeletal (not cardiac) muscle ultrastructure, with numerous striations and the presence of aligned, enlarged mitochondria, intertwined with sarcoplasmic reticula (SR). Engineered myofibers exhibited Na(+)- and Ca(2+)-dependent inward currents upon acetylcholine (ACh) stimulation and tetrodotoxin-sensitive spontaneous action potentials. Moreover, ACh, nicotine, and caffeine elicited cytosolic Ca(2+) transients; fiber contractions coupled to these Ca(2+) transients suggest that Ca(2+) entry is activating calcium-induced calcium release from the SR. Blockade by d-tubocurarine of ACh-elicited inward currents and Ca(2+) transients suggests nicotinic receptor involvement. Interestingly, after 1 month, engineered muscle constructs showed progressive degradation of the myofibers concomitant with fatty infiltration, paralleling the natural course of muscular degeneration. We conclude that mature myofibers may be differentiated on the ECM from myogenic precursor cells present in murine dermospheres, in an in vitro system that mimics some characteristics found in aging and muscular degeneration.
Collapse
Affiliation(s)
- Patricia García-Parra
- 1 Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, Hospital Universitario Donostia , San Sebastian, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Induced formation and maturation of acetylcholine receptor clusters in a defined 3D bio-artificial muscle. Mol Neurobiol 2013; 48:397-403. [PMID: 23371342 DOI: 10.1007/s12035-013-8412-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 01/17/2013] [Indexed: 12/28/2022]
Abstract
Dysfunction of the neuromuscular junction is involved in a wide range of muscular diseases. The development of neuromuscular junction through which skeletal muscle is innervated requires the functional modulation of acetylcholine receptor (AchR) clustering on myofibers. However, studies on AchR clustering in vitro are mostly done on monolayer muscle cell culture, which lacks a three-dimensional (3D) structure, a prominent limitation of the two-dimensional (2D) system. To enable a better understanding on the structure-function correlation underlying skeletal muscle innervation, a muscle system with a well-defined geometry mimicking the in vivo muscular setting is needed. Here, we report a 3D bio-artificial muscle (BAM) bioengineered from green fluorescent protein-transduced C3H murine myoblasts as a novel in vitro tissue-based model for muscle innervation studies. Our cell biological and molecular analysis showed that this BAM is structurally similar to in vivo muscle tissue and can reach the perinatal differentiation stage, higher than does 2D culture. Effective clustering and morphological maturation of AchRs on BAMs induced by agrin and laminin indicate the functional activity and plasticity of this BAM system toward innervation. Taken together, our results show that the BAM provides a favorable 3D environment that at least partially recapitulates real physiological skeletal muscle with regard to innervation. With a convenience of fabrication and manipulation, this 3D in vitro system offers a novel model for studying mechanisms underlying skeletal muscle innervation and testing therapeutic strategies for relevant nervous and muscular diseases.
Collapse
|