1
|
Zheng M, Lu P, Wu W, Song R. Isometric Plantarflexion Moment Prediction Based on a Compartment-Specific HD-sEMG-Driven Musculoskeletal Model. IEEE Trans Biomed Eng 2024; 71:2311-2320. [PMID: 38381630 DOI: 10.1109/tbme.2024.3368021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
OBJECTIVE electromyogram (EMG)-driven musculoskeletal models have been widely used to investigate human movements while existing EMG-driven models commonly neglect regional heterogeneity in anatomy and activation within a skeletal muscle. To consider neuromuscular compartment anatomy and activation, a subject- and compartment-specific EMG-driven model was developed for isometric plantarflexion moment prediction. METHODS the model was hill-type consisting of gastrocnemius medialis, gastrocnemius lateralis, and soleus around the ankle joint, and each muscle was discretised into four compartments. The moment arms of each compartment were determined using magnetic resonance imaging and the compartment activation was calculated based on high-density surface EMG signals. And the hill-type compartment parameters were tuned in a calibration process. The developed compartment-specific model and a generic EMG-driven model were examined by comparing their predicted net ankle moments with measurements obtained while subjects performed isometric plantarflexion tasks at different contraction levels. RESULTS compared to the generic EMG-driven model, the isometric plantarflexion moment prediction using the compartment-specific model was more accurate at all contraction levels, with the average prediction error decreasing from average 13.81% to 10.11%. The contraction of each compartment was found to be generally non-uniform at all contraction levels. CONCLUSION the developed compartment-specific model enabled accurate prediction of isometric plantarflexion moment and the simulation of non-uniform muscular contraction, which is more physiologically appropriate than the existing EMG-driven models. SIGNIFICANCE the proposed compartment-specific formulation opens new perspectives for subject-specific musculoskeletal modelling, which has great potential in understanding regional characteristics of the neuromuscular activities.
Collapse
|
2
|
Rohlén R, Carbonaro M, Cerone GL, Meiburger KM, Botter A, Grönlund C. Spatially repeatable components from ultrafast ultrasound are associated with motor unit activity in human isometric contractions . J Neural Eng 2023; 20:046016. [PMID: 37437598 DOI: 10.1088/1741-2552/ace6fc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
Objective.Ultrafast ultrasound (UUS) imaging has been used to detect intramuscular mechanical dynamics associated with single motor units (MUs). Detecting MUs from ultrasound sequences requires decomposing a velocity field into components, each consisting of an image and a signal. These components can be associated with putative MU activity or spurious movements (noise). The differentiation between putative MUs and noise has been accomplished by comparing the signals with MU firings obtained from needle electromyography (EMG). Here, we examined whether the repeatability of the images over brief time intervals can serve as a criterion for distinguishing putative MUs from noise in low-force isometric contractions.Approach.UUS images and high-density surface EMG (HDsEMG) were recorded simultaneously from 99 MUs in the biceps brachii of five healthy subjects. The MUs identified through HDsEMG decomposition were used as a reference to assess the outcomes of the ultrasound-based components. For each contraction, velocity sequences from the same eight-second ultrasound recording were separated into consecutive two-second epochs and decomposed. To evaluate the repeatability of components' images across epochs, we calculated the Jaccard similarity coefficient (JSC). JSC compares the similarity between two images providing values between 0 and 1. Finally, the association between the components and the MUs from HDsEMG was assessed.Main results.All the MU-matched components had JSC > 0.38, indicating they were repeatable and accounted for about one-third of the HDsEMG-detected MUs (1.8 ± 1.6 matches over 4.9 ± 1.8 MUs). The repeatable components (JSC > 0.38) represented 14% of the total components (6.5 ± 3.3 components). These findings align with our hypothesis that intra-sequence repeatability can differentiate putative MUs from noise and can be used for data reduction.Significance.This study provides the foundation for developing stand-alone methods to identify MU in UUS sequences and towards real-time imaging of MUs. These methods are relevant for studying muscle neuromechanics and designing novel neural interfaces.
Collapse
Affiliation(s)
- Robin Rohlén
- Department of Biomedical Engineering, Lund University, Lund, Sweden
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Marco Carbonaro
- Department of Electronics and Telecommunication, Laboratory for Engineering of the Neuromuscular System (LISiN), Politecnico di Torino, Turin, Italy
- PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Giacinto L Cerone
- Department of Electronics and Telecommunication, Laboratory for Engineering of the Neuromuscular System (LISiN), Politecnico di Torino, Turin, Italy
- PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Kristen M Meiburger
- PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
- Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Alberto Botter
- Department of Electronics and Telecommunication, Laboratory for Engineering of the Neuromuscular System (LISiN), Politecnico di Torino, Turin, Italy
- PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Christer Grönlund
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Favretto MA, Andreis FR, Cossul S, Negro F, Oliveira AS, Marques JLB. Differences in motor unit behavior during isometric contractions in patients with diabetic peripheral neuropathy at various disease severities. J Electromyogr Kinesiol 2023; 68:102725. [PMID: 36436278 DOI: 10.1016/j.jelekin.2022.102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 09/14/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to determine whether HD-sEMG is sensitive to detecting changes in motor unit behavior amongst healthy adults and type 2 diabetes mellitus (T2DM) patients presenting diabetic peripheral neuropathy (DPN) at different levels. Healthy control subjects (CON, n = 8) and T2DM patients presenting no DPN symptoms (ABS, n = 8), moderate DPN (MOD, n = 18), and severe DPN (SEV, n = 12) performed isometric ankle dorsiflexion at 30 % maximum voluntary contraction while high-density surface EMG (HD-sEMG) was recorded from the tibialis anterior muscle. HD-sEMG signals were decomposed, providing estimates of discharge rate, motor unit conduction velocity (MUCV), and motor unit territory area (MUTA). As a result, the ABS group presented reduced MUCV compared to CON. The groups with diabetes presented significantly larger MUTA compared to the CON group (p < 0.01), and the SEV group presented a significantly lower discharge rate compared to CON and ABS (p < 0.01). In addition, the SEV group presented significantly higher CoVforce compared to CON and MOD. These results support the use of HD-SEMG as a method to detect peripheral and central changes related to DPN.
Collapse
Affiliation(s)
- Mateus André Favretto
- Institute of Biomedical Engineering, Department of Electrical and Electronic Engineering, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil.
| | - Felipe Rettore Andreis
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Sandra Cossul
- Institute of Biomedical Engineering, Department of Electrical and Electronic Engineering, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | | | - Jefferson Luiz Brum Marques
- Institute of Biomedical Engineering, Department of Electrical and Electronic Engineering, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| |
Collapse
|
4
|
Differences between vastus medialis and lateralis excitation onsets are dependent on the relative distance of surface electrodes placement from the innervation zone location. J Electromyogr Kinesiol 2022; 67:102713. [PMID: 36215780 DOI: 10.1016/j.jelekin.2022.102713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/31/2022] [Accepted: 09/28/2022] [Indexed: 12/12/2022] Open
Abstract
Conflictual results between the onset of vastus medialis (VM) and vastus lateralis (VL) excitation may arise from methodological aspects related to the detection of surface electromyograms. In this study we used an array of surface electrodes to assess the effect of detection site, relative to the muscle innervation zone, on the difference between VM and VL excitation onsets. Ten healthy males performed moderate isometric knee extension at 40 % of their maximal voluntary isometric contraction. After the actual VM-VL onset was defined (estimated when action potentials were generated at the neuromuscular junctions of both muscles), we calculated the largest bias that the detection site may introduce in the VM-VL onset estimation. We also assessed whether the location often considered for positioning bipolar electrodes on each muscle leads to VM-VL onset estimations comparable to the actual VM-VL onset. Our main results revealed that a maximum absolute bias of 20.48 ms may be introduced in VM-VL onset estimations due to the electrodes' detection site. In addition, mean differences of ∼ 12 ms in VM-VL onset estimations were attributable to largest possible discrepancies in the paired position of channels with respect to the innervation zone for VL and VM. When considering the classical location for positioning the bipolar electrodes over these muscles, differences error was subtle (∼3.4 ms) when compared with the actual VM-VL onset. Nonetheless, when accounting for the effect of relative differences in electrode position between muscles is not possible, our results suggest that a systematic absolute error of ∼ 12 ms should be considered in future studies regarding VM-VL onset estimations, suggesting that onset differences lower than that might not be clinically relevant.
Collapse
|
5
|
KOMIYA MAKOTO, MAEDA NORIAKI, NISHIKAWA YUICHI, SASADAI JUNPEI, MORIKAWA MASANORI, TASHIRO TSUBASA, FUJISHITA HIRONORI, URABE YUKIO. SPATIAL DISTRIBUTION PATTERN OF THE ELECTROMYOGRAPHIC POTENTIAL IN THE VASTUS MEDIALIS AND LATERALIS MUSCLES FOR THREE KNEE FLEXION ANGLES DURING ISOMETRIC KNEE EXTENSION. J MECH MED BIOL 2022. [DOI: 10.1142/s0219519422500312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Understanding the function of the vastus lateralis (VL) and vastus medialis (VM) muscles is important since these muscles are essential for daily and sport activities. The association between the knee flexion angle and spatial muscle activation is controversial. This study compares the distribution patterns of multi-channel electromyographic activities of the VL and VM muscles at three knee flexion angles for three intensities of isometric contraction. Sixteen men performed isometric knee extensions at 30%, 50% and 70% maximal voluntary contraction (MVC), at [Formula: see text], [Formula: see text] and [Formula: see text] knee flexion. Alterations in the spatial electromyographic potential distribution were determined by the root mean square (RMS), modified entropy, and coefficient of variation in the spatial electromyographic potential. Modified entropy and the coefficient of variation showed differences in the VM muscle between [Formula: see text] and [Formula: see text] knee flexion. The RMS at the three angles was similar between the VL and VM muscles, with no differences in contraction intensities at 30%, 50%, or 70% MVC. The VL and VM muscle function differed among knee flexion angles, as did activity in the distal and proximal VM muscles. These findings suggest the need for functional evaluation of the VL and VM muscles at each knee flexion angle.
Collapse
Affiliation(s)
- MAKOTO KOMIYA
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - NORIAKI MAEDA
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - YUICHI NISHIKAWA
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - JUNPEI SASADAI
- Sports Medical Center, Japan Institute of Sports, Sciences, Tokyo, Japan
| | - MASANORI MORIKAWA
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - TSUBASA TASHIRO
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - YUKIO URABE
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
6
|
Chandra S, Suresh NL, Afsharipour B, Rymer WZ, Holobar A. Anomalies of motor unit amplitude and territory after botulinum toxin injection. J Neural Eng 2022; 19. [PMID: 35671714 DOI: 10.1088/1741-2552/ac7666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/07/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Botulinum toxin (BT) induced cholinergic denervation of hyperactive motor units is a clinically accepted and extensively practiced way of managing focal spasticity after stroke. The denervation potentially initiates a temporary reorganization of the motor unit (MU) structure by inducing the emergence of a large number of newly innervated muscle fibers. In this study, we quantify the effect of the BT on motor unit action potential (MUAP) amplitudes and on the motor unit territory areas (MUTA) as seen on the surface of the skin over the biceps brachii (BB) muscle. APPROACH We have used a 128 channel high-density electromyography (HDsEMG) grid on the spastic and contralateral BB muscle and recorded the myoelectric activity along with the contraction force during isometric contraction of elbow muscles. We have decomposed the recorded EMG signal into individual MU potentials and estimated the MUAP amplitudes and territory areas before and two weeks after a BT injection. MAIN RESULT We found that there were significantly larger median (47±9%) MUAP amplitudes as well as reduction of MUTA (20±2%) two weeks after the injection compared to the respective pre-injection recording. SIGNIFICANCE The observed covariation of the amplitude and the territory area indicates that the large amplitude MUs that appeared after the BT injection have a relatively smaller territory area. We discuss the potential contributing factors to these changes subsequent to the injection in the context of the investigated subject cohort.
Collapse
Affiliation(s)
- Sourav Chandra
- Shirley Ryan Ability Lab, Arms and Hands Laboratory, Northwestern University, 355 East Erie street,, Chicago, Illinois, 60611, UNITED STATES
| | - Nina L Suresh
- Shirley Ryan Ability Lab, Northwestern University, 355 East Erie street, Arms and Hands Laboratory, Chicago, Illinois, 60611, UNITED STATES
| | - Babak Afsharipour
- University of Alberta, 116 St & 85 Ave,, Edmonton, Alberta, T6G 2R3, CANADA
| | - William Zev Rymer
- Shirley Ryan Ability Lab, Northwestern University Medical School, 355 East Erie street, Arms and Hands Laboratory, Chicago, IL 60611, USA, Chicago, Illinois, 60611, UNITED STATES
| | - Ales Holobar
- Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, Maribor, 2000, SLOVENIA
| |
Collapse
|
7
|
Physical and electrophysiological motor unit characteristics are revealed with simultaneous high-density electromyography and ultrafast ultrasound imaging. Sci Rep 2022; 12:8855. [PMID: 35614312 PMCID: PMC9133081 DOI: 10.1038/s41598-022-12999-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/06/2022] [Indexed: 02/07/2023] Open
Abstract
Electromyography and ultrasonography provide complementary information about electrophysiological and physical (i.e. anatomical and mechanical) muscle properties. In this study, we propose a method to assess the electrical and physical properties of single motor units (MUs) by combining High-Density surface Electromyography (HDsEMG) and ultrafast ultrasonography (US). Individual MU firings extracted from HDsEMG were used to identify the corresponding region of muscle tissue displacement in US videos. The time evolution of the tissue velocity in the identified region was regarded as the MU tissue displacement velocity. The method was tested in simulated conditions and applied to experimental signals to study the local association between the amplitude distribution of single MU action potentials and the identified displacement area. We were able to identify the location of simulated MUs in the muscle cross-section within a 2 mm error and to reconstruct the simulated MU displacement velocity (cc > 0.85). Multiple regression analysis of 180 experimental MUs detected during isometric contractions of the biceps brachii revealed a significant association between the identified location of MU displacement areas and the centroid of the EMG amplitude distribution. The proposed approach has the potential to enable non-invasive assessment of the electrical, anatomical, and mechanical properties of single MUs in voluntary contractions.
Collapse
|
8
|
Power KE, Lockyer EJ, Botter A, Vieira T, Button DC. Endurance-exercise training adaptations in spinal motoneurones: potential functional relevance to locomotor output and assessment in humans. Eur J Appl Physiol 2022; 122:1367-1381. [PMID: 35226169 DOI: 10.1007/s00421-022-04918-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
It is clear from non-human animal work that spinal motoneurones undergo endurance training (chronic) and locomotor (acute) related changes in their electrical properties and thus their ability to fire action potentials in response to synaptic input. The functional implications of these changes, however, are speculative. In humans, data suggests that similar chronic and acute changes in motoneurone excitability may occur, though the work is limited due to technical constraints. To examine the potential influence of chronic changes in human motoneurone excitability on the acute changes that occur during locomotor output, we must develop more sophisticated recording techniques or adapt our current methods. In this review, we briefly discuss chronic and acute changes in motoneurone excitability arising from non-human and human work. We then discuss the potential interaction effects of chronic and acute changes in motoneurone excitability and the potential impact on locomotor output. Finally, we discuss the use of high-density surface electromyogram recordings to examine human motor unit firing patterns and thus, indirectly, motoneurone excitability. The assessment of single motor units from high-density recording is mainly limited to tonic motor outputs and minimally dynamic motor output such as postural sway. Adapting this technology for use during locomotor outputs would allow us to gain a better understanding of the potential functional implications of endurance training-induced changes in human motoneurone excitability on motor output.
Collapse
Affiliation(s)
- Kevin E Power
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada. .,Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Evan J Lockyer
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Alberto Botter
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, Turin, Italy.,PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Taian Vieira
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, Turin, Italy.,PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Duane C Button
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
9
|
Cabral HV, de Souza LML, de Oliveira LF, Vieira TM. Non-uniform excitation of the pectoralis major muscle during flat and inclined bench press exercises. Scand J Med Sci Sports 2021; 32:381-390. [PMID: 34644424 DOI: 10.1111/sms.14082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/09/2021] [Indexed: 11/27/2022]
Abstract
Non-physiological sources may lead to equivocal interpretation on the degree of muscle excitation from electromyograms (EMGs) amplitude. This presumably explains the contradictory findings regarding the effect of the bench press inclination on the pectoralis major (PM) activation pattern. To contend with these issues, herein we used high-density surface EMG to investigate whether different PM regions are excited during the flat and 45° inclined bench press exercises. Single-differential EMGs were collected from 15 regions along the PM cranio-caudal axis, while 8 volunteers performed a set of the flat and 45° inclined bench press at 50% and 70% of 1 repetition maximum. The coefficient of variation, the range of motion, and the cycle duration were calculated from the barbell vertical position to assess the within-subject consistency across cycles. The number of channels detecting the largest EMGs amplitude (active channels), their interquartile range, and their barycentre coordinate were assessed to characterize the EMG amplitude distribution within PM. No significant differences in the range of motion (p > 0.11), cycle duration (p > 0.28), number of active channels (p > 0.05), and interquartile range of active channels (p > 0.39) were observed between the two bench press inclinations. Conversely, the barycentre shifted toward the PM clavicular region (p < 0.001) when the bench press changed from flat to 45°. Our results revealed that greatest EMG amplitudes were concentrated at the PM sternocostal and clavicular heads when exercising in the flat and 45° inclined bench press, respectively. Performing the bench press exercise, with different postures, seem to demand the excitation of different PM regions.
Collapse
Affiliation(s)
- Hélio V Cabral
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Leonardo M L de Souza
- Laboratório de Biomecânica, Programa de Engenharia Biomédica (COPPE), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Liliam F de Oliveira
- Laboratório de Biomecânica, Programa de Engenharia Biomédica (COPPE), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Biomecânica Muscular, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Taian M Vieira
- Laboratorio di Ingegneria del Sistema Neuromuscolare (LISiN), Politecnico di Torino, Torino, Italy.,PolitoBIOMed Lab, Politecnico di Torino, Torino, Italy
| |
Collapse
|
10
|
Vieira TM, Botter A. The Accurate Assessment of Muscle Excitation Requires the Detection of Multiple Surface Electromyograms. Exerc Sport Sci Rev 2021; 49:23-34. [PMID: 33044329 DOI: 10.1249/jes.0000000000000240] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
When sampling electromyograms (EMGs) with one pair of electrodes, it seems implicitly assumed the detected signal reflects the net muscle excitation. However, this assumption is discredited by observations of local muscle excitation. Therefore, we hypothesize that the accurate assessment of muscle excitation requires multiple EMG detection and consideration of electrode-fiber alignment. We advise prudence when drawing inferences from individually collected EMGs.
Collapse
|
11
|
Schlink BR, Nordin AD, Ferris DP. Human myoelectric spatial patterns differ among lower limb muscles and locomotion speeds. Physiol Rep 2020; 8:e14652. [PMID: 33278064 PMCID: PMC7718836 DOI: 10.14814/phy2.14652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
The spatial distribution of myoelectric activity within lower limb muscles is often nonuniform and can change during different stationary tasks. Recent studies using high-density electromyography (EMG) have suggested that spatial muscle activity may also differ among muscles during locomotion, but contrasting electrode array sizes and experimental designs have limited cross-study comparisons. Here, we sought to determine if spatial EMG patterns differ among lower limb muscles and locomotion speeds. We recorded high-density EMG from the vastus medialis, tibialis anterior, biceps femoris, medial gastrocnemius, and lateral gastrocnemius muscles of 11 healthy subjects while they walked (1.2 and 1.6 m/s) and ran (2.0, 3.0, 4.0, and 5.0 m/s) on a treadmill. To overcome the detrimental effects of cable, electrode, and soft tissue movements on high-density EMG signal quality during locomotion, we applied multivariate signal cleaning methods. From these data, we computed the spatial entropy and center of gravity from the total myoelectric activity within each recording array during the stance or swing phases of the gait cycle. We found heterogeneous spatial EMG patterns evidenced by contrasting spatial entropy among lower limb muscles. As locomotion speed increased, mean entropy values decreased in four of the five recorded muscles, indicating that EMG signal amplitudes were more spatially heterogeneous, or localized, at faster speeds. The EMG center of gravity location also shifted in multiple muscles as locomotion speed increased. Contrasting myoelectric spatial distributions among muscles likely reflect differences in muscle architecture, but increasingly localized activity and spatial shifts in the center of gravity location at faster locomotion speeds could be influenced by preferential recruitment of faster motor units under greater loads.
Collapse
Affiliation(s)
- Bryan R. Schlink
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of FloridaGainesvilleFLUSA
| | - Andrew D. Nordin
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of FloridaGainesvilleFLUSA
| | - Daniel P. Ferris
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
12
|
Wang Y, Yin L, Bai Y, Liu S, Wang L, Zhou Y, Hou C, Yang Z, Wu H, Ma J, Shen Y, Deng P, Zhang S, Duan T, Li Z, Ren J, Xiao L, Yin Z, Lu N, Huang Y. Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale. SCIENCE ADVANCES 2020; 6:eabd0996. [PMID: 33097545 PMCID: PMC7608837 DOI: 10.1126/sciadv.abd0996] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/09/2020] [Indexed: 05/18/2023]
Abstract
Epidermal electrophysiology is widely carried out for disease diagnosis, performance monitoring, human-machine interaction, etc. Compared with thick, stiff, and irritating gel electrodes, emerging tattoo-like epidermal electrodes offer much better wearability and versatility. However, state-of-the-art tattoo-like electrodes are limited in size (e.g., centimeters) to perform electrophysiology at scale due to challenges including large-area fabrication, skin lamination, and electrical interference from long interconnects. Therefore, we report large-area, soft, breathable, substrate- and encapsulation-free electrodes designed into transformable filamentary serpentines that can be rapidly fabricated by cut-and-paste method. We propose a Cartan curve-inspired transfer process to minimize strain in the electrodes when laminated on nondevelopable skin surfaces. Unwanted signals picked up by the unencapsulated interconnects can be eliminated through a previously unexplored electrical compensation strategy. These tattoo-like electrodes can comfortably cover the whole chest, forearm, or neck for applications such as multichannel electrocardiography, sign language recognition, prosthetic control or mapping of neck activities.
Collapse
Affiliation(s)
- Youhua Wang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lang Yin
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunzhao Bai
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Siyi Liu
- Center for Mechanics of Solids, Structures and Materials, Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX 78712, USA
| | - Liu Wang
- Center for Mechanics of Solids, Structures and Materials, Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX 78712, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ying Zhou
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chao Hou
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhaoyu Yang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Wu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaji Ma
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yaoxin Shen
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pengfei Deng
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuchang Zhang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tangjian Duan
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zehan Li
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junhui Ren
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lin Xiao
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhouping Yin
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Nanshu Lu
- Center for Mechanics of Solids, Structures and Materials, Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX 78712, USA.
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
- Texas Materials Institute, University of Texas at Austin, Austin, TX 78712, USA
| | - YongAn Huang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
13
|
Falla D, Gallina A. New insights into pain-related changes in muscle activation revealed by high-density surface electromyography. J Electromyogr Kinesiol 2020; 52:102422. [DOI: 10.1016/j.jelekin.2020.102422] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 11/30/2022] Open
|
14
|
Borzelli D, Gazzoni M, Botter A, Gastaldi L, d'Avella A, Vieira TM. Contraction level, but not force direction or wrist position, affects the spatial distribution of motor unit recruitment in the biceps brachii muscle. Eur J Appl Physiol 2020; 120:853-860. [PMID: 32076830 DOI: 10.1007/s00421-020-04324-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/11/2020] [Indexed: 10/25/2022]
Abstract
PURPOSE Different motor units (MUs) in the biceps brachii (BB) muscle have been shown to be preferentially recruited during either elbow flexion or supination. Whether these different units reside within different regions is an open issue. In this study, we tested wheter MUs recruited during submaximal isometric tasks of elbow flexion and supination for two contraction levels and with the wrist fixed at two different angles are spatially localized in different BB portions. METHODS The MUs' firing instants were extracted by decomposing high-density surface electromyograms (EMG), detected from the BB muscle of 12 subjects with a grid of electrodes (4 rows along the BB longitudinal axis, 16 columns medio-laterally). The firing instants were then used to trigger and average single-differential EMGs. The average rectified value was computed separately for each signal and the maximal value along each column in the grid was retained. The center of mass, defined as the weighted mean of the maximal, average rectified value across columns, was then consdiered to assess the medio-lateral changes in the MU surface representation between conditions. RESULTS Contraction level, but neither wrist position nor force direction (flexion vs. supination), affected the spatial distribution of BB MUs. In particular, higher forces were associated with the recruitment of BB MUs whose action potentials were represented more medially. CONCLUSION Although the action potentials of BB MUs were represented locally across the muscle medio-lateral region, dicrimination between elbow flexion or supination seems unlikely from the surface representation of MUs action potentials.
Collapse
Affiliation(s)
- Daniele Borzelli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Università di Messina, Messina, Italy. .,Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.
| | - Marco Gazzoni
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronic and Telecommunications, Politecnico di Torino, Turin, Italy.,PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Alberto Botter
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronic and Telecommunications, Politecnico di Torino, Turin, Italy.,PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Laura Gastaldi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,Department of Mathematical Sciences, Politecnico di Torino, Turin, Italy
| | - Andrea d'Avella
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Università di Messina, Messina, Italy.,Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Taian M Vieira
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronic and Telecommunications, Politecnico di Torino, Turin, Italy.,PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
| |
Collapse
|
15
|
Souza VH, Vieira TM, Peres ASC, Garcia MAC, Vargas CD, Baffa O. Effect of TMS coil orientation on the spatial distribution of motor evoked potentials in an intrinsic hand muscle. ACTA ACUST UNITED AC 2019; 63:635-645. [PMID: 28796636 DOI: 10.1515/bmt-2016-0240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 07/03/2017] [Indexed: 11/15/2022]
Abstract
Previous reports on the relationship between coil orientation and amplitude of motor evoked potential (MEP) in transcranial magnetic stimulation (TMS) did not consider the effect of electrode arrangement. Here we explore this open issue by investigating whether TMS coil orientation affects the amplitude distribution of MEPs recorded from the abductor pollicis brevis (APB) muscle with a bi-dimensional grid of 61 electrodes. Moreover, we test whether conventional mono- and bipolar montages provide representative MEPs compared to those from the grid of electrodes. Our results show that MEPs with the greatest amplitudes were elicited for 45° and 90° coil orientations, i.e. perpendicular to the central sulcus, for all electrode montages. Stimulation with the coil oriented at 135° and 315°, i.e. parallel to the central sulcus, elicited the smallest MEP amplitudes. Additionally, changes in coil orientation did not affect the spatial distribution of MEPs over the muscle extent. It has been shown that conventional electrodes with detection volume encompassing the APB belly may detect representative MEPs for optimal coil orientations. In turn, non-optimal orientations were identified only with the grid of electrodes. High-density electromyography may therefore provide new insights into the effect of coil orientation on MEPs from the APB muscle.
Collapse
Affiliation(s)
- Victor Hugo Souza
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. Bandeirantes, 3900, 14040-901 Ribeirão Preto-SP, Brazil, Phone: +55 16 33153778, Fax: +55 16 33154887
| | - Taian Martins Vieira
- Departamento de Arte Corporal, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 540, 21941-599 Rio de Janeiro, RJ, Brazil
- Laboratorio di Ingegneria del Sistema Neuromuscolare, Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Via Cavalli 22/H, 10138 Turin, Italy
| | - André Salles Cunha Peres
- Instituto Internacional de Neurociência de Natal Edmond e Lily Safra, Instituto Santos Dumont, Rodovia RN 160 Km 03, 3003, 59280-000 Macaíba-RN, Brazil
| | - Marco Antonio Cavalcanti Garcia
- Departamento de Biociências e Atividades Físicas, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 540, 21941-599 Rio de Janeiro-RJ, Brazil
| | - Claudia Domingues Vargas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro-RJ, Brazil
| | - Oswaldo Baffa
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14040-901 Ribeirão Preto, SP, Brazil
| |
Collapse
|
16
|
Cerone GL, Botter A, Gazzoni M. A Modular, Smart, and Wearable System for High Density sEMG Detection. IEEE Trans Biomed Eng 2019; 66:3371-3380. [PMID: 30869608 DOI: 10.1109/tbme.2019.2904398] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The use of linear or bi-dimensional electrode arrays for surface EMG detection (HD-sEMG) is gaining attention as it increases the amount and reliability of information extracted from the surface EMG. However, the complexity of the setup and the encumbrance of HD-sEMG hardware currently limits its use in dynamic conditions. The aim of this paper was to develop a miniaturized, wireless, and modular HD-sEMG acquisition system for applications requiring high portability and robustness to movement artifacts. METHODS A system with modular architecture was designed. Its core is a miniaturized 32-channel amplifier (Sensor Unit - SU) sampling at 2048 sps/ch with 16 bit resolution and wirelessly transmitting data to a PC or a mobile device. Each SU is a node of a Body Sensor Network for the synchronous signal acquisition from different muscles. RESULTS A prototype with two SUs was developed and tested. Each SU is small (3.4 cm × 3 cm × 1.5 cm), light (16.7 g), and can be connected directly to the electrodes; thus, avoiding the need for customary, wired setup. It allows to detect HD-sEMG signals with an average noise of 1.8 μVRMS and high performance in terms of rejection of power-line interference and motion artefacts. Tests performed on two SUs showed no data loss in a 22 m range and a ±500 μs maximum synchronization delay. CONCLUSIONS Data collected in a wide spectrum of experimental conditions confirmed the functionality of the designed architecture and the quality of the acquired signals. SIGNIFICANCE By simplifying the experimental setup, reducing the hardware encumbrance, and improving signal quality during dynamic contractions, the developed system opens new perspectives in the use of HD-sEMG in applied and clinical settings.
Collapse
|
17
|
Gallina A, Wakeling JM, Hodges PW, Hunt MA, Garland SJ. Regional Vastus Medialis and Vastus Lateralis Activation in Females with Patellofemoral Pain. Med Sci Sports Exerc 2018; 51:411-420. [PMID: 30339659 DOI: 10.1249/mss.0000000000001810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION This study aimed to investigate whether regional activation patterns in the vasti muscles differ between females with and without patellofemoral pain (PFP), and whether muscle activation patterns correlate with knee extension strength. METHODS Thirty-six females with PFP and 20 pain-free controls performed a standardized knee flexion-extension task. The activation of vastus medialis (VM) and vastus lateralis (VL) was collected using high-density surface EMG and analyzed using principal component (PC) analysis. Spatial locations and temporal coefficients of the PC, and the percent variance they explain, were compared between groups and between the concentric and the eccentric phases of the movement. Correlations were assessed between PC features and knee extension strength. RESULTS The spatial weights of PC1 (general vasti activation) and PC2 (reflecting vastus-specific activation) were similar between groups (R > 0.95). Activation patterns in PFP were less complex than controls. Fewer PC features were necessary to reconstruct 90% of the signal for PFP participants in the concentric phase (P < 0.05), and the difference in bias of activation to VM (concentric phase) or VL (eccentric phase) was less between phases for PFP participants (P < 0.05). Smaller difference in vastus-specific activation in concentric and eccentric phases (less task specificity of VM/VL coordination) was related to greater maximal knee extension strength (P < 0.05, R < -0.43). CONCLUSION These data suggest PFP involves a simpler control strategy of VM and VL. The inverse association between task specificity and maximal knee extension strength suggests different presentations of PFP: lower knee extension strength but VM/VL coordination task specificity comparable with controls, or knee extension strength comparable with controls but lower VM/VL coordination task specificity.
Collapse
Affiliation(s)
- Alessio Gallina
- Graduate Programs in Rehabilitation Sciences, University of British Columbia, Vancouver, British Columbia, CANADA
| | - James M Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, CANADA
| | - Paul W Hodges
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, St. Lucia, AUSTRALIA
| | - Michael A Hunt
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, CANADA
| | - S Jayne Garland
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, CANADA.,Faculty of Health Sciences, University of Western Ontario, London, Ontario, CANADA
| |
Collapse
|
18
|
Location-specific responses to nociceptive input support the purposeful nature of motor adaptation to pain. Pain 2018; 159:2192-2200. [DOI: 10.1097/j.pain.0000000000001317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Gallina A, Render JN, Santos J, Shah H, Taylor D, Tomlin T, Garland SJ. Influence of knee joint position and sex on vastus medialis regional architecture. Appl Physiol Nutr Metab 2018; 43:643-646. [DOI: 10.1139/apnm-2017-0697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ultrasound imaging was used to investigate vastus medialis (VM) architecture in 10 males and 10 females at different knee angles. Increase in muscle thickness occurs predominantly when the knee angle is changed from 0° (full extension) and 45° (p < 0.05); increases in VM pennation angle can be predominantly observed between 45° and 90° (p < 0.05). Sex differences in the VM architecture can be observed in the distal (p < 0.01) but not in the proximal region of the muscle (p > 0.11).
Collapse
Affiliation(s)
- Alessio Gallina
- Graduate Programs in Rehabilitation Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jacqueline N. Render
- Department of Physical Therapy, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jacquelyne Santos
- Department of Physical Therapy, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hershal Shah
- Department of Physical Therapy, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Dayna Taylor
- Department of Physical Therapy, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Travis Tomlin
- Department of Physical Therapy, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - S. Jayne Garland
- Department of Physical Therapy, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Faculty of Health Sciences, University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
20
|
Gallina A, Garland SJ, Wakeling JM. Identification of regional activation by factorization of high-density surface EMG signals: A comparison of Principal Component Analysis and Non-negative Matrix factorization. J Electromyogr Kinesiol 2018; 41:116-123. [PMID: 29879693 DOI: 10.1016/j.jelekin.2018.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 05/13/2018] [Accepted: 05/18/2018] [Indexed: 11/18/2022] Open
Abstract
In this study, we investigated whether principal component analysis (PCA) and non-negative matrix factorization (NMF) perform similarly for the identification of regional activation within the human vastus medialis. EMG signals from 64 locations over the VM were collected from twelve participants while performing a low-force isometric knee extension. The envelope of the EMG signal of each channel was calculated by low-pass filtering (8 Hz) the monopolar EMG signal after rectification. The data matrix was factorized using PCA and NMF, and up to 5 factors were considered for each algorithm. Association between explained variance, spatial weights and temporal scores between the two algorithms were compared using Pearson correlation. For both PCA and NMF, a single factor explained approximately 70% of the variance of the signal, while two and three factors explained just over 85% or 90%. The variance explained by PCA and NMF was highly comparable (R > 0.99). Spatial weights and temporal scores extracted with non-negative reconstruction of PCA and NMF were highly associated (all p < 0.001, mean R > 0.97). Regional VM activation can be identified using high-density surface EMG and factorization algorithms. Regional activation explains up to 30% of the variance of the signal, as identified through both PCA and NMF.
Collapse
Affiliation(s)
- Alessio Gallina
- Graduate Programs in Rehabilitation Sciences, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - S Jayne Garland
- Department of Physical Therapy, University of British Columbia, Vancouver V6T 1Z3, Canada; Faculty of Health Sciences, University of Western Ontario, London N6A 5B9, Canada.
| | - James M Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby V5A 1S6, Canada
| |
Collapse
|
21
|
Gallina A, Hunt MA, Hodges PW, Garland SJ. Vastus Lateralis Motor Unit Firing Rate Is Higher in Women With Patellofemoral Pain. Arch Phys Med Rehabil 2018; 99:907-913. [DOI: 10.1016/j.apmr.2018.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/08/2017] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
|
22
|
de Souza LML, Cabral HV, de Oliveira LF, Vieira TM. Motor units in vastus lateralis and in different vastus medialis regions show different firing properties during low-level, isometric knee extension contraction. Hum Mov Sci 2018; 58:307-314. [DOI: 10.1016/j.humov.2017.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/17/2017] [Accepted: 12/15/2017] [Indexed: 11/27/2022]
|
23
|
Héroux ME. Tap, tap, who's there? It's localized muscle activity elicited by the human stretch reflex. J Physiol 2017; 595:4575. [PMID: 28542785 DOI: 10.1113/jp274579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Martin E Héroux
- Neuroscience Research Australia Sydney, NSW, Australia.,University of New South Wales, Sydney, Australia
| |
Collapse
|
24
|
Noé F, García-Massó X, Paillard T. Inter-joint coordination of posture on a seesaw device. J Electromyogr Kinesiol 2017; 34:72-79. [DOI: 10.1016/j.jelekin.2017.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/31/2017] [Accepted: 04/07/2017] [Indexed: 01/10/2023] Open
|
25
|
Gallina A, Blouin JS, Ivanova TD, Garland SJ. Regionalization of the stretch reflex in the human vastus medialis. J Physiol 2017; 595:4991-5001. [PMID: 28485493 DOI: 10.1113/jp274458] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/02/2017] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS Regionalization of the stretch reflex, i.e. the notion that the activation of 1a afferents from a muscle region influences only the activation of motor units in the same region, has been demonstrated previously in animals but not in humans. Mechanical stretches applied to regions of vastus medialis as close as 10 mm apart resulted in recruitment of motor units localized topographically with respect to the location of the mechanical stretch. Stretch reflexes are regionalized in the human vastus medialis. The human spinal cord has the neuromuscular circuitry to preferentially activate motoneurones innervating muscle fibres located in different regions of the vastus medialis. ABSTRACT The localization of motor unit territories provides an anatomical basis to suggest that the CNS may have more independence in motor unit recruitment and control strategies than what was previously thought. In this study, we investigated whether the human spinal cord has the neuromuscular circuitry to independently activate motor units located in different regions of the vastus medialis. Mechanical taps were applied to multiple locations in the vastus medialis (VM) in nine healthy individuals. Regional responses within the muscle were observed using a grid of 5 × 13 surface EMG electrodes. The EMG amplitude was quantified for each channel, and a cluster of channels showing the largest activation was identified. The spatial location of the EMG response was quantified as the position of the channels in the cluster. In a subset of three participants, intramuscular recordings were performed simultaneously with the surface EMG recordings. Mechanical taps resulted in localized, discrete responses for each participant. The spatial location of the elicited responses was dependent on the location of the tap (P < 0.001). Recordings with intramuscular electrodes confirmed the regional activation of the VM for different tap locations. Selective stimulation of 1a afferents localized in a region of the VM results in reflex recruitment of motor units in the same region. These findings suggest that the human spinal cord has the neuromuscular circuitry to modulate spatially the motoneuronal output to vastus medialis regions, which is a neuroanatomical prerequisite for regional activation.
Collapse
Affiliation(s)
- Alessio Gallina
- Graduate program in Rehabilitation Sciences, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Jean-Sébastien Blouin
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Tanya D Ivanova
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3.,Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada, N6A 5B9
| | - S Jayne Garland
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3.,Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada, N6A 5B9
| |
Collapse
|
26
|
Cabral HV, de Souza LML, Mello RGT, Gallina A, de Oliveira LF, Vieira TM. Is the firing rate of motor units in different vastus medialis regions modulated similarly during isometric contractions? Muscle Nerve 2017; 57:279-286. [PMID: 28500671 DOI: 10.1002/mus.25688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/20/2017] [Accepted: 05/07/2017] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Previous evidence suggests the fibers of different motor units reside within distinct vastus medialis (VM) regions. It remains unknown whether the activity of these motor units may be modulated differently. Herein we assess the discharge rate of motor units detected proximodistally from the VM to address this issue. METHODS Surface electromyograms (EMGs) were recorded proximally and distally from the VM while 10 healthy subjects performed isometric contractions. Single motor units were decomposed from surface EMGs. The smoothed discharge rates of motor units identified from the same and from different VM regions were then cross-correlated. RESULTS During low-level contractions, the discharge rate varied more similarly for distal (cross-correlation peak; interquartile interval: 0.27-0.40) and proximal (0.28-0.52) than for proximodistal pairs of VM motor units (0.20-0.33; P = 0.006). DISCUSSION The discharge rates of motor units from different proximodistal VM regions show less similarity in their variations than those of pairs of units either distally or proximally. Muscle Nerve 57: 279-286, 2018.
Collapse
Affiliation(s)
- Hélio V Cabral
- Programa de Engenharia Biomédica, Universidade Federal do Rio de Janeiro, Avenida Horácio Macedo 2030, Centro de Tecnologia, Bloco I, Sala I044C, Rio de Janeiro, Brazil
| | - Leonardo M L de Souza
- Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roger G T Mello
- Programa de Engenharia Biomédica, Universidade Federal do Rio de Janeiro, Avenida Horácio Macedo 2030, Centro de Tecnologia, Bloco I, Sala I044C, Rio de Janeiro, Brazil.,Departamento de Educação Física e Esportes, Escola Naval, Rio de Janeiro, Brazil
| | - Alessio Gallina
- Graduate Program in Rehabilitation Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liliam F de Oliveira
- Programa de Engenharia Biomédica, Universidade Federal do Rio de Janeiro, Avenida Horácio Macedo 2030, Centro de Tecnologia, Bloco I, Sala I044C, Rio de Janeiro, Brazil.,Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Taian M Vieira
- Laboratorio di Ingegneria del Sistema Neuromuscolare (LISiN), Politecnico di Torino, Torino, Italia
| |
Collapse
|
27
|
Marco G, Alberto B, Taian V. Surface EMG and muscle fatigue: multi-channel approaches to the study of myoelectric manifestations of muscle fatigue. Physiol Meas 2017; 38:R27-R60. [DOI: 10.1088/1361-6579/aa60b9] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
de Souza LML, da Fonseca DB, Cabral HDV, de Oliveira LF, Vieira TM. Is myoelectric activity distributed equally within the rectus femoris muscle during loaded, squat exercises? J Electromyogr Kinesiol 2017; 33:10-19. [PMID: 28110043 DOI: 10.1016/j.jelekin.2017.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/23/2016] [Accepted: 01/06/2017] [Indexed: 11/28/2022] Open
Abstract
Recent evidence suggests different regions of the rectus femoris (RF) muscle respond differently to squat exercises. Such differential adaptation may result from neural inputs distributed locally within RF, as previously reported for isometric contractions, walking and in response to fatigue. Here we therefore investigate whether myoelectric activity distributes evenly within RF during squat. Surface electromyograms (EMGs) were sampled proximally and distally from RF with arrays of electrodes, while thirteen healthy volunteers performed 10 consecutive squats with 20% and 40% of their body weight. The root mean square (RMS) value, computed separately for thirds of the concentric and eccentric phases, was considered to assess the proximo-distal changes in EMG amplitude during squat. The channels with variations in EMG amplitude during squat associated with shifts in the muscle innervation zone were excluded from analysis. No significant differences were observed between RF regions when considering squat phases and knee joint angles individually (P>0.16) while a significant interaction between phase and knee joint angle with detection site was observed (P<0.005). For the two loads considered, proximal RMS values were greater during the eccentric phase and for the more flexed knee joint position (P<0.001). Our results suggest inferences on the degree of RF activation during squat must be made cautiously from surface EMGs. Of more practical relevance, there may be a potential for the differential adaption of RF proximal and distal regions to squat exercises.
Collapse
Affiliation(s)
| | - Desirée Barros da Fonseca
- Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hélio da Veiga Cabral
- Programa de Engenharia Biomédica (COPPE), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Liliam Fernandes de Oliveira
- Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Programa de Engenharia Biomédica (COPPE), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Taian Martins Vieira
- Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratorio di Ingegneria del Sistema Neuromuscolare (LISiN), Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Torino, Italy
| |
Collapse
|
29
|
Botter A, Vieira TM. Filtered Virtual Reference: A New Method for the Reduction of Power Line Interference With Minimal Distortion of Monopolar Surface EMG. IEEE Trans Biomed Eng 2016; 62:2638-47. [PMID: 26513767 DOI: 10.1109/tbme.2015.2438335] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
GOAL This study tests and validates a new method to remove power line interference from monopolar EMGs detected by multichannel systems: the filtered virtual reference (FVR). FVR is an adaptation of the virtual reference (VR) method, which consists in referencing signals detected by each electrode in a grid to their spatial average. Signals may however be distorted with the VR approach, in particular when the skin region where the detection system is positioned does not cover the entire muscle. METHODS Simulated and experimental EMGs were used to compare the performance of FVR and VR in terms of interference reduction and distortion of monopolar signals referred to a remote reference. RESULTS Simulated data revealed the monopolar EMG signals processed with FVR were significantly less distorted than those filtered by VR. These results were similarly observed for experimental signals. Moreover, FVR method outperformed VR in removing power line interference when it was distributed unevenly across the signals of the grid. CONCLUSION Key results demonstrated that FVR improves the VR method as it reduces interference while preserving the information content of monopolar signals. SIGNIFICANCE Although the actual distribution of motor unit action potential is represented in monopolar EMGs, collecting high quality monopolar signals is challenging. This study presents a possible solution to this issue; FVR provides undistorted monopolar signals with negligible interference and is insensitive to muscle architecture. It is therefore relevant for EMG applications benefiting from a clean monopolar detection (e.g., decomposition, control of prosthetic devices, motor unit number estimation).
Collapse
|
30
|
Gallina A, Ivanova TD, Garland SJ. Regional activation within the vastus medialis in stimulated and voluntary contractions. J Appl Physiol (1985) 2016; 121:466-74. [PMID: 27365281 DOI: 10.1152/japplphysiol.00050.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/26/2016] [Indexed: 11/22/2022] Open
Abstract
This study examined the contribution of muscle fiber orientation at different knee angles to regional activation identified with high-density surface electromyography (HDsEMG). Monopolar HDsEMG signals were collected using a grid of 13 × 5 electrodes placed over the vastus medialis (VM). Intramuscular electrical stimulation was used to selectively activate two regions within VM. The distribution of EMG responses to stimulation was obtained by calculating the amplitude of the compound action potential for each channel; the position of the peak amplitude was tracked across knee angles to describe shifts of the active muscle regions under the electrodes. In a separate experiment, regional activation was investigated in 10 knee flexion-extension movements against a fixed resistance. Intramuscular stimulation of different VM regions resulted in clear differences in amplitude distribution along the columns of the electrode grid (P < 0.001); changes in knee angle resulted in consistent shifts along the rows (P < 0.01) and negligible shifts along the columns of the electrode grid. Regional VM activation was identified in dynamic movement, with distal shifts of the EMG distribution in the eccentric phase of the movement (P < 0.05) and at more flexed knee angles (P < 0.05). HDsEMG was used to describe regional activation across the VM that was not attributable to anatomic factors. Changes in muscle fiber orientation associated with knee joint angle mainly influence the amplitude distribution along the fiber direction. Future studies are needed to understand possible functional roles for regional activation within the VM in dynamic tasks.
Collapse
Affiliation(s)
- Alessio Gallina
- Graduate Program in Rehabilitation Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tanya D Ivanova
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - S Jayne Garland
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada; and Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
31
|
Piasecki M, Ireland A, Jones DA, McPhee JS. Age-dependent motor unit remodelling in human limb muscles. Biogerontology 2015; 17:485-96. [PMID: 26667009 PMCID: PMC4889636 DOI: 10.1007/s10522-015-9627-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/26/2015] [Indexed: 12/14/2022]
Abstract
Voluntary control of skeletal muscle enables humans to interact with and manipulate the environment. Lower muscle mass, weakness and poor coordination are common complaints in older age and reduce physical capabilities. Attention has focused on ways of maintaining muscle size and strength by exercise, diet or hormone replacement. Without appropriate neural innervation, however, muscle cannot function. Emerging evidence points to a neural basis of muscle loss. Motor unit number estimates indicate that by age around 71 years, healthy older people have around 40 % fewer motor units. The surviving low- and moderate-threshold motor units recruited for moderate intensity contractions are enlarged by around 50 % and show increased fibre density, presumably due to collateral reinnervation of denervated fibres. Motor unit potentials show increased complexity and the stability of neuromuscular junction transmissions is decreased. The available evidence is limited by a lack of longitudinal studies, relatively small sample sizes, a tendency to examine the small peripheral muscles and relatively few investigations into the consequences of motor unit remodelling for muscle size and control of movements in older age. Loss of motor neurons and remodelling of surviving motor units constitutes the major change in ageing muscles and probably contributes to muscle loss and functional impairments. The deterioration and remodelling of motor units likely imposes constraints on the way in which the central nervous system controls movements.
Collapse
Affiliation(s)
- Mathew Piasecki
- School of Healthcare Science, Manchester Metropolitan University, Manchester, M15GD, UK
| | - Alex Ireland
- School of Healthcare Science, Manchester Metropolitan University, Manchester, M15GD, UK
| | - David A Jones
- School of Healthcare Science, Manchester Metropolitan University, Manchester, M15GD, UK
| | - Jamie S McPhee
- School of Healthcare Science, Manchester Metropolitan University, Manchester, M15GD, UK.
| |
Collapse
|