1
|
Maggi L, Quijano-Roy S, Bönnemann C, Bonne G. 253rd ENMC international workshop: Striated muscle laminopathies - natural history and clinical trial readiness. 24-26 June 2022, Hoofddorp, the Netherlands. Neuromuscul Disord 2023; 33:498-510. [PMID: 37235886 DOI: 10.1016/j.nmd.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Affiliation(s)
- Lorenzo Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Instituto Neurologico Carlo Besta, Milano, Italy.
| | - Susana Quijano-Roy
- APHP-Université Paris-Saclay, Neuromuscular Disorders Reference Center of Nord-Est-Île de France, FILNEMUS, ERN-Euro-NMD, Creteil, France; Pediatric Neurology and ICU Department, DMU Santé Enfant Adolescent (SEA), Raymond Poincaré University Hospital, Garches, France
| | - Carsten Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Gisèle Bonne
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.
| |
Collapse
|
2
|
Mensch A, Nägel S, Zierz S, Kraya T, Stoevesandt D. Bildgebung der Muskulatur bei Neuromuskulären Erkrankungen
– von der Initialdiagnostik bis zur Verlaufsbeurteilung. KLIN NEUROPHYSIOL 2022. [DOI: 10.1055/a-1738-5356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
ZusammenfassungDie bildgebende Diagnostik hat sich zu einem integralen Element der Betreuung von
PatientInnen mit neuromuskulären Erkrankungen entwickelt. Als
wesentliches Diagnostikum ist hierbei die Magnetresonanztomografie als breit
verfügbares und vergleichsweise standardisiertes Untersuchungsverfahren
etabliert, wobei die Sonografie der Muskulatur bei hinreichend erfahrenem
Untersucher ebenfalls geeignet ist, wertvolle diagnostische Informationen zu
liefern. Das CT hingegen spielt eine untergeordnete Rolle und sollte nur bei
Kontraindikationen für eine MRT in Erwägung gezogen werden.
Zunächst wurde die Bildgebung bei Muskelerkrankungen primär in
der Initialdiagnostik unter vielfältigen Fragestellungen eingesetzt. Das
Aufkommen innovativer Therapiekonzepte bei verschiedenen neuromuskulären
Erkrankungen machen neben einer möglichst frühzeitigen
Diagnosestellung insbesondere auch eine multimodale Verlaufsbeurteilung zur
Evaluation des Therapieansprechens notwendig. Auch hier wird die Bildgebung der
Muskulatur als objektiver Parameter des Therapieerfolges intensiv diskutiert und
in Forschung wie Praxis zunehmend verwendet.
Collapse
Affiliation(s)
- Alexander Mensch
- Universitätsklinik und Poliklinik für Neurologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
| | - Steffen Nägel
- Universitätsklinik und Poliklinik für Neurologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
| | - Stephan Zierz
- Universitätsklinik und Poliklinik für Neurologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
| | - Torsten Kraya
- Universitätsklinik und Poliklinik für Neurologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
- Klinik für Neurologie, Klinikum St. Georg,
Leipzig
| | - Dietrich Stoevesandt
- Universitätsklinik und Poliklinik für Radiologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
| |
Collapse
|
3
|
Gómez-Andrés D, Oulhissane A, Quijano-Roy S. Two decades of advances in muscle imaging in children: from pattern recognition of muscle diseases to quantification and machine learning approaches. Neuromuscul Disord 2021; 31:1038-1050. [PMID: 34736625 DOI: 10.1016/j.nmd.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 11/29/2022]
Abstract
Muscle imaging has progressively gained popularity in the neuromuscular field. Together with detailed clinical examination and muscle biopsy, it has become one of the main tools for deep phenotyping and orientation of etiological diagnosis. Even in the current era of powerful new generation sequencing, muscle MRI has arisen as a tool for prioritization of certain genetic entities, supporting the pathogenicity of variants of unknown significance and facilitating diagnosis in cases with an initially inconclusive genetic study. Although the utility of muscle imaging is increasingly clear, it has not reached its full potential in clinical practice. Pattern recognition is known for a number of diseases and will certainly be enhanced by the use of machine learning approaches. For instance, MRI heatmap representations might be confronted with molecular results by obtaining a probabilistic diagnosis based in each disease "MRI fingerprints". Muscle ultrasound as a screening tool and quantified techniques such as Dixon MRI seem still underdeveloped. In this paper, we aim to appraise the advances in recent years in pediatric muscle imaging and try to define areas of uncertainty and potential advances that might become standardized to be widely used in the future.
Collapse
Affiliation(s)
- David Gómez-Andrés
- Pediatric Neurology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, ERN-RND - EURO-NMD, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; European Network for Reference Centers on Neuromuscular Disorders (Euro-NMD ERN)
| | - Amal Oulhissane
- Université Paris-Saclay, APHP, Neuromuscular Unit, Pediatric Neurology and ICU Department, Raymond Poincaré Hospital, 92390 Garches, France
| | - Susana Quijano-Roy
- Université Paris-Saclay, APHP, Neuromuscular Unit, Pediatric Neurology and ICU Department, Raymond Poincaré Hospital, 92390 Garches, France; UMR 1179, Laboratoire handicap neuromusculaire: physiopathologie biothérapie pharmacologie appliquées (END-ICAP), UFR Simone Veil, Montigny Le Bretonneux, France; French Network of Neuromuscular Reference Centers (FILNEMUS), France.
| |
Collapse
|
4
|
Quijano-Roy S, Haberlova J, Castiglioni C, Vissing J, Munell F, Rivier F, Stojkovic T, Malfatti E, Gómez García de la Banda M, Tasca G, Costa Comellas L, Benezit A, Amthor H, Dabaj I, Gontijo Camelo C, Laforêt P, Rendu J, Romero NB, Cavassa E, Fattori F, Beroud C, Zídková J, Leboucq N, Løkken N, Sanchez-Montañez Á, Ortega X, Kynčl M, Metay C, Gómez-Andrés D, Carlier RY. Diagnostic interest of whole-body MRI in early- and late-onset LAMA2 muscular dystrophies: a large international cohort. J Neurol 2021; 269:2414-2429. [PMID: 34559299 DOI: 10.1007/s00415-021-10806-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND LAMA2-related muscular dystrophy (LAMA2-RD) encompasses a group of recessive muscular dystrophies caused by mutations in the LAMA2 gene, which codes for the alpha-2 chain of laminin-211 (merosin). Diagnosis is straightforward in the classic congenital presentation with no ambulation and complete merosin deficiency in muscle biopsy, but is far more difficult in milder ambulant individuals with partial merosin deficiency. OBJECTIVE To investigate the diagnostic utility of muscle imaging in LAMA2-RD using whole-body magnetic resonance imaging (WBMRI). RESULTS 27 patients (2-62 years, 21-80% with acquisition of walking ability and 6 never ambulant) were included in an international collaborative study. All carried two pathogenic mutations, mostly private missense changes. An intronic variant (c.909 + 7A > G) was identified in all the Chilean cases. Three patients (two ambulant) showed intellectual disability, epilepsy, and brain structural abnormalities. WBMRI T1w sequences or T2 fat-saturated images (Dixon) revealed abnormal muscle fat replacement predominantly in subscapularis, lumbar paraspinals, gluteus minimus and medius, posterior thigh (adductor magnus, biceps femoris, hamstrings) and soleus. This involvement pattern was consistent for both ambulant and non-ambulant patients. The degree of replacement was predominantly correlated to the disease duration, rather than to the onset or the clinical severity. A "COL6-like sandwich sign" was observed in several muscles in ambulant adults, but different involvement of subscapularis, gluteus minimus, and medius changes allowed distinguishing LAMA2-RD from collagenopathies. The thigh muscles seem to be the best ones to assess disease progression. CONCLUSION WBMRI in LAMA2-RD shows a homogeneous pattern of brain and muscle imaging, representing a supportive diagnostic tool.
Collapse
Affiliation(s)
- Susana Quijano-Roy
- APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France
- Université de Versailles, U1179 INSERM-UVSQ, Versailles, France
| | - Jana Haberlova
- Department of Paediatric Neurology, Motol University Hospital, Prague, Czech Republic
| | - Claudia Castiglioni
- Pediatric Neurology Department, Clinica Las Condes, Santiago de Chile, Chile
- Instituto Nacional de Rehabilitación Pedro Aguirre Cerda, Santiago de Chile, Chile
| | - John Vissing
- Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Francina Munell
- Pediatric Neurology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain, Passeig de la Vall d'Hebron 119-129, 08035
| | - François Rivier
- Department of Pediatric Neurology and Reference Center for Neuromuscular Diseases AOC, CHU Montpellier, Montpellier, France
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Tanya Stojkovic
- APHP, Neuromuscular Reference Center, Pitié-Salpêtrière Hospital, Institute of Myology, Paris, France
| | - Edoardo Malfatti
- Univ Paris Est UPE, INSERM, U955 IMRB, APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Hôpital Henri Mondor, Créteil, France
| | - Marta Gómez García de la Banda
- APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France
| | - Giorgio Tasca
- Unità Operativa Complessa Di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Laura Costa Comellas
- Pediatric Neurology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain, Passeig de la Vall d'Hebron 119-129, 08035
| | - Audrey Benezit
- APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France
| | - Helge Amthor
- APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France
- Université de Versailles, U1179 INSERM-UVSQ, Versailles, France
| | - Ivana Dabaj
- APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France
- CHU de Rouen, Service de Néonatologie, Réanimation pédiatrique, Neuropédiatrie et Éducation Fonctionnelle de L'enfant, INSERM U 1245, ED497, 76000, Rouen, France
| | - Clara Gontijo Camelo
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Pascal Laforêt
- Nord/Est/Ile de France Neuromuscular Reference Center, PHENIX FHU, Hôpital Raymond-Poincaré, AP-HP. INSERM U1179, Garches, France
| | - John Rendu
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, GIN, Grenoble, France
| | - Norma B Romero
- Sorbonne Université, Myology Institute, Neuromuscular Morphology Unit, Center for Research in Myology, GH Pitié-Salpêtrière, Paris, France
- Centre de Référence de Pathologie Neuromusculaire Paris-Est, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Eliana Cavassa
- APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France
| | - Fabiana Fattori
- Unit for Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, Rome, Italy
| | - Christophe Beroud
- APHM, Laboratoire de Génétique Moléculaire, Hôpital TIMONE Enfants; Aix Marseille University, INSERM, MMG, Marseille, France
| | - Jana Zídková
- Centre of Molecular Biology and Genetics, University Hospital Brno, Brno, Czech Republic
| | | | - Nicoline Løkken
- Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ángel Sanchez-Montañez
- Pediatric Neuroradiology, Radiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ximena Ortega
- Diagnostic Imaging Service, Clinica Las Condes, Santiago de Chile, Chile
| | - Martin Kynčl
- Department of Radiology, Motol University Hospital, Prague, Czech Republic
| | - Corinne Metay
- AP-HP, UF Cardiogénétique et Myogénétique Moléculaire et Cellulaire, Centre de Génétique Moléculaire et Chromosomique, GH Pitié Salpêtrière, Paris, France
- Sorbonne Université - Inserm UMRS974, Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Paris, France
| | - David Gómez-Andrés
- Pediatric Neurology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain, Passeig de la Vall d'Hebron 119-129, 08035.
| | - Robert Y Carlier
- APHP, GH Université Paris-Saclay, DMU Smart Imaging, Medical Imaging Department, Raymond Poincaré Teaching Hospital, Garches, France
| |
Collapse
|
5
|
Tobaly D, Laforêt P, Stojkovic T, Behin A, Petit FM, Barp A, Bello L, Carlier P, Carlier RY. Whole-body muscle MRI in McArdle disease. Neuromuscul Disord 2021; 32:5-14. [PMID: 34711478 DOI: 10.1016/j.nmd.2021.07.397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/14/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022]
Abstract
This study describes muscle involvement on whole-body MRI (WB-MRI) scans at different stages of McArdle disease. WB-MRI was performed on fifteen genetically confirmed McArdle disease patients between ages 25 to 80. The degree of fatty substitution was scored for 60 muscles using Mercuri's classification. All patients reported an intolerance to exercise and episodes of rhabdomyolysis. A mild fixed muscle weakness was observed in 13/15 patients with neck flexor weakness in 7/15 cases, and proximal muscle weakness in 6/15 cases. A moderate scapular winging was observed in five patients. A careful review of the MRI scans, as well as hierarchical clustering of patients by Mercuri scores, pointed out recurrent muscle changes particularly in the subscapularis, anterior serratus, erector spinae and quadratus femoris muscles. WB-MRI imaging provides clinically relevant information and is a useful tool to orient toward the diagnosis of McArdle disease.
Collapse
Affiliation(s)
- David Tobaly
- APHP, Service de Radiologie GH Université Paris-Saclay DMU Smart Imaging, Hôpital Raymond Poincaré, 104 boulevard Raymond Poincaré, Garches 94400, France.
| | - Pascal Laforêt
- APHP, Service de Radiologie GH Université Paris-Saclay DMU Smart Imaging, Hôpital Raymond Poincaré, 104 boulevard Raymond Poincaré, Garches 94400, France; AP-HP, Service de Neurologie, GH Université Paris-Saclay, DMU Neuro-Handicap, Hôpital Raymond-Poincaré, Garches, France; Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, France
| | | | - Anthony Behin
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, France
| | - Francois Michael Petit
- APHP, Laboratoire de Génétique Moléculaire, Université Paris Saclay, Hôpital Antoine Béclère, Clamart 92140, France
| | - Andrea Barp
- Neurosciences Department (DNS), University of Padova, Padova, Italy
| | - Luca Bello
- Neurosciences Department (DNS), University of Padova, Padova, Italy
| | - Pierre Carlier
- AIM & CEA NMR Laboratory, Institute of Myology, Pitié-Salpêtrière University Hospital, Paris, France
| | - Robert-Yves Carlier
- APHP, Service de Radiologie GH Université Paris-Saclay DMU Smart Imaging, Hôpital Raymond Poincaré, 104 boulevard Raymond Poincaré, Garches 94400, France; Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, France; UMR 1179, Université Versailles Saint Quentin en Yvelines, Paris Saclay, France
| |
Collapse
|
6
|
Jędrzejowska M, Potulska-Chromik A, Gos M, Gambin T, Dębek E, Rosiak E, Stępień A, Szymańczak R, Wojtaś B, Gielniewski B, Ciara E, Sobczyńska A, Chrzanowska K, Kostera-Pruszczyk A, Madej-Pilarczyk A. Floppy infant syndrome as a first manifestation of LMNA-related congenital muscular dystrophy. Eur J Paediatr Neurol 2021; 32:115-121. [PMID: 33940562 DOI: 10.1016/j.ejpn.2021.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
LMNA-related congenital muscular dystrophy (L-CMD) is the most severe phenotypic form of skeletal muscle laminopathies. This paper reports clinical presentation of the disease in 15 Polish patients from 13 families with genetically confirmed skeletal muscle laminopathy. In all these patients floppy infant syndrome was the first manifestation of the disease. The genetic diagnosis was established by next generation sequencing (targeted panel or exome; 11 patients) or classic Sanger sequencing (4 patients). In addition to known pathogenic LMNA variants: c.116A > G (p.Asn39Ser), c.745C > T (p.Arg249Trp), c.746G > A (p.Arg249Gln), c.1072G > A (p.Glu358Lys), c.1147G > A (p.Glu383Lys), c.1163G > C (p.Arg388Pro), c.1357C > T (p.Arg453Trp), c.1583C > G (p.Thr528Arg), we have identified three novel ones: c.121C > G (p.Arg41Gly), c.1127A > G (p.Tyr376Cys) and c.1160T > C (p.Leu387Pro). Eleven patients had de novo mutations, 4 - familial. In one family we observed intrafamilial variability of clinical course: severe L-CMD in the male proband, intermediate form in his sister and asymptomatic in their mother. One asymptomatic father had somatic mosaicism. L-CMD should be suspected in children with hypotonia in infancy and delayed motor development, who have poor head control, severe hyperlordosis and unstable and awkward gait. Serum creatine kinase may be high (~1000IU/l). Progression of muscle weakness is fast, leading to early immobilization. In some patients with L-CMD joint contractures can develop with time. MRI shows that the most frequently affected muscles are the serratus anterior, lumbar paraspinal, gluteus, vastus, adductor magnus, hamstrings, medial head of gastrocnemius and soleus. Ultra-rare laminopathies can be a relatively common cause of generalized hypotonia in children. Introduction of wide genome sequencing methods was a breakthrough in diagnostics of diseases with great clinical and genetic variability and allowed approach "from genotype do phenotype". However target sequencing of LMNA gene could be considered in selected patients with clinical picture suggestive for laminopathy.
Collapse
Affiliation(s)
- Maria Jędrzejowska
- Rare Diseases Research Platform, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland; Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland.
| | | | - Monika Gos
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Tomasz Gambin
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Emilia Dębek
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Edyta Rosiak
- 2nd Department of Radiology, Medical University of Warsaw, Poland
| | - Agnieszka Stępień
- Faculty of Rehabilitation, Józef Piłsudski University of Physical Education, Warsaw, Poland
| | | | - Bartosz Wojtaś
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bartłomiej Gielniewski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Elżbieta Ciara
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Krystyna Chrzanowska
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | | | | |
Collapse
|
7
|
Ben Yaou R, Yun P, Dabaj I, Norato G, Donkervoort S, Xiong H, Nascimento A, Maggi L, Sarkozy A, Monges S, Bertoli M, Komaki H, Mayer M, Mercuri E, Zanoteli E, Castiglioni C, Marini-Bettolo C, D'Amico A, Deconinck N, Desguerre I, Erazo-Torricelli R, Gurgel-Giannetti J, Ishiyama A, Kleinsteuber KS, Lagrue E, Laugel V, Mercier S, Messina S, Politano L, Ryan MM, Sabouraud P, Schara U, Siciliano G, Vercelli L, Voit T, Yoon G, Alvarez R, Muntoni F, Pierson TM, Gómez-Andrés D, Reghan Foley A, Quijano-Roy S, Bönnemann CG, Bonne G. International retrospective natural history study of LMNA-related congenital muscular dystrophy. Brain Commun 2021; 3:fcab075. [PMID: 34240052 PMCID: PMC8260964 DOI: 10.1093/braincomms/fcab075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 12/23/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Muscular dystrophies due to heterozygous pathogenic variants in LMNA gene cover a broad spectrum of clinical presentations and severity with an age of onset ranging from the neonatal period to adulthood. The natural history of these conditions is not well defined, particularly in patients with congenital or early onset who arguably present with the highest disease burden. Thus the definition of natural history endpoints along with clinically revelant outcome measures is essential to establishing both clinical care planning and clinical trial readiness for this patient group. We designed a large international cross-sectional retrospective natural history study of patients with genetically proven muscle laminopathy who presented with symptoms before two years of age intending to identify and characterize an optimal clinical trial cohort with pertinent motor, cardiac and respiratory endpoints. Quantitative statistics were used to evaluate associations between LMNA variants and distinct clinical events. The study included 151 patients (median age at symptom onset 0.9 years, range: 0.0–2.0). Age of onset and age of death were significantly lower in patients who never acquired independent ambulation compared to patients who achieved independent ambulation. Most of the patients acquired independent ambulation (n = 101, 66.9%), and subsequently lost this ability (n = 86; 85%). The age of ambulation acquisition (median: 1.2 years, range: 0.8–4.0) and age of ambulation loss (median: 7 years, range: 1.2–38.0) were significantly associated with the age of the first respiratory interventions and the first cardiac symptoms. Respiratory and gastrointestinal interventions occurred during first decade while cardiac interventions occurred later. Genotype–phenotype analysis showed that the most common mutation, p.Arg249Trp (20%), was significantly associated with a more severe disease course. This retrospective natural history study of early onset LMNA-related muscular dystrophy confirms the progressive nature of the disorder, initially involving motor symptoms prior to onset of other symptoms (respiratory, orthopaedic, cardiac and gastrointestinal). The study also identifies subgroups of patients with a range of long-term outcomes. Ambulatory status was an important mean of stratification along with the presence or absence of the p.Arg249Trp mutation. These categorizations will be important for future clinical trial cohorts. Finally, this study furthers our understanding of the progression of early onset LMNA-related muscular dystrophy and provides important insights into the anticipatory care needs of LMNA-related respiratory and cardiac manifestations.
Collapse
Affiliation(s)
- Rabah Ben Yaou
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France.,APHP-Sorbonne Université, Neuromuscular Disorders Reference Center of Nord-Est-Île de France, FILNEMUS, ERN-Euro-NMD, Service de Neuromyologie, Institute de Myologie, G.H. Pitié-Salpêtrière Paris F-75013, France
| | - Pomi Yun
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ivana Dabaj
- APHP-Université Paris-Saclay, Neuromuscular Disorders Reference Center of Nord-Est-Île de France, FILNEMUS, ERN-Euro-NMD, Pediatric Neurology and ICU Department, DMU Santé Enfant Adolescent (SEA), Raymond Poincaré University Hospital, Garches France.,INSERM U 1245, ED497, School of Medicine, Rouen University, Rouen, France
| | - Gina Norato
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Hui Xiong
- INSERM U 1245, ED497, School of Medicine, Rouen University, Rouen, France
| | - Andrés Nascimento
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Lorenzo Maggi
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, CIBERER - ISC III, Barcelona, Spain
| | - Anna Sarkozy
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Instituto Neurologico Carlo Besta, Milano, Italy.,Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital Trust, London, UK
| | - Soledad Monges
- Servicio de Neurología, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina
| | - Marta Bertoli
- Northern Genetics Service, The Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Hirofumi Komaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Michèle Mayer
- APHP-Sorbonne Université, Neuromuscular Disorders Reference Center of Nord-Est-Île de France, FILNEMUS, ERN-Euro-NMD, Department of Neuropediatrics, Hôpital Armand Trousseau, Paris, France
| | - Eugenio Mercuri
- Paediatric Neurology, Policlinico Gemelli, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Edmar Zanoteli
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | | | - Chiara Marini-Bettolo
- John Walton Muscular Dystrophy Research Centre, Institute of Integrated Laboratory Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Adele D'Amico
- Unit of Muscular and Neurodegenerative diseases, Department of Neurological and Psychiatric science,s Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicolas Deconinck
- Paediatric Neurology Department and neuromuscular Center, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Desguerre
- APHP-Centre - Université de Paris, Neuromuscular Disorders Reference Center of Nord-Est-Île de France, FILNEMUS, ERN-Euro-NMD, Necker-Enfants Malades Hospital, Paris, France
| | - Ricardo Erazo-Torricelli
- Neurología Pediátrica, Unidad Neuromuscular, Hospital Luis Calvo Mackenna, Clínica Alemana de Santiago, Santiago, Chile
| | - Juliana Gurgel-Giannetti
- Department of Pediatrics, Pediatric Neurology Service, Medical School, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akihiko Ishiyama
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Karin S Kleinsteuber
- Neurología Pediátrica Hospital Roberto del Río- Universidad de Chile - Clínica Las Condes Santiago, Chile
| | - Emmanuelle Lagrue
- CHRU de Tours, Université François Rabelais de Tours, INSERM U1253, Tours, France
| | - Vincent Laugel
- Department of neuropediatrics, CHU Strasbourg- Hautepierre, Strasbourg, France
| | - Sandra Mercier
- Service de Génétique médicale, INSERM, CNRS, UNIV Nantes, CHU Nantes, l'institut du Thorax, Nantes, France
| | - Sonia Messina
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Luisa Politano
- Cardiomiology and Medical Genetics, Department of Experimental Medicine, University of Campania, Naples, Italy
| | - Monique M Ryan
- Children's Neurosciences Centre, Royal Children's Hospital, Victoria, Australia
| | - Pascal Sabouraud
- Service de Pédiatrie A, Neurologie pédiatrique, CHU de Reims, American Memorial Hospital, Reims, France
| | - Ulrike Schara
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Children's Hospital 1, University of Duisburg-Essen, Essen, Germany
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Liliana Vercelli
- Department of Neuroscience, Center for Neuromuscular Diseases, University of Turin, Turin, Italy
| | - Thomas Voit
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Instituto Neurologico Carlo Besta, Milano, Italy.,National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Grace Yoon
- Divisions of Neurology and Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Alvarez
- Congenital Muscle Disease International Registry (CMDIR), Cure CMD, Lakewood, CA, USA
| | - Francesco Muntoni
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Instituto Neurologico Carlo Besta, Milano, Italy.,National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Tyler M Pierson
- Departments of Pediatrics and Neurology and the Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David Gómez-Andrés
- Pediatric Neurology (ERN-RND - EURO-NMD), Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Susana Quijano-Roy
- APHP-Université Paris-Saclay, Neuromuscular Disorders Reference Center of Nord-Est-Île de France, FILNEMUS, ERN-Euro-NMD, Pediatric Neurology and ICU Department, DMU Santé Enfant Adolescent (SEA), Raymond Poincaré University Hospital, Garches France.,INSERM U 1179, University of Versailles Saint-Quentin-en-Yvelines (UVSQ), France
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Gisèle Bonne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France.,APHP-Sorbonne Université, Neuromuscular Disorders Reference Center of Nord-Est-Île de France, FILNEMUS France, ERN-Euro-NMD, Paris, France
| |
Collapse
|
8
|
Warman-Chardon J, Diaz-Manera J, Tasca G, Straub V. 247th ENMC International Workshop: Muscle magnetic resonance imaging - Implementing muscle MRI as a diagnostic tool for rare genetic myopathy cohorts. Hoofddorp, The Netherlands, September 2019. Neuromuscul Disord 2020; 30:938-947. [PMID: 33004285 DOI: 10.1016/j.nmd.2020.08.360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/19/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Jodi Warman-Chardon
- Jodi Warman Chardon, Neurology/Genetics, The Ottawa Hospital/Research Institute, Canada; Children's Hospital of Eastern Ontario/Research Institute, Canada
| | - Jordi Diaz-Manera
- Neuromuscular Disorders Unit, Neurology department, Hospital Universitari de la Santa Creu i Sant Pau, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain; John Walton Muscular Dystrophy Research Center, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, UK
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Volker Straub
- John Walton Muscular Dystrophy Research Center, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, UK.
| | | |
Collapse
|
9
|
MYO-MRI diagnostic protocols in genetic myopathies. Neuromuscul Disord 2019; 29:827-841. [DOI: 10.1016/j.nmd.2019.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/18/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022]
|
10
|
Brisset M, Ben Yaou R, Carlier RY, Chanut A, Nicolas G, Romero NB, Wahbi K, Decrocq C, Leturcq F, Laforêt P, Malfatti E. X-linked Emery-Dreifuss muscular dystrophy manifesting with adult onset axial weakness, camptocormia, and minimal joint contractures. Neuromuscul Disord 2019; 29:678-683. [PMID: 31474437 DOI: 10.1016/j.nmd.2019.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/01/2019] [Accepted: 06/14/2019] [Indexed: 11/17/2022]
Abstract
Emery-Dreifuss muscular dystrophy is an early-onset, slowly progressive myopathy characterized by the development of multiple contractures, muscle weakness and cardiac dysfunction. We present here the case of a 65-year-old male patient with a 20 year history of slowly progressive camptocormia, bradycardia and shortness of breath. Examination showed severe spine extensor and neck flexor muscle weakness with slight upper limb proximal weakness. Cardiologic assessment revealed slow atrial fibrillation. Whole body MRI demonstrated adipose substitution of the paravertebral, limb girdle and peroneal muscles as well as the tongue. Emerin immunohistochemistry on patient muscle biopsy revealed the absence of nuclear envelope labeling confirmed by Western Blot. Genetic analysis showed a hemizygous duplication of 5 bases in exon 6 of the EMD, emerin, gene on the X chromosome. This is an unusual presentation of X-linked Emery-Dreifuss muscular dystrophy with adult onset, predominant axial muscles involvement and minimal joint contractures. Diagnosis was prompted by the analysis of emerin on muscle biopsy.
Collapse
Affiliation(s)
- Marion Brisset
- APHP, Department of Neurology, Raymond Poincaré Hospital, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, 104 Bld Raymond Poincaré, 92380 Garches, France
| | - Rabah Ben Yaou
- APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Institut de Myologie, G.H. Pitié-Salpêtrière, F-75013 Paris, France; Université Sorbonne, INSERM U974, Center of Research in Myology, Institut de Myologie, G.H. Pitié-Salpêtrière Paris F-75013, France
| | - Robert-Yves Carlier
- APHP, Medical imaging Department, Raymond Poincaré teaching Hospital, GHU GH HUPIFO, 104 Bld Raymond Poincaré, 92380 Garches, France; Service de Neurologie, U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie appliquées, UFR Simone Veil-Santé, Université Versailles-Saint-Quentin-en-Yvelines, Pôle neuro-locomoteur, Hôpital Raymond Poincaré, Paris-Saclay, 104 boulevard Raymond Poincaré, 92380 Garches, France
| | - Anaїs Chanut
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - Guillaume Nicolas
- APHP, Department of Neurology, Raymond Poincaré Hospital, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, 104 Bld Raymond Poincaré, 92380 Garches, France; Service de Neurologie, U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie appliquées, UFR Simone Veil-Santé, Université Versailles-Saint-Quentin-en-Yvelines, Pôle neuro-locomoteur, Hôpital Raymond Poincaré, Paris-Saclay, 104 boulevard Raymond Poincaré, 92380 Garches, France
| | - Norma B Romero
- APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Institut de Myologie, G.H. Pitié-Salpêtrière, F-75013 Paris, France; Université Sorbonne, INSERM U974, Center of Research in Myology, Institut de Myologie, G.H. Pitié-Salpêtrière Paris F-75013, France; Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - Karim Wahbi
- APHP, Department of Cardiology, Cochin Hospital, 75015 Paris, France
| | - Camille Decrocq
- Department of Physiology, Foch Hospital, 40 Rue Worth, 92150 Suresnes, France
| | - France Leturcq
- APHP, Laboratoire de Génétique et Biologie moléculaire, HUPC Cochin, Paris, France
| | - Pascal Laforêt
- APHP, Department of Neurology, Raymond Poincaré Hospital, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, 104 Bld Raymond Poincaré, 92380 Garches, France; Service de Neurologie, U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie appliquées, UFR Simone Veil-Santé, Université Versailles-Saint-Quentin-en-Yvelines, Pôle neuro-locomoteur, Hôpital Raymond Poincaré, Paris-Saclay, 104 boulevard Raymond Poincaré, 92380 Garches, France
| | - Edoardo Malfatti
- APHP, Department of Neurology, Raymond Poincaré Hospital, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, 104 Bld Raymond Poincaré, 92380 Garches, France; Service de Neurologie, U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie appliquées, UFR Simone Veil-Santé, Université Versailles-Saint-Quentin-en-Yvelines, Pôle neuro-locomoteur, Hôpital Raymond Poincaré, Paris-Saclay, 104 boulevard Raymond Poincaré, 92380 Garches, France.
| |
Collapse
|
11
|
Abstract
There is a great clinical and genetic heterogeneity in congenital myopathies. Myo-MRI with pattern recognition has become a first-line complementary tool in clinical practice for this group of diseases. For diagnostic purposes, whole-body imaging techniques are preferred when involvement is axial or diffuse, as in most congenital myopathies, because of involvement of the tongue, masticator, neck or trunk muscles. Myo-MRI is widely used to identify abnormalities in muscle signal, volume or texture. Recognizable profiles or patterns have been identified in many of these genetic myopathies. The role of the radiologist is crucial in order to adapt the Myo-MRI protocols to the age of the patient and several clinical situations. Myo-MRI in children with congenital myopathies is a very demanding technique with a balance between acceptable time of examination and sufficient spatial resolution in order to detect subtle changes. Technical evolutions combining qualitative and quantitative analysis are useful to follow disease progression overtime. Outcome measures are expected to play a role in natural history description as well as in future therapeutic trials. Genetic diagnosis and interpretation of next generation sequencing results could be greatly influenced by statistical analysis with tools such as algorithms as well as graphical representations using heatmaps.
Collapse
|
12
|
Paoletti M, Pichiecchio A, Cotti Piccinelli S, Tasca G, Berardinelli AL, Padovani A, Filosto M. Advances in Quantitative Imaging of Genetic and Acquired Myopathies: Clinical Applications and Perspectives. Front Neurol 2019; 10:78. [PMID: 30804884 PMCID: PMC6378279 DOI: 10.3389/fneur.2019.00078] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
In the last years, magnetic resonance imaging (MRI) has become fundamental for the diagnosis and monitoring of myopathies given its ability to show the severity and distribution of pathology, to identify specific patterns of damage distribution and to properly interpret a number of genetic variants. The advances in MR techniques and post-processing software solutions have greatly expanded the potential to assess pathological changes in muscle diseases, and more specifically of myopathies; a number of features can be studied and quantified, ranging from composition, architecture, mechanical properties, perfusion, and function, leading to what is known as quantitative MRI (qMRI). Such techniques can effectively provide a variety of information beyond what can be seen and assessed by conventional MR imaging; their development and application in clinical practice can play an important role in the diagnostic process and in assessing disease course and treatment response. In this review, we briefly discuss the current role of muscle MRI in diagnosing muscle diseases and describe in detail the potential and perspectives of the application of advanced qMRI techniques in this field.
Collapse
Affiliation(s)
- Matteo Paoletti
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Anna Pichiecchio
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Stefano Cotti Piccinelli
- Unit of Neurology, Center for Neuromuscular Diseases, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Giorgio Tasca
- Neurology Department, Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Alessandro Padovani
- Unit of Neurology, Center for Neuromuscular Diseases, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Massimiliano Filosto
- Unit of Neurology, Center for Neuromuscular Diseases, ASST Spedali Civili and University of Brescia, Brescia, Italy
| |
Collapse
|
13
|
ten Dam L, de Visser M. Dystrophic Myopathies. Clin Neuroradiol 2019. [DOI: 10.1007/978-3-319-68536-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
|
15
|
|
16
|
GóMez-Andrés D, Díaz-Manera J, Alejaldre A, Pulido-Valdeolivas I, GonzáLez-Mera L, Olivé M, Vilchez JJ, De Munain AL, Paradas C, Muelas N, SáNchez-MontáÑez Á, Alonso-Jimenez A, De la Banda MGG, Dabaj I, Bonne G, Munell F, Carlier RY, Quijano-Roy S. Muscle imaging in laminopathies: Synthesis study identifies meaningful muscles for follow-up. Muscle Nerve 2018; 58:812-817. [PMID: 30066418 DOI: 10.1002/mus.26312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 07/22/2018] [Accepted: 07/24/2018] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Particular fibroadipose infiltration patterns have been recently described by muscle imaging in congenital and later onset forms of LMNA-related muscular dystrophies (LMNA-RD). METHODS Scores for fibroadipose infiltration of 23 lower limb muscles in 34 patients with LMNA-RD were collected from heat maps of 2 previous studies. Scoring systems were homogenized. Relationships between muscle infiltration and disease duration and age of onset were modeled with random forests. RESULTS The pattern of infiltration differs according to disease duration but not to age of disease onset. The muscles whose progression best predicts disease duration were semitendinosus, biceps femoris long head, gluteus medius, and semimembranosus. DISCUSSION In LMNA-RD, our synthetic analysis of lower limb muscle infiltration did not find major differences between forms with different ages of onset but allowed the identification of muscles with characteristic infiltration during disease progression. Monitoring of these specific muscles by quantitative MRI may provide useful imaging biomarkers in LMNA-RD. Muscle Nerve 58:812-817, 2018.
Collapse
Affiliation(s)
- David GóMez-Andrés
- Neuromuscular Disorders Group, Child Neurology Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Passeig de la Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Jordi Díaz-Manera
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, CIBERER, Barcelona, Spain
| | - Aida Alejaldre
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, CIBERER, Barcelona, Spain
| | - Irene Pulido-Valdeolivas
- Center of Neuroimmunology, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Barcelona, Spain
| | - Laura GonzáLez-Mera
- Department of Neurology, Hospital de Viladecans, Barcelona, Spain.,Institute of Neuropathology, Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Montse Olivé
- Institute of Neuropathology, Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Juan José Vilchez
- Department of Neurology, Hospital Universitario Donostia, Neuroscience Area, Biodonostia Institute, CIBERER, Donostia-San Sebastián, Spain
| | - Adolfo LóPez De Munain
- Department of Neurology, Hospital Universitario Donostia, Neuroscience Area, Biodonostia Institute, CIBERER, Donostia-San Sebastián, Spain.,Neurosciences Area, Biodonostia Institute, CIBERNED, Donostia-San Sebastián, Spain
| | - Carmen Paradas
- Neuromuscular Disorders Unit, Department of Neurology and Neurophysiology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Nuria Muelas
- Department of Neurology, Hospital Universitario Donostia, Neuroscience Area, Biodonostia Institute, CIBERER, Donostia-San Sebastián, Spain
| | | | - Alicia Alonso-Jimenez
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, CIBERER, Barcelona, Spain
| | - Marta Gómez García De la Banda
- APHP, Neuromuscular Disorders Unit, Pediatric Department, CHU Paris IdF Ouest - Hôpital Raymond Poincaré, Garches, France
| | - Ivana Dabaj
- APHP, Neuromuscular Disorders Unit, Pediatric Department, CHU Paris IdF Ouest - Hôpital Raymond Poincaré, Garches, France
| | - Gisèle Bonne
- Sorbonne Université, INSERM UMRS974, Center for Research in Myology, Institut de Myologie, G. H. Pitié Salpêtrière, Paris, France
| | - Francina Munell
- Neuromuscular Disorders Group, Child Neurology Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Passeig de la Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Robert Y Carlier
- APHP, Radiology Department, CHU Paris IdF Ouest - Hôpital Raymond Poincaré. Paris Saclay Universities, UVSQ University of Versailles, UMR 1179 INSERM Garches, France
| | - Susana Quijano-Roy
- APHP, Neuromuscular Disorders Unit, Pediatric Department, CHU Paris IdF Ouest - Hôpital Raymond Poincaré, Paris Saclay Universities, UVSQ University of Versailles, UMR 1179 INSERM, Garches, France
| |
Collapse
|
17
|
Resonancia magnética de cuerpo completo para estudio muscular y cuantifiación de fracción grasa en pacientes pediátricos con miopatías hereditarias. REVISTA MÉDICA CLÍNICA LAS CONDES 2018. [DOI: 10.1016/j.rmclc.2018.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Lin HT, Liu X, Zhang W, Liu J, Zuo YH, Xiao JX, Zhu Y, Yuan Y, Wang ZX. Muscle Magnetic Resonance Imaging in Patients with Various Clinical Subtypes of LMNA-Related Muscular Dystrophy. Chin Med J (Engl) 2018; 131:1472-1479. [PMID: 29893365 PMCID: PMC6006825 DOI: 10.4103/0366-6999.233957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background: LMNA-related muscular dystrophy can manifest in a wide variety of disorders, including Emery-Dreifuss muscular dystrophy (EDMD), limb-girdle muscular dystrophy (LGMD), and LMNA-associated congenital muscular dystrophy (L-CMD). Muscle magnetic resonance imaging (MRI) has become a useful tool in the diagnostic workup of patients with muscle dystrophies. This study aimed to investigate whether there is a consistent pattern of MRI changes in patients with LMNA mutations in various muscle subtypes. Methods: Twenty-two patients with LMNA-related muscular dystrophies were enrolled in this study. MRI of the thigh and/or calf muscles was performed in them. The muscle MRI features of the three subtypes were compared by the Mann-Whitney U-test. The relationship between the clinical and MRI findings was also investigated by Spearman's rank analyses. Results: The present study included five EDMD, nine LGMD, and eight L-CMD patients. The thigh muscle MRI revealed that the fatty infiltration of the adductor magnus, semimembranosus, long and short heads of the biceps femoris, and vasti muscles, with relative sparing of the rectus femoris, was the predominant change observed in the EDMD, LGMD, and advanced-stage L-CMD phenotypes, although the involvement of the vasti muscles was not prominent in the early stage of L-CMD. At the level of the calf, six patients (one EDMD, four LGMD, and one L-CMD) also showed a similar pattern, in which the soleus and the medial and lateral gastrocnemius muscles were most frequently observed to have fatty infiltration. The fatty infiltration severity demonstrated higher scores associated with disease progression, with a corresponding rate of 1.483 + 0.075 × disease duration (X) (r = 0.444, P = 0.026). It was noteworthy that in six L-CMD patients with massive inflammatory cell infiltration in muscle pathology, no remarkable edema-like signals were observed in muscle MRI. Conclusions: EDMD, LGMD and advanced-staged L-CMD subtypes showed similar pattern of muscle MRI changes, while early-staged L-CMD showed somewhat different changes. Muscle MRI of L-CMD with a muscular dystrophy pattern in MRI provided important clues for differentiating it from childhood inflammatory myopathy. The fatty infiltration score could be used as a reliable biomarker for outcome measure of disease progression.
Collapse
Affiliation(s)
- Hui-Ting Lin
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Xiao Liu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Jing Liu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Yue-Huan Zuo
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Jiang-Xi Xiao
- Department of Radiology, Peking University First Hospital, Beijing 100034, China
| | - Ying Zhu
- Department of Radiology, Peking University First Hospital, Beijing 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Zhao-Xia Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
19
|
Diaz-Manera J, Fernandez-Torron R, LLauger J, James MK, Mayhew A, Smith FE, Moore UR, Blamire AM, Carlier PG, Rufibach L, Mittal P, Eagle M, Jacobs M, Hodgson T, Wallace D, Ward L, Smith M, Stramare R, Rampado A, Sato N, Tamaru T, Harwick B, Rico Gala S, Turk S, Coppenrath EM, Foster G, Bendahan D, Le Fur Y, Fricke ST, Otero H, Foster SL, Peduto A, Sawyer AM, Hilsden H, Lochmuller H, Grieben U, Spuler S, Tesi Rocha C, Day JW, Jones KJ, Bharucha-Goebel DX, Salort-Campana E, Harms M, Pestronk A, Krause S, Schreiber-Katz O, Walter MC, Paradas C, Hogrel JY, Stojkovic T, Takeda S, Mori-Yoshimura M, Bravver E, Sparks S, Bello L, Semplicini C, Pegoraro E, Mendell JR, Bushby K, Straub V. Muscle MRI in patients with dysferlinopathy: pattern recognition and implications for clinical trials. J Neurol Neurosurg Psychiatry 2018; 89:1071-1081. [PMID: 29735511 PMCID: PMC6166612 DOI: 10.1136/jnnp-2017-317488] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/02/2018] [Accepted: 03/26/2018] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVE Dysferlinopathies are a group of muscle disorders caused by mutations in the DYSF gene. Previous muscle imaging studies describe a selective pattern of muscle involvement in smaller patient cohorts, but a large imaging study across the entire spectrum of the dysferlinopathies had not been performed and previous imaging findings were not correlated with functional tests. METHODS We present cross-sectional T1-weighted muscle MRI data from 182 patients with genetically confirmed dysferlinopathies. We have analysed the pattern of muscles involved in the disease using hierarchical analysis and presented it as heatmaps. Results of the MRI scans have been correlated with relevant functional tests for each region of the body analysed. RESULTS In 181 of the 182 patients scanned, we observed muscle pathology on T1-weighted images, with the gastrocnemius medialis and the soleus being the most commonly affected muscles. A similar pattern of involvement was identified in most patients regardless of their clinical presentation. Increased muscle pathology on MRI correlated positively with disease duration and functional impairment. CONCLUSIONS The information generated by this study is of high diagnostic value and important for clinical trial development. We have been able to describe a pattern that can be considered as characteristic of dysferlinopathy. We have defined the natural history of the disease from a radiological point of view. These results enabled the identification of the most relevant regions of interest for quantitative MRI in longitudinal studies, such as clinical trials. CLINICAL TRIAL REGISTRATION NCT01676077.
Collapse
Affiliation(s)
- Jordi Diaz-Manera
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain.,Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Roberto Fernandez-Torron
- Neuromuscular Area, Biodonostia Health Research Institute, Neurology Service, Donostia University Hospital, Donostia-San Sebastian, Spain.,The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Jaume LLauger
- Radiology Department, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Meredith K James
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Anna Mayhew
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Fiona E Smith
- Magnetic Resonance Centre, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ursula R Moore
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Andrew M Blamire
- Magnetic Resonance Centre, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Pierre G Carlier
- AIM & CEA NMR Laboratory, Institute of Myology, Pitié-Salpêtrière University Hospital, Paris, France
| | | | | | - Michelle Eagle
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Marni Jacobs
- Center for Translational Science, Division of Biostatistics and Study Methodology, Children's National Health System, Washington, District of Columbia, USA.,Department of Pediatrics, Epidemiology and Biostatistics, George Washington University, Washington, District of Columbia, USA
| | - Tim Hodgson
- Magnetic Resonance Centre, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Dorothy Wallace
- Magnetic Resonance Centre, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Louise Ward
- Magnetic Resonance Centre, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Mark Smith
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Roberto Stramare
- Radiology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Alessandro Rampado
- Radiology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Noriko Sato
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takeshi Tamaru
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Bruce Harwick
- Department of Radiology, CMC Mercy Charlotte, Carolinas Healthcare System Neurosciences Institute, Charlotte, North Carolina, USA
| | - Susana Rico Gala
- Department of Radiology, Hospital U. Virgen de Valme, Sevilla, Spain
| | - Suna Turk
- AIM & CEA NMR Laboratory, Institute of Myology, Pitié-Salpêtrière University Hospital, Paris, France
| | - Eva M Coppenrath
- Department of Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany
| | - Glenn Foster
- Center for Clinical Imaging Research CCIR, Washington University, St. Louis, Missouri, USA
| | - David Bendahan
- Centre de Résonance, Magnétique Biologique et Médicale, Marseille, France.,Aix-Marseille Université, Marseille, France
| | | | - Stanley T Fricke
- Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, District of Columbia, USA
| | - Hansel Otero
- Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, District of Columbia, USA
| | - Sheryl L Foster
- Department of Radiology, Westmead Hospital, Westmead, New South Wales, Australia.,Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - Anthony Peduto
- Department of Radiology, Westmead Hospital, Westmead, New South Wales, Australia.,Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - Anne Marie Sawyer
- Lucas Center for Imaging, Stanford University School of Medicine, Stanford, California, USA
| | - Heather Hilsden
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Hanns Lochmuller
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Ulrike Grieben
- Charite Muscle Research Unit, Experimental and Clinical Research Center, A Joint Co-operation of the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Simone Spuler
- Charite Muscle Research Unit, Experimental and Clinical Research Center, A Joint Co-operation of the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Carolina Tesi Rocha
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - John W Day
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Kristi J Jones
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, University of Sydney, Sydney, New South Wales, Australia
| | - Diana X Bharucha-Goebel
- Department of Neurology, Children's National Health System, Washington, District of Columbia, USA.,National Institutes of Health (NINDS), Bethesda, Maryland, USA
| | | | - Matthew Harms
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alan Pestronk
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sabine Krause
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Olivia Schreiber-Katz
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Maggie C Walter
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Carmen Paradas
- Neuromuscular Unit, Department of Neurology, Hospital U. Virgen del Rocío/Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Jean-Yves Hogrel
- Institut de Myologie, AP-HP, G.H. Pitié-Salpêtrière, Paris, Île-de-France, France
| | - Tanya Stojkovic
- Institut de Myologie, AP-HP, G.H. Pitié-Salpêtrière, Paris, Île-de-France, France
| | - Shin'ichi Takeda
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Elena Bravver
- Neurosciences Institute, Carolinas Healthcare System, Charlotte, North Carolina, USA
| | - Susan Sparks
- Neurosciences Institute, Carolinas Healthcare System, Charlotte, North Carolina, USA
| | - Luca Bello
- Department of Neurosciences, University of Padova, Padova, Italy
| | | | - Elena Pegoraro
- Department of Neurosciences, University of Padova, Padova, Italy
| | | | - Kate Bushby
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | | |
Collapse
|
20
|
Quijano-Roy S, de la Banda MGG. Distrofias musculares congénitas. REVISTA MÉDICA CLÍNICA LAS CONDES 2018. [DOI: 10.1016/j.rmclc.2018.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
Tordjman M, Dabaj I, Laforet P, Felter A, Ferreiro A, Biyoukar M, Law-Ye B, Zanoteli E, Castiglioni C, Rendu J, Beroud C, Chamouni A, Richard P, Mompoint D, Quijano-Roy S, Carlier RY. Muscular MRI-based algorithm to differentiate inherited myopathies presenting with spinal rigidity. Eur Radiol 2018; 28:5293-5303. [PMID: 29802573 DOI: 10.1007/s00330-018-5472-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/01/2018] [Accepted: 04/10/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Inherited myopathies are major causes of muscle atrophy and are often characterized by rigid spine syndrome, a clinical feature designating patients with early spinal contractures. We aim to present a decision algorithm based on muscular whole body magnetic resonance imaging (mWB-MRI) as a unique tool to orientate the diagnosis of each inherited myopathy long before the genetically confirmed diagnosis. METHODS This multicentre retrospective study enrolled 79 patients from referral centres in France, Brazil and Chile. The patients underwent 1.5-T or 3-T mWB-MRI. The protocol comprised STIR and T1 sequences in axial and coronal planes, from head to toe. All images were analyzed manually by multiple raters. Fatty muscle replacement was evaluated on mWB-MRI using both the Mercuri scale and statistical comparison based on the percentage of affected muscle. RESULTS Between February 2005 and December 2015, 76 patients with genetically confirmed inherited myopathy were included. They were affected by Pompe disease or harbored mutations in RYR1, Collagen VI, LMNA, SEPN1, LAMA2 and MYH7 genes. Each myopathy had a specific pattern of affected muscles recognizable on mWB-MRI. This allowed us to create a novel decision algorithm for patients with rigid spine syndrome by segregating these signs. This algorithm was validated by five external evaluators on a cohort of seven patients with a diagnostic accuracy of 94.3% compared with the genetic diagnosis. CONCLUSION We provide a novel decision algorithm based on muscle fat replacement graded on mWB-MRI that allows diagnosis and differentiation of inherited myopathies presenting with spinal rigidity. KEY POINTS • Inherited myopathies are rare, diagnosis is challenging and genetic tests require specialized centres and often take years. • Inherited myopathies are often characterized by spinal rigidity. • Whole body magnetic resonance imaging is a unique tool to orientate the diagnosis of each inherited myopathy presenting with spinal rigidity. • Each inherited myopathy in this study has a specific pattern of affected muscles that orientate diagnosis. • A novel MRI-based algorithm, usable by every radiologist, can help the early diagnosis of these myopathies.
Collapse
Affiliation(s)
- Mickael Tordjman
- Assistance Publique des Hôpitaux de Paris (AP-HP), Service d'Imagerie Médicale, Pôle Neuro-locomoteur, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Garches, France.
| | - Ivana Dabaj
- Pôle Pédiatrie, Hôpital Raymond Poincaré, Garches, France - Centre de Référence Maladies Neuromusculaires GNMH, FILNEMUS, Garches, France
| | - Pascal Laforet
- Département de Neurologie, Unité Clinique de Pathologie Neuromusculaire, Institut de Myologie, CHU La Pitié Salpêtrière, APHP, Paris, France
| | - Adrien Felter
- Assistance Publique des Hôpitaux de Paris (AP-HP), Service d'Imagerie Médicale, Pôle Neuro-locomoteur, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Garches, France
| | - Ana Ferreiro
- Service de Génétique, Hôpital Raymond Poincaré, APHP, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Garches, France
| | - Moustafa Biyoukar
- Unité de Recherche Clinique, Hôpital Saint-Antoine, APHP, Paris, Hôpitaux Universitaires Est Parisien, Garches, France
| | - Bruno Law-Ye
- Assistance Publique des Hôpitaux de Paris (AP-HP), Service d'Imagerie Médicale, Pôle Neuro-locomoteur, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Garches, France
| | - Edmar Zanoteli
- Department of Neurology, Medical School of the University of São Paulo, São Paulo, Brazil
| | - Claudia Castiglioni
- Neuromuscular and Motor Disorders Program Clinica Las Condes, Pediatric Neurology, Santiago, Chile
| | - John Rendu
- Département de Biochimie, Toxicologie, Pharmacologie et Génétique Moléculaire, CHU Grenoble Alpes, Grenoble, France
| | - Christophe Beroud
- Département de Génétique Médicale, AP-HM, Hôpital Timone Enfants, Marseille, France
| | | | - Pascale Richard
- UF de Cardiogénétique et Myogénétique Moléculaire et Cellulaire, Centre de Génétique Moléculaire et Chromosomique, CHU La Pitié Salpêtrière, APHP, Paris, France
| | - Dominique Mompoint
- Assistance Publique des Hôpitaux de Paris (AP-HP), Service d'Imagerie Médicale, Pôle Neuro-locomoteur, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Garches, France
| | - Susana Quijano-Roy
- Pôle Pédiatrie, Hôpital Raymond Poincaré, Garches, France - Centre de Référence Maladies Neuromusculaires GNMH, FILNEMUS, Garches, France
| | - Robert-Yves Carlier
- Assistance Publique des Hôpitaux de Paris (AP-HP), Service d'Imagerie Médicale, Pôle Neuro-locomoteur, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Garches, France
| |
Collapse
|
22
|
Dabaj I, Carlier RY, Gómez‐Andrés D, Neto OA, Bertini E, D'amico A, Fattori F, PéRéon Y, Castiglioni C, Rodillo E, Catteruccia M, Guimarães JB, Oliveira ASB, Reed UC, Mesrob L, Lechner D, Boland A, Deleuze J, Malfatti E, Bonnemann C, Laporte J, Romero N, Felter A, Quijano‐Roy S, Moreno CAM, Zanoteli E. Clinical and imaging hallmarks of the
MYH7
‐related myopathy with severe axial involvement. Muscle Nerve 2018; 58:224-234. [DOI: 10.1002/mus.26137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 03/24/2018] [Accepted: 03/30/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Ivana Dabaj
- APHP, Service de Pediatrie, Pôle Neuro‐locomoteur, Hôpital Universitaire Raymond Poincaré‐Garches, Centre de Reference de Maladies Neuromusculaires Centre de référence des maladies neuromusculaires Nord/Est/Ile de France
| | - Robert Y Carlier
- APHP, Service d'Imagerie Médicale, Pôle Neuro‐locomoteur, Hôpital Universitaire Raymond Poincaré‐Garches; Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, UMR 1179 Université Paris Saclay France
| | - David Gómez‐Andrés
- Child Neurology Unit, Hospital Universitari Vall d'Hebron, ERN‐RND / ERN‐NMD. Vall d'Hebron Institut de Recerca, Barcelona, SpainBarcelona Spain
| | - Osório Abath Neto
- Neuromuscular and Neurogenetics Disorders of Childhood Section, Neurogenetics Branch, National Institutes of Neurological Disorders and Stroke, NIHBethesda Maryland USA
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Department of Neurosciences, Bambino Gesú Children's HospitalRome Italy
| | - Adele D'amico
- Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Department of Neurosciences, Bambino Gesú Children's HospitalRome Italy
| | - Fabiana Fattori
- Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Department of Neurosciences, Bambino Gesú Children's HospitalRome Italy
| | - Yann PéRéon
- APHP, Service d'Imagerie Médicale, Pôle Neuro‐locomoteur, Hôpital Universitaire Raymond Poincaré‐Garches; Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, UMR 1179 Université Paris Saclay France
- Centre de reference de maladies neuromusculaires Nantes‐Angers, Hôtel‐Dieu, CHU Nantes France
| | | | - Eliana Rodillo
- Department of Pediatric, Neurology UnitClínica Las CondesSantiago Chile
| | - Michela Catteruccia
- Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Department of Neurosciences, Bambino Gesú Children's HospitalRome Italy
| | | | | | - Umbertina Conti Reed
- Departamento de NeurologiaFaculdade de Medicina da Universidade de São Paulo (FMUSP)São Paulo Brazil
| | - Lilia Mesrob
- Centre National de Génotypage, Institut de Génomique, CEAEvry France
| | - Doris Lechner
- Centre National de Génotypage, Institut de Génomique, CEAEvry France
| | - Anne Boland
- Centre National de Génotypage, Institut de Génomique, CEAEvry France
| | | | - Edoardo Malfatti
- APHP, Service d'Imagerie Médicale, Pôle Neuro‐locomoteur, Hôpital Universitaire Raymond Poincaré‐Garches; Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, UMR 1179 Université Paris Saclay France
- Laboratoire de Pathologie musculaire, Institut de MyologieParis France
| | - Carsten Bonnemann
- Neuromuscular and Neurogenetics Disorders of Childhood Section, Neurogenetics Branch, National Institutes of Neurological Disorders and Stroke, NIHBethesda Maryland USA
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, IGBMC, INSERM U964, CNRS UMR7104University of StrasbourgIllkirch France
| | - Norma Romero
- APHP, Service d'Imagerie Médicale, Pôle Neuro‐locomoteur, Hôpital Universitaire Raymond Poincaré‐Garches; Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, UMR 1179 Université Paris Saclay France
- Laboratoire de Pathologie musculaire, Institut de MyologieParis France
| | - Adrien Felter
- APHP, Service d'Imagerie Médicale, Pôle Neuro‐locomoteur, Hôpital Universitaire Raymond Poincaré‐Garches; Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, UMR 1179 Université Paris Saclay France
| | - Susana Quijano‐Roy
- APHP, Service de Pediatrie, Pôle Neuro‐locomoteur, Hôpital Universitaire Raymond Poincaré‐Garches, Centre de Reference de Maladies Neuromusculaires Centre de référence des maladies neuromusculaires Nord/Est/Ile de France
| | | | - Edmar Zanoteli
- Departamento de NeurologiaFaculdade de Medicina da Universidade de São Paulo (FMUSP)São Paulo Brazil
| |
Collapse
|
23
|
Jungbluth H. Myopathology in times of modern imaging. Neuropathol Appl Neurobiol 2018; 43:24-43. [PMID: 28111795 DOI: 10.1111/nan.12385] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Abstract
Over the last two decades, muscle (magnetic resonance) imaging has become an important complementary tool in the diagnosis and differential diagnosis of inherited neuromuscular disorders, particularly in conditions where the pattern of selective muscle involvement is often more predictive of the underlying genetic background than associated clinical and histopathological features. Following an overview of different imaging modalities, the present review will give a concise introduction to systematic image analysis and interpretation in genetic neuromuscular disorders. The pattern of selective muscle involvement will be presented in detail in conditions such as the congenital or myofibrillar myopathies where muscle imaging is particularly useful to inform the (differential) diagnosis, and in disorders such as Duchenne or fascioscapulohumeral muscular dystrophy where the diagnosis is usually made on clinical grounds but where detailed knowledge of disease progression on the muscle imaging level may inform better understanding of the natural history. Utilizing the group of the congenital myopathies as an example, selected case studies will illustrate how muscle MRI can be used to inform the diagnostic process in the clinico-pathological context. Future developments, in particular, concerning the increasing use of whole-body MRI protocols and novel quantitative fat assessments techniques potentially relevant as an outcome measure, will be briefly outlined.
Collapse
Affiliation(s)
- H Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK.,Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, London, UK.,Department of Clinical and Basic Neuroscience, IoPPN, King's College, London, UK
| |
Collapse
|
24
|
ten Dam L, de Visser M. Dystrophic Myopathies. Clin Neuroradiol 2018. [DOI: 10.1007/978-3-319-61423-6_3-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Ekabe CJ, Kehbila J, Sama CB, Kadia BM, Abanda MH, Monekosso GL. Occurrence of Emery-Dreifuss muscular dystrophy in a rural setting of Cameroon: a case report and review of the literature. BMC Res Notes 2017; 10:36. [PMID: 28069046 PMCID: PMC5223404 DOI: 10.1186/s13104-016-2363-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/23/2016] [Indexed: 12/03/2022] Open
Abstract
Background Emery-Dreifuss muscular dystrophy is a rare genetic muscular disease, presenting mainly with contractures, weakness and cardiac conduction abnormalities. Its clinical and laboratory similarities to other muscular dystrophies, and rarity poses diagnostic challenges, requiring a high index of suspicion in resource limited settings. Case presentation An 8 year old sub-Saharan male presented with rigidity and deformity of both elbows and ankles, and weakness of the upper limbs and lower limbs for duration of 4 months. This progressed to inability to stand and walk. There was no mental impairment. Physical examination was remarkable for contractures of the elbows and ankles, and wasting of muscles of the limbs and trunk, with a scapulohumeroperoneal pattern, and tachycardia. After laboratory investigations, a diagnosis of Emery-Dreifuss muscular dystrophy was suspected. Physiotherapy was started, wheel chair was prescribed, and referral to a specialist center was done for appropriate management. Conclusions Emery-Dreifuss muscular dystrophy is a rare disabling muscular disease which poses a diagnostic challenge. High index of suspicion is paramount for its early diagnoses to prevent orthopedic and cardiac complications. Prompt diagnosis and management is essential to improve on the prognosis of this disease.
Collapse
Affiliation(s)
- Cyril Jabea Ekabe
- Grace Community Health and Development Association (GRACHADA), P.O Box 15, Kumba, Cameroon.,Galactic Corps Research Group (GCRG), Buea, South West Region, Cameroon
| | - Jules Kehbila
- Grace Community Health and Development Association (GRACHADA), P.O Box 15, Kumba, Cameroon.,District Hospital Wum, Wum, North West Region, Cameroon.,Galactic Corps Research Group (GCRG), Buea, South West Region, Cameroon
| | - Carlson-Babila Sama
- Galactic Corps Research Group (GCRG), Buea, South West Region, Cameroon. .,Bambalang Medicalised Health Centre, Bambalang, Northwest Region, Cameroon.
| | - Benjamin Momo Kadia
- Grace Community Health and Development Association (GRACHADA), P.O Box 15, Kumba, Cameroon.,Presbyterian General Hospital Acha-Tugi, Acha-Tugi, Northwest Region, Cameroon
| | - Martin Hongieh Abanda
- Grace Community Health and Development Association (GRACHADA), P.O Box 15, Kumba, Cameroon.,Non Communicable Diseases Unit, Clinical Research Education, Networking & Consultancy (CRENC), Douala, Cameroon
| | - Gottlieb Lobe Monekosso
- Department of Medicine, Faculty of Health Sciences, University of Buea and Global Health Dialogue Foundation, Buea, Cameroon
| |
Collapse
|
26
|
Magnetic resonance imaging patterns of muscle involvement in genetic muscle diseases: a systematic review. J Neurol 2016; 264:1320-1333. [PMID: 27888415 DOI: 10.1007/s00415-016-8350-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022]
Abstract
A growing body of the literature supports the use of magnetic resonance imaging as a potential biomarker for disease severity in the hereditary myopathies. We performed a systematic review of the medical literature to evaluate patterns of fat infiltration observed in magnetic resonance imaging studies of muscular dystrophy and congenital myopathy. Searches were performed using MEDLINE, EMBASE, and grey literature databases. Studies that described fat infiltration of muscles in patients with muscular dystrophy or congenital myopathy were selected for full-length review. Data on preferentially involved or spared muscles were extracted for analysis. A total of 2172 titles and abstracts were screened, and 70 publications met our criteria for inclusion in the systematic review. There were 23 distinct genetic disorders represented in this analysis. In most studies, preferential involvement and sparing of specific muscles were reported. We conclude that magnetic resonance imaging studies can be used to identify distinct patterns of muscle involvement in the hereditary myopathies. However, larger studies and standardized methods of reporting are needed to develop imaging as a diagnostic tool in these diseases.
Collapse
|
27
|
Skeletal Muscle Laminopathies: A Review of Clinical and Molecular Features. Cells 2016; 5:cells5030033. [PMID: 27529282 PMCID: PMC5040975 DOI: 10.3390/cells5030033] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 01/12/2023] Open
Abstract
LMNA-related disorders are caused by mutations in the LMNA gene, which encodes for the nuclear envelope proteins, lamin A and C, via alternative splicing. Laminopathies are associated with a wide range of disease phenotypes, including neuromuscular, cardiac, metabolic disorders and premature aging syndromes. The most frequent diseases associated with mutations in the LMNA gene are characterized by skeletal and cardiac muscle involvement. This review will focus on genetics and clinical features of laminopathies affecting primarily skeletal muscle. Although only symptomatic treatment is available for these patients, many achievements have been made in clarifying the pathogenesis and improving the management of these diseases.
Collapse
|