1
|
Maffiuletti NA, Dirks ML, Stevens-Lapsley J, McNeil CJ. Electrical stimulation for investigating and improving neuromuscular function in vivo: Historical perspective and major advances. J Biomech 2023; 152:111582. [PMID: 37088030 DOI: 10.1016/j.jbiomech.2023.111582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023]
Abstract
This historical review summarizes the major advances - particularly from the last 50 years - in transcutaneous motor-level electrical stimulation, which can be used either as a tool to investigate neuromuscular function and its determinants (electrical stimulation for testing; EST) or as a therapeutic/training modality to improve neuromuscular and physical function (neuromuscular electrical stimulation; NMES). We focus on some of the most important applications of electrical stimulation in research and clinical settings, such as the investigation of acute changes, chronic adaptations and pathological alterations of neuromuscular function with EST, as well as the enhancement, preservation and restoration of muscle strength and mass with NMES treatment programs in various populations. For both EST and NMES, several major advances converge around understanding and optimizing motor unit recruitment during electrically-evoked contractions, also taking into account the influence of stimulation site (e.g., muscle belly vs nerve trunk) and type (e.g., pulse duration, frequency, and intensity). This information is equally important both in the context of mechanistic research of neuromuscular function as well as for clinicians who believe that improvements in neuromuscular function are required to provide health-related benefits to their patients.
Collapse
Affiliation(s)
| | - Marlou L Dirks
- Department of Public Health and Sports Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK; Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Jennifer Stevens-Lapsley
- Physical Therapy Program, Department of Physical Medicine and Rehabilitation, University of Colorado, Aurora, CO, USA; VA Eastern Colorado Geriatric Research, Education, and Clinical Center (GRECC), VA Eastern Colorado Health Care System, Aurora, CO, USA
| | - Chris J McNeil
- Integrated Neuromuscular Physiology Laboratory, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| |
Collapse
|
2
|
Drouin PJ, Forbes SPA, Liu T, Lew LA, McGarity-Shipley E, Tschakovsky ME. Muscle contraction force conforms to muscle oxygenation during constant activation voluntary forearm exercise. Exp Physiol 2022; 107:1360-1374. [PMID: 35971738 DOI: 10.1113/ep090576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? In electrically stimulated skeletal muscle, force production is downregulated when oxygen delivery is compromised and rapidly restored upon oxygen delivery restoration. Whether "oxygen conforming" of force production occurs during voluntary muscle activation in humans and whether it is exercise intensity dependent remains unknown. What is the main finding and its importance? Here we show in humans that force at a given voluntary muscle activation does conform to a decrease in oxygen delivery and rapidly and completely recovers with restoration of oxygen delivery. This oxygen conforming response of contraction force appears to happen only at higher intensities. ABSTRACT In electrically stimulated skeletal muscle, force production is downregulated when oxygen delivery is compromised and rapidly restored upon oxygen delivery restoration in the absence of cellular disturbance. Whether this "oxygen conforming" response of force occurs and is exercise intensity dependent during stable voluntary muscle activation in humans is unknown. In 12-participants (6-female), handgrip force, forearm muscle activation (electromyography; EMG), muscle oxygenation, and forearm blood flow (FBF) were measured during rhythmic handgrip exercise at forearm EMG achieving 50, 75 or 90% critical impulse (CI). 4-min of brachial artery compression to reduce FBF by ∼60% (Hypoperfusion) or sham compression (adjacent to artery; Control) was performed during exercise. Sham compression had no effect. Hypoperfusion rapidly reduced muscle oxygenation at all exercise intensities, resulting in contraction force per muscle activation (force/EMG) progressively declining over 4 min by ∼16% in 75 and 90% CI. No force/EMG decline occurred in 50% CI. Rapid restoration of muscle oxygenation post-compression was closely followed by force/EMG such that it was not different from Control within 30-sec for 90% CI and after 90-sec for 75% CI. Our findings reveal an oxygen conforming response does occur in voluntary exercising muscle in humans. Within the exercise modality and magnitude of fluctuation of oxygenation in this study, the oxygen conforming response appears to be exercise intensity dependent. Mechanisms responsible for this oxygen conforming response have implications for exercise tolerance and warrant investigation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Patrick J Drouin
- Human Vascular Control Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Stacey P A Forbes
- Human Vascular Control Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Taylor Liu
- Human Vascular Control Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Lindsay A Lew
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Ellen McGarity-Shipley
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Michael E Tschakovsky
- Human Vascular Control Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
3
|
Yacyshyn AF, McNeil CJ. Intrinsic Neuromuscular Fatigability in Humans: The Critical Role of Stimulus Frequency. Exerc Sport Sci Rev 2022; 50:97-103. [PMID: 35025843 DOI: 10.1249/jes.0000000000000283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrically evoked contractions provide insight into intrinsic neuromuscular fatigability and also represent a valuable technique to maintain muscle mass in a clinical setting. To appropriately investigate intrinsic fatigability and design optimal stimulation protocols, it would seem to be crucial to stimulate the muscle at a frequency equivalent to the mean motor unit discharge rate expected at the target force level.
Collapse
Affiliation(s)
- Alexandra F Yacyshyn
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | | |
Collapse
|
4
|
Blazevich AJ, Collins DF, Millet GY, Vaz MA, Maffiuletti NA. Enhancing Adaptations to Neuromuscular Electrical Stimulation Training Interventions. Exerc Sport Sci Rev 2021; 49:244-252. [PMID: 34107505 PMCID: PMC8460078 DOI: 10.1249/jes.0000000000000264] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Neuromuscular electrical stimulation (NMES) applied to skeletal muscles is an effective rehabilitation and exercise training modality. However, the relatively low muscle force and rapid muscle fatigue induced by NMES limit the stimulus provided to the neuromuscular system and subsequent adaptations. We hypothesize that adaptations to NMES will be enhanced by the use of specific stimulation protocols and adjuvant interventions.
Collapse
Affiliation(s)
- Anthony J. Blazevich
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - David F. Collins
- Human Neurophysiology Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Guillaume Y. Millet
- Université de Lyon, UJM, Inter-university Laboratory of Human Movement Biology, EA 7424, Saint-Etienne
- Institut Universitaire de France (IUF), Paris, France
| | - Marco A. Vaz
- Laboratório de Pesquisa do Exercício (LAPEX), Escola de Educação Física, Fisioterapia e Dança, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | | |
Collapse
|
5
|
Barss TS, Sallis BWM, Miller DJ, Collins DF. Does increasing the number of channels during neuromuscular electrical stimulation reduce fatigability and produce larger contractions with less discomfort? Eur J Appl Physiol 2021; 121:2621-2633. [PMID: 34131798 DOI: 10.1007/s00421-021-04742-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/08/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Neuromuscular electrical stimulation (NMES) is often delivered at frequencies that recruit motor units (MUs) at unphysiologically high rates, leading to contraction fatigability. Rotating NMES pulses between multiple electrodes recruits subpopulations of MUs from each site, reducing MU firing rates and fatigability. This study was designed to determine whether rotating pulses between an increasing number of stimulation channels (cathodes) reduces contraction fatigability and increases the ability to generate torque during NMES. A secondary outcome was perceived discomfort. METHODS Fifteen neurologically intact volunteers completed four sessions. NMES was delivered over the quadriceps through 1 (NMES1), 2 (NMES2), 4 (NMES4) or 8 (NMES8) channels. Fatigability was assessed over 100 contractions (1-s on/1-s off) at an initial contraction amplitude that was 20% of a maximal voluntary contraction. Torque-frequency relationships were characterized over six frequencies from 20 to 120 Hz. RESULTS NMES4 and NMES8 resulted in less decline in peak torque (42 and 41%) over the 100 contractions than NMES1 and NMES2 (53 and 50% decline). Increasing frequency from 20 to 120 Hz increased torque by 7, 13, 21 and 24% MVC, for NMES1, NMES2, NMES4 and NMES8, respectively. Perceived discomfort was highest during NMES8. CONCLUSION NMES4 and NMES8 reduced contraction fatigability and generated larger contractions across a range of frequencies than NMES1 and NMES2. NMES8 produced the most discomfort, likely due to small electrodes and high current density. During NMES, more is not better and rotating pulses between four channels may be optimal to reduce contraction fatigability and produce larger contractions with minimal discomfort compared to conventional NMES configurations.
Collapse
Affiliation(s)
- Trevor S Barss
- Human Neurophysiology Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 4-219 Van Vliet Complex, Edmonton, AB, T6G 2H9, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Bailey W M Sallis
- Human Neurophysiology Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 4-219 Van Vliet Complex, Edmonton, AB, T6G 2H9, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Dylan J Miller
- Human Neurophysiology Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 4-219 Van Vliet Complex, Edmonton, AB, T6G 2H9, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - David F Collins
- Human Neurophysiology Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 4-219 Van Vliet Complex, Edmonton, AB, T6G 2H9, Canada. .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
6
|
Luu MJ, Jones KE, Collins DF. Decreased excitability of motor axons contributes substantially to contraction fatigability during neuromuscular electrical stimulation. Appl Physiol Nutr Metab 2021; 46:346-355. [DOI: 10.1139/apnm-2020-0366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study was designed to (i) determine the time course of changes in motor axon excitability during and after neuromuscular electrical stimulation (NMES); and (ii) characterize the relationship between contraction fatigability, NMES frequency, and changes at the axon, neuromuscular junction, and muscle. Eight neurologically intact participants attended 3 sessions. NMES was delivered over the common peroneal nerve at 20, 40, or 60 Hz for 8 min (0.3 s “on”, 0.7 s “off”). Threshold tracking was used to measure changes in axonal excitability. Supramaximal stimuli were used to assess neuromuscular transmission and force-generating capacity of the tibialis anterior muscle. Torque decreased by 49% and 62% during 8 min of 40 and 60 Hz NMES, respectively. Maximal twitch torque decreased only during 60 Hz NMES. Motor axon excitability decreased by 14%, 27%, and 35% during 20, 40, and 60 Hz NMES, respectively. Excitability recovered to baseline immediately (20 Hz) and at 2 min (40 Hz) and 4 min (60 Hz) following NMES. Overall, decreases in axonal excitability best predicted how torque declined over 8 min of NMES. During NMES, motor axons become less excitable and motor units “drop out” of the contraction, contributing substantially to contraction fatigability and its dependence on NMES frequency. Novelty: The excitability of motor axons decreased during NMES in a frequency-dependent manner. As excitability decreased, axons failed to reach threshold and motor units dropped out of the contraction. Overall, decreased excitability best predicted how torque declined and thus is a key contributor to fatigability during NMES.
Collapse
Affiliation(s)
- M. John Luu
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, Sensorimotor Rehabilitation Neuroscience Group, University of Alberta, Edmonton, AB T6G 2H9, Canada
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, Sensorimotor Rehabilitation Neuroscience Group, University of Alberta, Edmonton, AB T6G 2H9, Canada
| | - Kelvin E. Jones
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, Sensorimotor Rehabilitation Neuroscience Group, University of Alberta, Edmonton, AB T6G 2H9, Canada
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, Sensorimotor Rehabilitation Neuroscience Group, University of Alberta, Edmonton, AB T6G 2H9, Canada
| | - David F. Collins
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, Sensorimotor Rehabilitation Neuroscience Group, University of Alberta, Edmonton, AB T6G 2H9, Canada
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, Sensorimotor Rehabilitation Neuroscience Group, University of Alberta, Edmonton, AB T6G 2H9, Canada
| |
Collapse
|
7
|
Joint angle based motor point tracking stimulation for surface FES: A Study on biceps brachii. Med Eng Phys 2021; 88:9-18. [PMID: 33485518 DOI: 10.1016/j.medengphy.2020.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/16/2020] [Accepted: 11/25/2020] [Indexed: 11/20/2022]
Abstract
Functional electrical stimulation (FES) has been an effective treatment option in clinical rehabilitation such as motor function recovery after stroke. The main limitation of FES is the lack of stimulation efficiency in motor unit recruitment compared with voluntary contractions, which may cause the early onset of muscle fatigue. The stimulation efficiency of FES can be improved by optimizing electrode positions to target the motor point (MP). However, the location of MP relative to the skin may shift with the change of muscle geometry during dynamic exercise. Hence, the purpose of this study is to maintain the stimulation efficiency of FES in dynamic exercise by switching the stimulation position to follow the shift of MP. We first measured the shift of the MP of the biceps brachii with respect to the elbow joint angle, and then conducted an experiment to compare four stimulation methods: 2-channel simultaneous stimulation (SS), 2-channel time based shifting stimulation (TSS), 2-channel joint angle based shifting stimulation (JASS), and 3-channel JASS. TSS and JASS were designed as two different MP tracking strategies. The experimental results show that the 3-channel JASS caused the smallest decrease in the maximal elbow angle and the angular velocity. The results also suggest that MP tracking stimulation based on joint angle is effective for the sustainable induction of muscle contraction. Both tracking selectivity and tracking density were shown to be important to improve the stimulation efficiency of FES.
Collapse
|
8
|
Alvarado-Hidalgo F, Ramírez-Sánchez K, Starbird-Perez R. Smart Porous Multi-Stimulus Polysaccharide-Based Biomaterials for Tissue Engineering. Molecules 2020; 25:E5286. [PMID: 33202707 PMCID: PMC7697121 DOI: 10.3390/molecules25225286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/01/2023] Open
Abstract
Recently, tissue engineering and regenerative medicine studies have evaluated smart biomaterials as implantable scaffolds and their interaction with cells for biomedical applications. Porous materials have been used in tissue engineering as synthetic extracellular matrices, promoting the attachment and migration of host cells to induce the in vitro regeneration of different tissues. Biomimetic 3D scaffold systems allow control over biophysical and biochemical cues, modulating the extracellular environment through mechanical, electrical, and biochemical stimulation of cells, driving their molecular reprogramming. In this review, first we outline the main advantages of using polysaccharides as raw materials for porous scaffolds, as well as the most common processing pathways to obtain the adequate textural properties, allowing the integration and attachment of cells. The second approach focuses on the tunable characteristics of the synthetic matrix, emphasizing the effect of their mechanical properties and the modification with conducting polymers in the cell response. The use and influence of polysaccharide-based porous materials as drug delivery systems for biochemical stimulation of cells is also described. Overall, engineered biomaterials are proposed as an effective strategy to improve in vitro tissue regeneration and future research directions of modified polysaccharide-based materials in the biomedical field are suggested.
Collapse
Affiliation(s)
- Fernando Alvarado-Hidalgo
- Centro de Investigación en Servicios Químicos y Microbiológicos, CEQIATEC, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Master Program in Medical Devices Engineering, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Karla Ramírez-Sánchez
- Centro de Investigación en Servicios Químicos y Microbiológicos, CEQIATEC, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, CIET, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Ricardo Starbird-Perez
- Centro de Investigación en Servicios Químicos y Microbiológicos, CEQIATEC, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| |
Collapse
|
9
|
Carbonaro M, Seynnes O, Maffiuletti NA, Busso C, Minetto MA, Botter A. Architectural Changes in Superficial and Deep Compartments of the Tibialis Anterior During Electrical Stimulation Over Different Sites. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2557-2565. [PMID: 32986557 DOI: 10.1109/tnsre.2020.3027037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Electrical stimulation is widely used in rehabilitation to prevent muscle weakness and to assist the functional recovery of neural deficits. Its application is however limited by the rapid development of muscle fatigue due to the non-physiological motor unit (MU) recruitment. This issue can be mitigated by interleaving muscle belly (mStim) and nerve stimulation (nStim) to distribute the temporal recruitment among different MU groups. To be effective, this approach requires the two stimulation modalities to activate minimally-overlapped groups of MUs. In this manuscript, we investigated spatial differences between mStim and nStim MU recruitment through the study of architectural changes of superficial and deep compartments of tibialis anterior (TA). We used ultrasound imaging to measure variations in muscle thickness, pennation angle, and fiber length during mStim, nStim, and voluntary (Vol) contractions at 15% and 25% of the maximal force. For both contraction levels, architectural changes induced by nStim in the deep and superficial compartments were similar to those observed during Vol. Instead, during mStim superficial fascicles underwent a greater change compared to those observed during nStim and Vol, both in absolute magnitude and in their relative differences between compartments. These observations suggest that nStim results in a distributed MU recruitment over the entire muscle volume, similarly to Vol, whereas mStim preferentially activates the superficial muscle layer. The diversity between spatial recruitment of nStim and mStim suggests the involvement of different MU populations, which justifies strategies based on interleaved nerve/muscle stimulation to reduce muscle fatigue during electrically-induced contractions of TA.
Collapse
|
10
|
Kwon YT, Norton JJS, Cutrone A, Lim HR, Kwon S, Choi JJ, Kim HS, Jang YC, Wolpaw JR, Yeo WH. Breathable, large-area epidermal electronic systems for recording electromyographic activity during operant conditioning of H-reflex. Biosens Bioelectron 2020; 165:112404. [PMID: 32729524 PMCID: PMC7484316 DOI: 10.1016/j.bios.2020.112404] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/28/2020] [Accepted: 06/20/2020] [Indexed: 10/24/2022]
Abstract
Operant conditioning of Hoffmann's reflex (H-reflex) is a non-invasive and targeted therapeutic intervention for patients with movement disorders following spinal cord injury. The reflex-conditioning protocol uses electromyography (EMG) to measure reflexes from specific muscles elicited using transcutaneous electrical stimulation. Despite recent advances in wearable electronics, existing EMG systems that measure muscle activity for operant conditioning of spinal reflexes still use rigid metal electrodes with conductive gels and aggressive adhesives, while requiring precise positioning to ensure reliability of data across experimental sessions. Here, we present the first large-area epidermal electronic system (L-EES) and demonstrate its use in every step of the reflex-conditioning protocol. The L-EES is a stretchable and breathable composite of nanomembrane electrodes (16 electrodes in a four by four array), elastomer, and fabric. The nanomembrane electrode array enables EMG recording from a large surface area on the skin and the breathable elastomer with fabric is biocompatible and comfortable for patients. We show that L-EES can record direct muscle responses (M-waves) and H-reflexes, both of which are comparable to those recorded using conventional EMG recording systems. In addition, L-EES may improve the reflex-conditioning protocol; it has potential to automatically optimize EMG electrode positioning, which may reduce setup time and error across experimental sessions.
Collapse
Affiliation(s)
- Young-Tae Kwon
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - James J S Norton
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA; Stratton VA Medical Center, Albany, NY, 12208, USA
| | - Andrew Cutrone
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
| | - Hyo-Ryoung Lim
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shinjae Kwon
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jeongmoon J Choi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hee Seok Kim
- Department of Mechanical Engineering, University of South Alabama, Mobile, AL, 36608, USA
| | - Young C Jang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA; Stratton VA Medical Center, Albany, NY, 12208, USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Flexible and Wearable Electronics Advanced Research Program, Neural Engineering Center, Institute for Materials, and Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
11
|
Ainsley EN, Barss TS, Collins DF. Contraction fatigability during interleaved neuromuscular electrical stimulation of the ankle dorsiflexors does not depend on contraction amplitude. Appl Physiol Nutr Metab 2020; 45:948-956. [DOI: 10.1139/apnm-2019-0851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleaved neuromuscular electrical stimulation (iNMES) involves alternating stimulus pulses between the tibialis anterior muscle and common peroneal nerve. The current investigation aimed to characterize the relationship between contraction amplitude, motor unit (MU) “overlap”, and contraction fatigability during iNMES. It was hypothesized that as iNMES generates progressively larger contractions, more MUs would be recruited from both sites (i.e., more MU overlap), resulting in more fatigability for larger than smaller contractions. Fourteen participants completed 3 sessions. Fatigability was assessed as the decline in torque over 180 contractions (0.3 s “on”, 0.7 s “off”) when iNMES was delivered to produce initial contractions of ∼5%, 15%, or 30% of a maximal voluntary contraction. Although MU overlap increased significantly with contraction amplitude, the relative (percent) decline in torque was not different between the contraction amplitudes and torque declined on average by 23%. Contraction fatigability was not significantly correlated with either MU overlap or initial contraction amplitude. In conclusion, iNMES can produce fatigue-resistant contractions across a functionally-meaningful range of contraction amplitudes for rehabilitation. Novelty Interleaved neuromuscular electrical stimulation progressively recruits MUs as contraction amplitude increases. However, the relative amount of fatigability of recruited MUs was not different as contraction amplitude increased. This suggests iNMES can be used effectively to produce fatigue-resistant and functionally meaningful contractions.
Collapse
Affiliation(s)
- Emily N. Ainsley
- Human Neurophysiology Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, AB T6G 2H9, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Trevor S. Barss
- Human Neurophysiology Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, AB T6G 2H9, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - David F. Collins
- Human Neurophysiology Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, AB T6G 2H9, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
12
|
Buckmire AJ, Lockwood DR, Doane CJ, Fuglevand AJ. Distributed stimulation increases force elicited with functional electrical stimulation. J Neural Eng 2019; 15:026001. [PMID: 29099387 DOI: 10.1088/1741-2552/aa9820] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The maximum muscle forces that can be evoked using functional electrical stimulation (FES) are relatively modest. The reason for this weakness is not fully understood but could be partly related to the widespread distribution of motor nerve branches within muscle. As such, a single stimulating electrode (as is conventionally used) may be incapable of activating the entire array of motor axons supplying a muscle. Therefore, the objective of this study was to determine whether stimulating a muscle with more than one source of current could boost force above that achievable with a single source. APPROACH We compared the maximum isometric forces that could be evoked in the anterior deltoid of anesthetized monkeys using one or two intramuscular electrodes. We also evaluated whether temporally interleaved stimulation between two electrodes might reduce fatigue during prolonged activity compared to synchronized stimulation through two electrodes. MAIN RESULTS We found that dual electrode stimulation consistently produced greater force (~50% greater on average) than maximal stimulation with single electrodes. No differences, however, were found in the fatigue responses using interleaved versus synchronized stimulation. SIGNIFICANCE It seems reasonable to consider using multi-electrode stimulation to augment the force-generating capacity of muscles and thereby increase the utility of FES systems.
Collapse
Affiliation(s)
- Alie J Buckmire
- Department of Physiology, University of Arizona, Tucson, AZ, United States of America.,Department of Neuroscience, University of Arizona, Tucson, AZ, United States of America
| | - Danielle R Lockwood
- Department of Physiology, University of Arizona, Tucson, AZ, United States of America
| | - Cynthia J Doane
- University Animal Care, University of Arizona, Tucson, AZ, United States of America
| | - Andrew J Fuglevand
- Department of Physiology, University of Arizona, Tucson, AZ, United States of America.,Department of Neuroscience, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
13
|
Wang J, Wang H, He T, He B, Thakor NV, Lee C. Investigation of Low-Current Direct Stimulation for Rehabilitation Treatment Related to Muscle Function Loss Using Self-Powered TENG System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900149. [PMID: 31380204 PMCID: PMC6662055 DOI: 10.1002/advs.201900149] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/13/2019] [Indexed: 05/19/2023]
Abstract
Muscle function loss is characterized as abnormal or completely lost muscle capabilities, and it can result from neurological disorders or nerve injuries. The currently available clinical treatment is to electrically stimulate the diseased muscles. Here, a self-powered system of a stacked-layer triboelectric nanogenerator (TENG) and a multiple-channel epimysial electrode to directly stimulate muscles is demonstrated. Then, the two challenges regarding direct TENG muscle stimulation are further investigated. For the first challenge of improving low-current TENG stimulation efficiency, it is found that the optimum stimulation efficiency can be achieved by conducting a systematic mapping with a multiple-channel epimysial electrode. The second challenge is TENG stimulation stability. It is found that the force output generated by TENGs is more stable than using the conventional square wave stimulation and enveloped high frequency stimulation. With modelling and in vivo measurements, it is confirmed that the two factors that account for the stable stimulation using TENGs are the long pulse duration and low current amplitude. The current waveform of TENGs can effectively avoid synchronous motoneuron recruitment at the two stimulation electrodes to reduce force fluctuation. Here, after investigating these two challenges, it is believed that TENG direct muscle stimulation could be used for rehabilitative and therapeutic purpose of muscle function loss treatment.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3117576Singapore
- Singapore Institute for Neurotechnology (SINAPSE)National University of Singapore28 Medical Drive, #05‐COR117456Singapore
- Hybrid‐Integrated Flexible (Stretchable) Electronic Systems ProgramNational University of Singapore5 Engineering Drive 1117608Singapore
| | - Hao Wang
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3117576Singapore
- Hybrid‐Integrated Flexible (Stretchable) Electronic Systems ProgramNational University of Singapore5 Engineering Drive 1117608Singapore
| | - Tianyiyi He
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3117576Singapore
- Hybrid‐Integrated Flexible (Stretchable) Electronic Systems ProgramNational University of Singapore5 Engineering Drive 1117608Singapore
- NUS Suzhou Research Institute (NUSRI)SuzhouIndustrial Park, Suzhou215123P. R. China
| | - Borong He
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3117576Singapore
- Hybrid‐Integrated Flexible (Stretchable) Electronic Systems ProgramNational University of Singapore5 Engineering Drive 1117608Singapore
| | - Nitish V. Thakor
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3117576Singapore
- Singapore Institute for Neurotechnology (SINAPSE)National University of Singapore28 Medical Drive, #05‐COR117456Singapore
- Hybrid‐Integrated Flexible (Stretchable) Electronic Systems ProgramNational University of Singapore5 Engineering Drive 1117608Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3117576Singapore
- Singapore Institute for Neurotechnology (SINAPSE)National University of Singapore28 Medical Drive, #05‐COR117456Singapore
- Hybrid‐Integrated Flexible (Stretchable) Electronic Systems ProgramNational University of Singapore5 Engineering Drive 1117608Singapore
- NUS Suzhou Research Institute (NUSRI)SuzhouIndustrial Park, Suzhou215123P. R. China
| |
Collapse
|
14
|
Wiest MJ, Bergquist AJ, Heffernan MG, Popovic M, Masani K. Fatigue and Discomfort During Spatially Distributed Sequential Stimulation of Tibialis Anterior. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1566-1573. [PMID: 31265401 DOI: 10.1109/tnsre.2019.2923117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neuromuscular electrical stimulation is conventionally applied through a single pair of electrodes over the muscle belly, denominated single electrode stimulation (SES). SES is limited by discomfort and incomplete motor-unit recruitment, restricting electrically-evoked torque and promoting premature fatigue-induced torque-decline. Sequential stimulation involving rotation of pulses between multiple pairs of electrodes has been proposed as an alternative, denominated spatially distributed sequential stimulation (SDSS). The present aim was to compare discomfort, maximal-tolerated torque, and fatigue-related outcomes between SES and SDSS of tibialis anterior. Ten healthy participants completed two experimental sessions. The self-reported discomfort at sub-maximal torque, the maximal-tolerated torque, fatigue-induced torque-decline during, and doublet-twitch torque at 10- and 100-Hz before and after, 300 intermittent (0.6-s-ON-0.6-s-OFF) isokinetic contractions were compared between SES and SDSS. SDSS stimulation improved fatigue-related outcomes, whereas increased discomfort and reduced maximal-tolerated torque. SDSS holds promise for reducing fatigue. However, limited torque production and associated discomfort may limit its utility for rehabilitation/training.
Collapse
|
15
|
Buckmire AJ, Arakeri TJ, Reinhard JP, Fuglevand AJ. Mitigation of excessive fatigue associated with functional electrical stimulation. J Neural Eng 2018; 15:066004. [PMID: 30168443 DOI: 10.1088/1741-2552/aade1c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Restoration of motor function in paralyzed limbs using functional electrical stimulation (FES) is undermined by rapid fatigue associated with artificial stimulation. Typically, single electrodes are used to activate muscles with FES. However, due to the highly distributed branching of muscle nerves, a single electrode may not be able to activate the entire array of motor axons supplying a muscle. Therefore, stimulating muscle with multiple electrodes might enable access to a larger volume of muscle and thereby reduce fatigue. APPROACH Accordingly, we compared the endurance times that ankle dorsiflexion could be sustained at 20% maximum voluntary force using feedback controlled stimulation (25 Hz) of human tibialis anterior (TA) using one or four percutaneous intramuscular electrodes. In addition, we measured endurance times in response to direct stimulation of the nerve supplying TA and during voluntary contraction. In all sessions involving electrical stimulation, an anesthetic nerve block proximal to the site of stimulation was used to isolate the effects of stimulation and alleviate discomfort. MAIN RESULTS Endurance time associated with stimuli delivered by a single intramuscular electrode (84 ± 19 s) was significantly smaller than that elicited by four intramuscular electrodes (232 ± 123 s). Moreover, endurance time in response to nerve stimulation (787 ± 201 s) was not significantly different that that produced during voluntary contraction (896 ± 272 s). SIGNIFICANCE Therefore, excessive fatigue associated with FES is probably due to the inability of conventional FES systems to enlist the full complement of motor axons innervating muscle and can be mitigated using multiple electrodes or nerve-based electrodes.
Collapse
Affiliation(s)
- Alie J Buckmire
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, United States of America. Graduate Program in Neuroscience, College of Medicine, University of Arizona, Tucson, AZ, United States of America
| | | | | | | |
Collapse
|
16
|
Zhou R, Alvarado L, Ogilvie R, Chong SL, Shaw O, Mushahwar VK. Non-gait-specific intervention for the rehabilitation of walking after SCI: role of the arms. J Neurophysiol 2018; 119:2194-2211. [PMID: 29364074 DOI: 10.1152/jn.00569.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Arm movements modulate leg activity and improve gait efficiency; however, current rehabilitation interventions focus on improving walking through gait-specific training and do not actively involve the arms. The goal of this project was to assess the effect of a rehabilitation strategy involving simultaneous arm and leg cycling on improving walking after incomplete spinal cord injury (iSCI). We investigated the effect of 1) non-gait-specific training and 2) active arm involvement during training on changes in over ground walking capacity. Participants with iSCI were assigned to simultaneous arm-leg cycling (A&L) or legs only cycling (Leg) training paradigms, and cycling movements were assisted with electrical stimulation. Overground walking speed significantly increased by 0.092 ± 0.022 m/s in the Leg group and 0.27 ± 0.072m/s in the A&L group after training. Whereas the increases in the Leg group were similar to those seen after current locomotor training strategies, increases in the A&L group were significantly larger than those in the Leg group. Walking distance also significantly increased by 32.12 ± 8.74 m in the Leg and 91.58 ± 36.24 m in the A&L group. Muscle strength, sensation, and balance improved in both groups; however, the A&L group had significant improvements in most gait measures and had more regulated joint kinematics and muscle activity after training compared with the Leg group. We conclude that electrical stimulation-assisted cycling training can produce significant improvements in walking after SCI. Furthermore, active arm involvement during training can produce greater improvements in walking performance. This strategy may also be effective in people with other neural disorders or diseases. NEW & NOTEWORTHY This work challenges concepts of task-specific training for the rehabilitation of walking and encourages coordinated training of the arms and legs after spinal cord injury. Cycling of the legs produced significant improvements in walking that were similar in magnitude to those reported with gait-specific training. Moreover, active engagement of the arms simultaneously with the legs generated nearly double the improvements obtained by leg training only. The cervico-lumbar networks are critical for the improvement of walking.
Collapse
Affiliation(s)
- Rui Zhou
- Neuroscience & Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta , Edmonton, Alberta , Canada
| | - Laura Alvarado
- Neuroscience & Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta , Edmonton, Alberta , Canada
| | - Robert Ogilvie
- Division of Physical Medicine & Rehabilitation, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta , Edmonton, Alberta , Canada
| | - Su Ling Chong
- Division of Physical Medicine & Rehabilitation, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta , Edmonton, Alberta , Canada
| | - Oriana Shaw
- Division of Physical Medicine & Rehabilitation, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta , Edmonton, Alberta , Canada
| | - Vivian K Mushahwar
- Neuroscience & Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Division of Physical Medicine & Rehabilitation, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta , Edmonton, Alberta , Canada
| |
Collapse
|
17
|
Barss TS, Ainsley EN, Claveria-Gonzalez FC, Luu MJ, Miller DJ, Wiest MJ, Collins DF. Utilizing Physiological Principles of Motor Unit Recruitment to Reduce Fatigability of Electrically-Evoked Contractions: A Narrative Review. Arch Phys Med Rehabil 2017; 99:779-791. [PMID: 28935232 DOI: 10.1016/j.apmr.2017.08.478] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/08/2017] [Accepted: 08/16/2017] [Indexed: 10/18/2022]
Abstract
Neuromuscular electrical stimulation (NMES) is used to produce contractions to restore movement and reduce secondary complications for individuals experiencing motor impairment. NMES is conventionally delivered through a single pair of electrodes over a muscle belly or nerve trunk using short pulse durations and frequencies between 20 and 40Hz (conventional NMES). Unfortunately, the benefits and widespread use of conventional NMES are limited by contraction fatigability, which is in large part because of the nonphysiological way that contractions are generated. This review provides a summary of approaches designed to reduce fatigability during NMES, by using physiological principles that help minimize fatigability of voluntary contractions. First, relevant principles of the recruitment and discharge of motor units (MUs) inherent to voluntary contractions and conventional NMES are introduced, and the main mechanisms of fatigability for each contraction type are briefly discussed. A variety of NMES approaches are then described that were designed to reduce fatigability by generating contractions that more closely mimic voluntary contractions. These approaches include altering stimulation parameters, to recruit MUs in their physiological order, and stimulating through multiple electrodes, to reduce MU discharge rates. Although each approach has unique advantages and disadvantages, approaches that minimize MU discharge rates hold the most promise for imminent translation into rehabilitation practice. The way that NMES is currently delivered limits its utility as a rehabilitative tool. Reducing fatigability by delivering NMES in ways that better mimic voluntary contractions holds promise for optimizing the benefits and widespread use of NMES-based programs.
Collapse
Affiliation(s)
- Trevor S Barss
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Emily N Ainsley
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Francisca C Claveria-Gonzalez
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada; Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - M John Luu
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Dylan J Miller
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Matheus J Wiest
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada; Biomechanics Laboratory, Department of Physical Education, Federal University of Santa Catarina, Florianópolis, Brazil
| | - David F Collins
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
18
|
Dalise S, Cavalli L, Ghuman H, Wahlberg B, Gerwig M, Chisari C, Ambrosio F, Modo M. Biological effects of dosing aerobic exercise and neuromuscular electrical stimulation in rats. Sci Rep 2017; 7:10830. [PMID: 28883534 PMCID: PMC5589775 DOI: 10.1038/s41598-017-11260-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/22/2017] [Indexed: 11/09/2022] Open
Abstract
Aerobic exercise (AE) and non-aerobic neuromuscular electric stimulation (NMES) are common interventions used in physical therapy. We explored the dose-dependency (low, medium, high) of these interventions on biochemical factors, such as brain derived neurotrophic growth factor (BDNF), vascular endothelial growth factor-A (VEGF-A), insulin-like growth factor-1 (IGF-1) and Klotho, in the blood and brain of normal rats, as well as a treadmill-based maximum capacity test (MCT). A medium dose of AE produced the most improvement in MCT with dose-dependent changes in Klotho in the blood. A dose-dependent increase of BDNF was evident following completion of an NMES protocol, but there was no improvement in MCT performance. Gene expression in the hippocampus was increased after both AE and NMES, with IGF-1 being a signaling molecule that correlated with MCT performance in the AE conditions, but also highly correlated with VEGF-A and Klotho. Blood Klotho levels can serve as a biomarker of therapeutic dosing of AE, whereas IGF-1 is a key molecule coupled to gene expression of other molecules in the hippocampus. This approach provides a translatable paradigm to investigate the mode and mechanism of action of interventions employed in physical therapy that can improve our understanding of how these factors change under pathological conditions.
Collapse
Affiliation(s)
- Stefania Dalise
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA.,University Hospital of Pisa, Department of Neuroscience, Unit of Neurorehabilitation, Pisa, Italy
| | - Loredana Cavalli
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA.,University Hospital of Pisa, Department of Neuroscience, Unit of Neurorehabilitation, Pisa, Italy
| | - Harmanvir Ghuman
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, Pittsburgh, Pennsylvania, USA
| | | | | | - Carmelo Chisari
- University Hospital of Pisa, Department of Neuroscience, Unit of Neurorehabilitation, Pisa, Italy
| | - Fabrisia Ambrosio
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, Pittsburgh, Pennsylvania, USA.,Department of Physical Medicine and Rehabilitation, Pittsburgh, Pennsylvania, USA
| | - Michel Modo
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA. .,Department of Bioengineering, Pittsburgh, Pennsylvania, USA. .,Department of Radiology, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
19
|
Bergquist AJ, Wiest MJ, Okuma Y, Collins DF. Interleaved neuromuscular electrical stimulation after spinal cord injury. Muscle Nerve 2017; 56:989-993. [PMID: 28245521 DOI: 10.1002/mus.25634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2017] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Neuromuscular electrical stimulation (NMES) over a muscle belly (mNMES) recruits superficial motor units (MUs) preferentially, whereas NMES over a nerve trunk (nNMES) recruits MUs evenly throughout the muscle. We performed tests to determine whether "interleaving" pulses between the mNMES and nNMES sites (iNMES) reduces the fatigability of contractions for people experiencing paralysis because of chronic spinal cord injury. METHODS Plantar flexion torque and soleus electromyography (M-waves) were recorded from 8 participants. A fatigue protocol (75 contractions; 2 s on/2 s off for 5 min) was delivered by iNMES. The results were compared with previously published data collected with mNMES and nNMES in the same 8 participants. RESULTS Torque declined ∼40% more during mNMES than during nNMES or iNMES. M-waves declined during mNMES but not during nNMES or iNMES. DISCUSSION To reduce fatigability of electrically evoked contractions of paralyzed plantar flexors, iNMES is equivalent to nNMES, and both are superior to mNMES. Muscle Nerve 56: 989-993, 2017.
Collapse
Affiliation(s)
- Austin J Bergquist
- Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Matheus J Wiest
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, E-488 Van Vliet Centre, University of Alberta, Edmonton, Alberta, Canada, T6G 2H9
| | - Yoshino Okuma
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, E-488 Van Vliet Centre, University of Alberta, Edmonton, Alberta, Canada, T6G 2H9
| | - David F Collins
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, E-488 Van Vliet Centre, University of Alberta, Edmonton, Alberta, Canada, T6G 2H9
| |
Collapse
|
20
|
Wiest MJ, Bergquist AJ, Schimidt HL, Jones KE, Collins DF. Interleaved neuromuscular electrical stimulation: Motor unit recruitment overlap. Muscle Nerve 2017; 55:490-499. [PMID: 27422814 DOI: 10.1002/mus.25249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 07/05/2016] [Accepted: 07/13/2016] [Indexed: 11/12/2022]
Abstract
INTRODUCTION In this study, we quantified the "overlap" between motor units recruited by single pulses of neuromuscular electrical stimulation (NMES) delivered over the tibialis anterior muscle (mNMES) and the common peroneal nerve (nNMES). We then quantified the torque produced when pulses were alternated between the mNMES and nNMES sites at 40 Hz ("interleaved" NMES; iNMES). METHODS Overlap was assessed by comparing torque produced by twitches evoked by mNMES, nNMES, and both delivered together, over a range of stimulus intensities. Trains of iNMES were delivered at the intensity that produced the lowest overlap. RESULTS Overlap was lowest (5%) when twitches evoked by both mNMES and nNMES produced 10% peak twitch torque. iNMES delivered at this intensity generated 25% of maximal voluntary dorsiflexion torque (11 Nm). DISCUSSION Low intensity iNMES leads to low overlap and produces torque that is functionally relevant to evoke dorsiflexion during walking. Muscle Nerve 55: 490-499, 2017.
Collapse
Affiliation(s)
- Matheus J Wiest
- Laboratory of Neurophysiology, Faculty of Physical Education and Recreation, 4-218 Van Vliet Complex, University of Alberta, Edmonton, Canada, T6G 2H9
| | - Austin J Bergquist
- Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
| | - Helen L Schimidt
- Laboratory of Neurophysiology, Faculty of Physical Education and Recreation, 4-218 Van Vliet Complex, University of Alberta, Edmonton, Canada, T6G 2H9.,Applied Neuromechanics Research Group, Neuromechanics Laboratory, Universidade Federal do Pampa, Uruguaiana, Brazil
| | - Kelvin E Jones
- Laboratory of Neurophysiology, Faculty of Physical Education and Recreation, 4-218 Van Vliet Complex, University of Alberta, Edmonton, Canada, T6G 2H9
| | - David F Collins
- Laboratory of Neurophysiology, Faculty of Physical Education and Recreation, 4-218 Van Vliet Complex, University of Alberta, Edmonton, Canada, T6G 2H9
| |
Collapse
|