1
|
Torri F, Mancuso M, Siciliano G, Ricci G. Beyond Motor Neurons in Spinal Muscular Atrophy: A Focus on Neuromuscular Junction. Int J Mol Sci 2024; 25:7311. [PMID: 39000416 PMCID: PMC11242411 DOI: 10.3390/ijms25137311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
5q-Spinal muscular atrophy (5q-SMA) is one of the most common neuromuscular diseases due to homozygous mutations in the SMN1 gene. This leads to a loss of function of the SMN1 gene, which in the end determines lower motor neuron degeneration. Since the generation of the first mouse models of SMA neuropathology, a complex degenerative involvement of the neuromuscular junction and peripheral axons of motor nerves, alongside lower motor neurons, has been described. The involvement of the neuromuscular junction in determining disease symptoms offers a possible parallel therapeutic target. This narrative review aims at providing an overview of the current knowledge about the pathogenesis and significance of neuromuscular junction dysfunction in SMA, circulating biomarkers, outcome measures and available or developing therapeutic approaches.
Collapse
Affiliation(s)
- Francesca Torri
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
2
|
Alipour M, Moeini M, Panahi M, Khashei Varnamkhasti K. Congenital myasthenic syndromes in two male siblings born to healthy consanguineous parents: a case report. Int J Neurosci 2024:1-3. [PMID: 38294717 DOI: 10.1080/00207454.2024.2313010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/27/2024] [Indexed: 02/01/2024]
Abstract
PURPOSE Congenital myasthenic syndromes include a wide range of early-onset genetic neuromuscular transmission disorders. Mutations in any one of genes coding for proteins related to the neuromuscular junction synaptic transmission function, can lead to such rare recessive inherited disorders. CASE PRESENTATION We present a report on recurrence of congenital myasthenic syndromes in two consecutive male siblings who were diagnosed on the basis of clinical findings. CONCLUSION To minimize risks for having affected child/children with autosomal recessive disorders, consanguineous couples must undergo genetic risk assessment, counseling, and screening.
Collapse
Affiliation(s)
- Marzyeh Alipour
- Department of Obstetrics and Gynecology, Imam Ali Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Moeini
- Department of Pediatrics, Valiasr Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masumeh Panahi
- Department of Obstetrics and Gynecology, Valiasr Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khalil Khashei Varnamkhasti
- Department of Medical Laboratory Sciences, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
3
|
Bonanno S, Giossi R, Zanin R, Porcelli V, Iannacone C, Baranello G, Ingenito G, Iyadurai S, Stevic Z, Peric S, Maggi L. Amifampridine safety and efficacy in spinal muscular atrophy ambulatory patients: a randomized, placebo-controlled, crossover phase 2 trial. J Neurol 2022; 269:5858-5867. [PMID: 35763114 PMCID: PMC9243784 DOI: 10.1007/s00415-022-11231-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is an autosomal recessive disease where a deficient amount of SMN protein leads to progressive lower motor neuron degeneration. SMN-enhancing therapies are now available. Yet, fatigue and signs of impaired neuromuscular junction (NMJ) transmission could contribute to SMA phenotype. Amifampridine prolongs presynaptic NMJ terminal depolarization, enhancing neuromuscular transmission. METHODS SMA-001 was a phase 2, 1:1 randomized, double-blind, placebo-controlled crossover study. Ambulatory (walking unaided at least 30 m) SMA Type 3 patients, untreated with SMN-enhancing medications, entered a run-in phase where amifampridine was titrated up to an optimized stable dose. Patients achieving at least three points improvement in Hammersmith Functional Motor Score Expanded (HFMSE) were randomized to amifampridine or placebo, alternatively, in the 28-day double-blind crossover phase. Safety was evaluated by adverse events (AE) collection. Primary efficacy measure was the HFMSE change from randomization. Secondary outcomes included timed tests and quality of life assessment. Descriptive analyses and a mixed effects linear model were used for statistics. RESULTS From 14 January 2019, 13 patients, mean age 34.5 years (range 18-53), with 5/13 (38.5%) females, were included. No serious AE were reported. Transient paresthesia (33.3%) was the only amifampridine-related AE. Six patients for each treatment sequence were randomized. Amifampridine treatment led to a statistically significant improvement in HFMSE (mean difference 0.792; 95% CI from 0.22 to 1.37; p = 0.0083), compared to placebo, but not in secondary outcomes. DISCUSSION SMA-001 study provided Class II evidence that amifampridine was safe and effective in treating ambulatory SMA type 3 patients. CLINICAL TRIAL REGISTRATION NCT03781479; EUDRACT 2017-004,600-22.
Collapse
Affiliation(s)
- Silvia Bonanno
- Neuroimmunology and Neuromuscular Disease Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Riccardo Giossi
- Neuroimmunology and Neuromuscular Disease Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
- Department of Oncology and Onco-Hematology, Postgraduate School of Clinical Pharmacology and Toxicology, University of Milan, Milan, Italy
| | - Riccardo Zanin
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Valentina Porcelli
- Department of Clinical Research and Innovation, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Giovanni Baranello
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Developmental Neuroscience Research and Teaching Department, Faculty of Population Health Sciences, Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | | | - Stanley Iyadurai
- Catalyst Pharmaceuticals, Inc., Coral Gables, USA
- Johns Hopkins All Children's Hospital, St Petersburg, FL, 33701, USA
| | - Zorica Stevic
- Faculty of Medicine, Neurology Clinic, University Clinical Center of Serbia, University of Belgrade, Dr Subotica 6, 11000, Belgrade, Serbia
| | - Stojan Peric
- Faculty of Medicine, Neurology Clinic, University Clinical Center of Serbia, University of Belgrade, Dr Subotica 6, 11000, Belgrade, Serbia
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular Disease Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy.
| |
Collapse
|
4
|
Ceccanti M, Libonati L, Ruffolo G, Cifelli P, Moret F, Frasca V, Palma E, Inghilleri M, Cambieri C. Effects of 3,4-diaminopyridine on myasthenia gravis: Preliminary results of an open-label study. Front Pharmacol 2022; 13:982434. [PMID: 36052140 PMCID: PMC9424766 DOI: 10.3389/fphar.2022.982434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background: 3,4-diaminopyridine (3,4-DAP) can lead to clinical and electrophysiological improvement in myasthenic syndrome; it may thus represent a valuable therapeutic option for patients intolerant to pyridostigmine. Objective: to assess 3,4-diaminopyridine (3,4-DAP) effects and tolerability in patients with anti-AChR myasthenia gravis. Method: Effects were monitored electrophysiologically by repetitive nerve stimulation (RNS) and by standardized clinical testing (QMG score) before and after a single dose administration of 3,4-DAP 10 mg per os in 15 patients. Patients were divided according to their Myasthenia Gravis Foundation of America (MGFA) class into mild and severe. Results: No significant side effects were found, apart from transient paresthesia. 3,4-DAP had a significant effect on the QMG score (p = 0.0251), on repetitive nerve stimulation (p = 0.0251), and on the forced vital capacity (p = 0.03), thus indicating that it may reduce the level of disability and the decremental muscle response. When the patients were divided according to the MGFA classification, 3,4-DAP showed a positive effect in the severe group, either for the QMG score (p = 0.031) or for the RNS decrement (p = 0.031). No significant difference was observed in any of the outcome measures within the mild group (p > 0.05). A direct effect of 3,4-DAP on nicotinic ACh receptors (nAChRs) was excluded since human nAChRs reconstituted in an expression system, which were not affected by 3,4-DAP application. Conclusion: Our results suggest that 3,4-DAP may be a useful add-on therapy, especially in most severe patients or when immunosuppressive treatment has not yet reached its full effect or when significant side-effects are associated with anticholinesterase.
Collapse
Affiliation(s)
- Marco Ceccanti
- Neuromuscular Disorders Unit, Department of Human Neurosciences, Sapienza University, Rome, Italy
| | - Laura Libonati
- Neuromuscular Disorders Unit, Department of Human Neurosciences, Sapienza University, Rome, Italy
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Institute Pasteur- Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy
- IRCCS San Raffaele Pisana, Rome, Italy
| | - Pierangelo Cifelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila, Italy
| | - Federica Moret
- Neuromuscular Disorders Unit, Department of Human Neurosciences, Sapienza University, Rome, Italy
| | - Vittorio Frasca
- Neuromuscular Disorders Unit, Department of Human Neurosciences, Sapienza University, Rome, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Institute Pasteur- Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy
| | - Maurizio Inghilleri
- Neuromuscular Disorders Unit, Department of Human Neurosciences, Sapienza University, Rome, Italy
| | - Chiara Cambieri
- Neuromuscular Disorders Unit, Department of Human Neurosciences, Sapienza University, Rome, Italy
- *Correspondence: Chiara Cambieri,
| |
Collapse
|
5
|
Treatment and Management of Disorders of the Neuromuscular Junction. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
De Giglio L, Cortese F, Pennisi EM. Aminopiridines in the treatment of multiple sclerosis and other neurological disorders. Neurodegener Dis Manag 2020; 10:409-423. [PMID: 33054615 DOI: 10.2217/nmt-2020-0018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Symptomatic treatment has a great relevance for the management of patients with neurologic diseases, since it reduces disease burden and improves quality of life. Aminopyridines (APs) are a group of potassium (K+) channel blocking agents that exert their activity both at central nervous system level and on neuromuscular junction. This review describes the use of APs for the symptomatic treatment of neurological conditions. We will describe trials leading to the approval of the extended-release 4-aminopyridine for MS and evidence in support of the use in other neurological diseases.
Collapse
Affiliation(s)
- Laura De Giglio
- Department of Medicine, San Filippo Neri Hospital, Neurology Unit, Rome, Italy
| | - Francesca Cortese
- Department of Medicine, San Filippo Neri Hospital, Neurology Unit, Rome, Italy
| | - Elena Maria Pennisi
- Department of Medicine, San Filippo Neri Hospital, Neurology Unit, Rome, Italy
| |
Collapse
|
7
|
Abstract
Introduction: The present status of amifampridine (AFP) for the treatment of Lambert-Eaton myasthenic syndrome (LEMS) is reviewed. Areas covered: All relevant literature identified through a PubMed search under treatment of LEMS, aminopyridine, and amifampridine are reviewed. An expert opinion on AFP was formulated. Expert opinion: AFPs, 3,4-DAP and 3,4-DAPP, are the most studied drugs in neuromuscular diseases. Randomized and non-randomized studies showed the most effective drug as symptomatic medication for LEMS. AFPs are safe and tolerable. Thus, AFPs should be the drug of choice for the symptomatic treatment in LEMS. As long as the daily dose is less than 80 mg a day, there is no concern for the serious side-reaction, seizure. Because of short-acting drug effects, it should be given three or four times a day. Peri-oral and finger paresthesia, the most common side-reaction, is accepted as a sign of drug-intake by many patients. Gastro-intestinal side reactions, the next common side-reaction of AFPs, are tolerable. AFPs are also the drug of choice and life-saving for LEMS crisis. For the long-term usage, it is proven to be safe and AFPs can be supplemented with liberal amount of pyridostigmine to sustain a symptomatic improvement without any undue side-reaction.
Collapse
Affiliation(s)
- Shin J Oh
- Department of Neurology, University of Alabama , Birmingham , AL , USA
| |
Collapse
|
8
|
Bonanno S, Pasanisi MB, Frangiamore R, Maggi L, Antozzi C, Andreetta F, Campanella A, Brenna G, Cottini L, Mantegazza R. Amifampridine phosphate in the treatment of muscle-specific kinase myasthenia gravis: a phase IIb, randomized, double-blind, placebo-controlled, double crossover study. SAGE Open Med 2018; 6:2050312118819013. [PMID: 30574306 PMCID: PMC6299310 DOI: 10.1177/2050312118819013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/21/2018] [Indexed: 11/16/2022] Open
Abstract
Objective: The aim of this study is to determine the safety and the efficacy of amifampridine phosphate in muscle-specific kinase antibody-positive myasthenia gravis, in a 1:1 randomized, double-blind, placebo-controlled, switchback, double crossover study. Methods: Eligible patients had muscle-specific kinase myasthenia gravis, >18 years of age, and Myasthenia Gravis Foundation of America class II–IV with a score of ⩾9 on Myasthenia Gravis Composite scale. After the run-in phase, during which amifampridine phosphate was titrated to a tolerable and effective dosage, patients were randomized to receive placebo–amifampridine–placebo sequence or amifampridine–placebo–amifampridine sequence daily for 7 days. Then, patients switched treatment arms twice, for a total of 21 days of double-blind treatment. Safety was determined by serial assessments of adverse events/serious adverse events, physical examinations, and clinical and laboratory tests. The co-primary outcome measures included changes from baseline of Quantitative Myasthenia Gravis score and Myasthenia Gravis–specific Activities of Daily Living Profile score. The secondary outcome measures comprised changes from baseline of Myasthenia Gravis Composite score, Myasthenia Gravis Quality of Life scale—15 questions, Fatigue Severity Scale, and Carlo Besta Neurological Institute–Myasthenia Gravis scale. Statistical analyses were assessed using a switchback model for three-period, two-treatment crossover design. Results: A total of 10 patients were screened, enrolled, and treated. Transient paresthesias (60%) were the only amifampridine phosphate–related adverse events reported. Four patients were randomized to receive placebo–amifampridine–placebo sequence and three patients to receive amifampridine–placebo–amifampridine sequence. The co-primary objectives were statistically met (Quantitative Myasthenia Gravis score: p = 0.0003 and Myasthenia Gravis–specific Activities of Daily Living Profile score: p = 0.0006), as well as all the secondary endpoints (Myasthenia Gravis Composite score: p < 0.0001, Myasthenia Gravis Quality of Life scale—15 questions: p = 0.0025, Fatigue Severity Scale: p = 0.0061, and Carlo Besta Neurological Institute–Myasthenia Gravis scale: p = 0.0014). Conclusion: Despite the low number of patients, MuSK-001 study provided evidence that amifampridine phosphate, in the range of 30–60 mg daily dose, was safe and effective in treating muscle-specific kinase myasthenia gravis, suggesting the need for a large multi-center trial to confirm these results.
Collapse
Affiliation(s)
- Silvia Bonanno
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta (INCB), Milan, Italy
| | - Maria Barbara Pasanisi
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta (INCB), Milan, Italy
| | - Rita Frangiamore
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta (INCB), Milan, Italy
| | - Lorenzo Maggi
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta (INCB), Milan, Italy
| | - Carlo Antozzi
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta (INCB), Milan, Italy
| | - Francesca Andreetta
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta (INCB), Milan, Italy
| | - Angela Campanella
- Department of Clinical Research and Innovation, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta (INCB), Milan, Italy
| | | | | | - Renato Mantegazza
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta (INCB), Milan, Italy.,Department of Clinical Research and Innovation, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta (INCB), Milan, Italy
| |
Collapse
|
9
|
Bhatia S, Quinlan H, McCracken C, Price EW, Guglani L, Verma S. Serial Stimulated Jitter Analysis In Juvenile Myasthenia Gravis. Muscle Nerve 2018; 58:729-732. [DOI: 10.1002/mus.26319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/27/2018] [Accepted: 08/05/2018] [Indexed: 11/08/2022]
Affiliation(s)
| | - Haley Quinlan
- Department of Rehabilitation and Therapy Services; Children's Healthcare of Atlanta; Atlanta Georgia USA
| | - Courtney McCracken
- Division of Biostatistics, Department of Pediatrics; Emory University School of Medicine; Atlanta Georgia USA
| | - Eric W. Price
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics; Emory University School of Medicine; Atlanta Georgia USA
| | - Lokesh Guglani
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics; Emory University School of Medicine; Atlanta Georgia USA
| | - Sumit Verma
- Division of Pediatric Neurology, Department of Pediatrics; Emory University School of Medicine, Atlanta, 1605 Chantilly Drive NE, Suite 300; Atlanta Georgia 30324 USA
| |
Collapse
|
10
|
Farmakidis C, Pasnoor M, Barohn RJ, Dimachkie MM. Congenital Myasthenic Syndromes: a Clinical and Treatment Approach. Curr Treat Options Neurol 2018; 20:36. [DOI: 10.1007/s11940-018-0520-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|