1
|
Olthof MGL, Hasler A, Valdivieso P, Flück M, Gerber C, Gehrke R, Klein K, von Rechenberg B, Snedeker JG, Wieser K. Poly(ADP-Ribose) Polymerases-Inhibitor Talazoparib Inhibits Muscle Atrophy and Fatty Infiltration in a Tendon Release Infraspinatus Sheep Model: A Pilot Study. Metabolites 2024; 14:187. [PMID: 38668315 PMCID: PMC11051840 DOI: 10.3390/metabo14040187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Structural muscle changes, including muscle atrophy and fatty infiltration, follow rotator cuff tendon tear and are associated with a high repair failure rate. Despite extensive research efforts, no pharmacological therapy is available to successfully prevent both muscle atrophy and fatty infiltration after tenotomy of tendomuscular unit without surgical repair. Poly(ADP-ribose) polymerases (PARPs) are identified as a key transcription factors involved in the maintenance of cellular homeostasis. PARP inhibitors have been shown to influence muscle degeneration, including mitochondrial hemostasis, oxidative stress, inflammation and metabolic activity, and reduced degenerative changes in a knockout mouse model. Tenotomized infraspinatus were assessed for muscle degeneration for 16 weeks using a Swiss Alpine sheep model (n = 6). All sheep received daily oral administration of 0.5 mg Talazoparib. Due to animal ethics, the treatment group was compared with three different controls from prior studies of our institution. To mitigate potential batch heterogeneity, PARP-I was evaluated in comparison with three distinct control groups (n = 6 per control group) using the same protocol without treatment. The control sheep were treated with an identical study protocol without Talazoparib treatment. Muscle atrophy and fatty infiltration were evaluated at 0, 6 and 16 weeks post-tenotomy using DIXON-MRI. The controls and PARP-I showed a significant (control p < 0.001, PARP-I p = 0.01) decrease in muscle volume after 6 weeks. However, significantly less (p = 0.01) atrophy was observed in PARP-I after 6 weeks (control 1: 76.6 ± 8.7%; control 2: 80.3 ± 9.3%, control 3: 73.8 ± 6.7% vs. PARP-I: 90.8 ± 5.1% of the original volume) and 16 weeks (control 1: 75.7 ± 9.9; control 2: 74.2 ± 5.6%; control 3: 75.3 ± 7.4% vs. PARP-I 93.3 ± 10.6% of the original volume). All experimental groups exhibited a statistically significant (p < 0.001) augmentation in fatty infiltration following a 16-week period when compared to the initial timepoint. However, the PARP-I showed significantly less fatty infiltration (p < 0.003) compared to all controls (control 1: 55.6 ± 6.7%, control 2: 53.4 ± 9.4%, control 3: 52.0 ± 12.8% vs. PARP-I: 33.5 ± 8.4%). Finally, a significantly (p < 0.04) higher proportion and size of fast myosin heavy chain-II fiber type was observed in the treatment group. This study shows that PARP-inhibition with Talazoparib inhibits the progression of both muscle atrophy and fatty infiltration over 16 weeks in retracted sheep musculotendinous units.
Collapse
Affiliation(s)
- Maurits G. L. Olthof
- Department of Orthopaedics, Balgrist, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (A.H.); (C.G.); (J.G.S.); (K.W.)
| | - Anita Hasler
- Department of Orthopaedics, Balgrist, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (A.H.); (C.G.); (J.G.S.); (K.W.)
| | - Paola Valdivieso
- Laboratory for Muscle Plasticity, Department of Orthopedics, Balgrist Campus, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (P.V.); (M.F.)
| | - Martin Flück
- Laboratory for Muscle Plasticity, Department of Orthopedics, Balgrist Campus, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (P.V.); (M.F.)
| | - Christian Gerber
- Department of Orthopaedics, Balgrist, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (A.H.); (C.G.); (J.G.S.); (K.W.)
| | - Rieke Gehrke
- Musculoskeletal Research Unit, Center for Applied Biotechnology and Molecular Medicine, Equine Department, Vetsuisse Faculty, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (R.G.); (K.K.); (B.v.R.)
| | - Karina Klein
- Musculoskeletal Research Unit, Center for Applied Biotechnology and Molecular Medicine, Equine Department, Vetsuisse Faculty, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (R.G.); (K.K.); (B.v.R.)
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit, Center for Applied Biotechnology and Molecular Medicine, Equine Department, Vetsuisse Faculty, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (R.G.); (K.K.); (B.v.R.)
| | - Jess G. Snedeker
- Department of Orthopaedics, Balgrist, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (A.H.); (C.G.); (J.G.S.); (K.W.)
- Institute for Biomechanics, ETH Zurich, Gloriastrasse 37/39, 8092 Zürich, Switzerland
| | - Karl Wieser
- Department of Orthopaedics, Balgrist, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (A.H.); (C.G.); (J.G.S.); (K.W.)
| |
Collapse
|
2
|
Flück M, Sanchez C, Jacquemond V, Berthier C, Giraud MN, Jacko D, Bersiner K, Gehlert S, Baan G, Jaspers RT. Enhanced capacity for CaMKII signaling mitigates calcium release related contractile fatigue with high intensity exercise. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119610. [PMID: 37913845 DOI: 10.1016/j.bbamcr.2023.119610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/27/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND We tested whether enhancing the capacity for calcium/calmodulin-dependent protein kinase type II (CaMKII) signaling would delay fatigue of excitation-induced calcium release and improve contractile characteristics of skeletal muscle during fatiguing exercise. METHODS Fast and slow type muscle, gastrocnemius medialis (GM) and soleus (SOL), of rats and mouse interosseus (IO) muscle fibers, were transfected with pcDNA3-based plasmids for rat α and β CaMKII or empty controls. Levels of CaMKII, its T287-phosphorylation (pT287-CaMKII), and phosphorylation of components of calcium release and re-uptake, ryanodine receptor 1 (pS2843-RyR1) and phospholamban (pT17-PLN), were quantified biochemically. Sarcoplasmic calcium in transfected muscle fibers was monitored microscopically during trains of electrical excitation based on Fluo-4 FF fluorescence (n = 5-7). Effects of low- (n = 6) and high- (n = 8) intensity exercise on pT287-CaMKII and contractile characteristics were studied in situ. RESULTS Co-transfection with αCaMKII-pcDNA3/βCaMKII-pcDNA3 increased α and βCaMKII levels in SOL (+45.8 %, +250.5 %) and GM (+40.4 %, +89.9 %) muscle fibers compared to control transfection. High-intensity exercise increased pT287-βCaMKII and pS2843-RyR1 levels in SOL (+269 %, +151 %) and GM (+354 %, +119 %), but decreased pT287-αCaMKII and p17-PLN levels in GM compared to SOL (-76 % vs. +166 %; 0 % vs. +128 %). α/β CaMKII overexpression attenuated the decline of calcium release in muscle fibers with repeated excitation, and mitigated exercise-induced deterioration of rates in force production, and passive force, in a muscle-dependent manner, in correlation with pS2843-RyR1 and pT17-PLN levels (|r| > 0.7). CONCLUSION Enhanced capacity for α/β CaMKII signaling improves fatigue-resistance of active and passive contractile muscle properties in association with RyR1- and PLN-related improvements in sarcoplasmic calcium release.
Collapse
Affiliation(s)
- Martin Flück
- Department of Medicine, University of Fribourg, Switzerland; Manchester Metropolitan University, United Kingdom.
| | - Colline Sanchez
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène - Pathophysiology and Genetics of Neuron and Muscle, 69008 Lyon, France
| | - Vincent Jacquemond
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène - Pathophysiology and Genetics of Neuron and Muscle, 69008 Lyon, France
| | - Christine Berthier
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène - Pathophysiology and Genetics of Neuron and Muscle, 69008 Lyon, France
| | | | - Daniel Jacko
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Germany
| | - Käthe Bersiner
- Department of Biosciences of Sports, Institute for Sports Sciences, University of Hildesheim, Hildesheim, Germany
| | - Sebastian Gehlert
- Department of Biosciences of Sports, Institute for Sports Sciences, University of Hildesheim, Hildesheim, Germany
| | - Guus Baan
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 HZ Amsterdam, the Netherlands
| | - Richard T Jaspers
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 HZ Amsterdam, the Netherlands
| |
Collapse
|
3
|
Olthof MG, Flück M, Borbas P, Valdivieso P, Toigo M, Egli F, Joshy J, Filli L, Snedeker JG, Gerber C, Wieser K. Structural Musculotendinous Parameters That Predict Failed Tendon Healing After Rotator Cuff Repair. Orthop J Sports Med 2023; 11:23259671231196875. [PMID: 37736603 PMCID: PMC10510361 DOI: 10.1177/23259671231196875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 09/23/2023] Open
Abstract
Background Healing of the rotator cuff after repair constitutes a major clinical challenge with reported high failure rates. Identifying structural musculotendinous predictors for failed rotator cuff repair could enable improved diagnosis and management of patients with rotator cuff disease. Purpose To investigate structural predictors of the musculotendinous unit for failed tendon healing after rotator cuff repair. Study Design Cohort study; Level of evidence, 2. Methods Included were 116 shoulders of 115 consecutive patients with supraspinatus (SSP) tear documented on magnetic resonance imaging (MRI) who were treated with an arthroscopic rotator cuff repair. Preoperative assessment included standardized clinical and imaging (MRI) examinations. Intraoperatively, biopsies of the joint capsule, the SSP tendon, and muscle were harvested for histological assessment. At 3 and 12 months postoperatively, patients were re-examined clinically and with MRI. Structural and clinical predictors of healing were evaluated using logistic and linear regression models. Results Structural failure of tendon repair, which was significantly associated with poorer clinical outcome, was associated with older age (β = 1.12; 95% CI, 1.03 to 1.26; P = .03), shorter SSP tendon length (β = 0.89; 95% CI, 0.8 to 0.98; P = .02), and increased proportion of slow myosin heavy chain (MHC)-I/fast MHC-II hybrid muscle fibers (β = 1.23; 95% CI, 1.07 to 1.42; P = .004). Primary clinical outcome (12-month postoperative Constant score) was significantly less favorable for shoulders with fatty infiltration of the infraspinatus muscle (β = -4.71; 95% CI, -9.30 to -0.12; P = .044). Conversely, a high content of fast MHC-II muscle fibers (β = 0.24; 95% CI, 0.026 to 0.44; P = .028) was associated with better clinical outcome. Conclusion Both decreased tendon length and increased hybrid muscle fiber type were independent predictors for retear. Clinical outcome was compromised by tendon retearing and increased fatty infiltration of the infraspinatus muscle. A high content of fast MHC-II SSP muscle fibers was associated with a better clinical outcome. Registration NCT02123784 (ClinicalTrials.govidentifier).
Collapse
Affiliation(s)
- Maurits G.L. Olthof
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Martin Flück
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Zurich, Switzerland
| | - Paul Borbas
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Paola Valdivieso
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Zurich, Switzerland
| | - Marco Toigo
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Zurich, Switzerland
| | - Fabian Egli
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Jethin Joshy
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Lukas Filli
- Department of Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jess G. Snedeker
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Christian Gerber
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Karl Wieser
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Flück M, Kasper S, Benn MC, Clement Frey F, von Rechenberg B, Giraud MN, Meyer DC, Wieser K, Gerber C. Transplant of Autologous Mesenchymal Stem Cells Halts Fatty Atrophy of Detached Rotator Cuff Muscle After Tendon Repair: Molecular, Microscopic, and Macroscopic Results From an Ovine Model. Am J Sports Med 2021; 49:3970-3980. [PMID: 34714701 PMCID: PMC8649427 DOI: 10.1177/03635465211052566] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/13/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND The injection of mesenchymal stem cells (MSCs) mitigates fat accumulation in released rotator cuff muscle after tendon repair in rodents. PURPOSE To investigate whether the injection of autologous MSCs halts muscle-to-fat conversion after tendon repair in a large animal model for rotator cuff tendon release via regional effects on extracellular fat tissue and muscle fiber regeneration. STUDY DESIGN Controlled laboratory study. METHODS Infraspinatus (ISP) muscles of the right shoulder of Swiss Alpine sheep (n = 14) were released by osteotomy and reattached 16 weeks later without (group T; n = 6) or with (group T-MSC; n = 8) electropulse-assisted injection of 0.9 Mio fluorescently labeled MSCs as microtissues with media in demarcated regions; animals were allowed 6 weeks of recovery. ISP volume and composition were documented with computed tomography and magnetic resonance imaging. Area percentages of muscle fiber types, fat, extracellular ground substance, and fluorescence-positive tissue; mean cross-sectional area (MCSA) of muscle fibers; and expression of myogenic (myogenin), regeneration (tenascin-C), and adipogenic markers (peroxisome proliferator-activated receptor gamma [PPARG2]) were quantified in injected and noninjected regions after recovery. RESULTS At 16 weeks after tendon release, the ISP volume was reduced and the fat fraction of ISP muscle was increased in group T (137 vs 185 mL; 49% vs 7%) and group T-MSC (130 vs 166 mL; 53% vs 10%). In group T-MSC versus group T, changes during recovery after tendon reattachment were abrogated for fat-free mass (-5% vs -29%, respectively; P = .018) and fat fraction (+1% vs +24%, respectively; P = .009%). The area percentage of fat was lower (9% vs 20%; P = .018) and the percentage of the extracellular ground substance was higher (26% vs 20%; P = .007) in the noninjected ISP region for group T-MSC versus group T, respectively. Regionally, MCS injection increased tenascin-C levels (+59%) and the water fraction, maintaining the reduced PPARG2 levels but not the 29% increased fiber MCSA, with media injection. CONCLUSION In a sheep model, injection of autologous MSCs in degenerated rotator cuff muscle halted muscle-to-fat conversion during recovery from tendon repair by preserving fat-free mass in association with extracellular reactions and stopping adjuvant-induced muscle fiber hypertrophy. CLINICAL RELEVANCE A relatively small dose of MSCs is therapeutically effective to halt fatty atrophy in a large animal model.
Collapse
Affiliation(s)
- Martin Flück
- Laboratory of Muscle Plasticity,
Department of Orthopedics, University of Zurich, Balgrist Campus, Zürich,
Switzerland
| | - Stephanie Kasper
- Laboratory of Muscle Plasticity,
Department of Orthopedics, University of Zurich, Balgrist Campus, Zürich,
Switzerland
| | - Mario C. Benn
- Musculoskeletal Research Unit, Center
for Applied Biotechnology and Molecular Medicine, Department of Molecular
Mechanisms, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Flurina Clement Frey
- Musculoskeletal Research Unit, Center
for Applied Biotechnology and Molecular Medicine, Department of Molecular
Mechanisms, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit, Center
for Applied Biotechnology and Molecular Medicine, Department of Molecular
Mechanisms, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Marie-Noëlle Giraud
- Cardiology, Faculty of Sciences and
Medicine, University of Fribourg, Fribourg, Switzerland
| | - Dominik C. Meyer
- Author deceased
- Laboratory of Muscle Plasticity,
Department of Orthopedics, University of Zurich, Balgrist Campus, Zürich,
Switzerland
- University Hospital Balgrist,
Department of Orthopedics, University of Zurich, Zürich, Switzerland
| | - Karl Wieser
- University Hospital Balgrist,
Department of Orthopedics, University of Zurich, Zürich, Switzerland
| | - Christian Gerber
- University Hospital Balgrist,
Department of Orthopedics, University of Zurich, Zürich, Switzerland
| |
Collapse
|
5
|
Flück M, Kramer M, Fitze DP, Kasper S, Franchi MV, Valdivieso P. Cellular Aspects of Muscle Specialization Demonstrate Genotype - Phenotype Interaction Effects in Athletes. Front Physiol 2019; 10:526. [PMID: 31139091 PMCID: PMC6518954 DOI: 10.3389/fphys.2019.00526] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/12/2019] [Indexed: 11/13/2022] Open
Abstract
Introduction Gene polymorphisms are associated with athletic phenotypes relying on maximal or continued power production and affect the specialization of skeletal muscle composition with endurance or strength training of untrained subjects. We tested whether prominent polymorphisms in genes for angiotensin converting enzyme (ACE), tenascin-C (TNC), and actinin-3 (ACTN3) are associated with the differentiation of cellular hallmarks of muscle metabolism and contraction in high level athletes. Methods Muscle biopsies were collected from m. vastus lateralis of three distinct phenotypes; endurance athletes (n = 29), power athletes (n = 17), and untrained non-athletes (n = 63). Metabolism-, and contraction-related cellular parameters (such as capillary-to-fiber ratio, capillary length density, volume densities of mitochondria and intramyocellular lipid, fiber mean cross sectional area (MCSA) and volume densities of myofibrils) and the volume densities of sarcoplasma were analyzed by quantitative electron microscopy of the biopsies. Gene polymorphisms of ACE (I/D (insertion/deletion), rs1799752), TNC (A/T, rs2104772), and ACTN3 (C/T, rs1815739) were determined using high-resolution melting polymerase chain reaction (HRM-PCR). Genotype distribution was assessed using Chi2 tests. Genotype and phenotype effects were analyzed by univariate or multivariate analysis of variance and post hoc test of Fisher. P-values below 0.05 were considered statistically significant. Results The athletes demonstrated the specialization of metabolism- and contraction-related cellular parameters. Differences in cellular parameters could be identified for genotypes rs1799752 and rs2104772, and localized post hoc when taking the interaction with the phenotype into account. Between endurance and power athletes these concerned effects on capillary length density for rs1799752 and rs2104772, fiber type distribution and volume densities of myofibrils (rs1799752), and MSCA (rs2104772). Endurance athletes carrying the I-allele of rs1799752 demonstrated 50%-higher volume densities of mitochondria and sarcoplasma, when power athletes that carried only the D-allele showed the highest fiber MCSAs and a lower percentage of slow type muscle fibers. Discussion ACE and tenascin-C gene polymorphisms are associated with differences in cellular aspects of muscle metabolism and contraction in specifically-trained high level athletes. Quantitative differences in muscle fiber type distribution and composition, and capillarization in knee extensor muscle explain, in part, identified associations of the insertion/deletion genotypes of ACE (rs1799752) with endurance- and power-type Sports.
Collapse
Affiliation(s)
- Martin Flück
- Laboratory for Muscle Plasticity, Department of Orthopedics, Balgrist University Hospital, University of Zürich, Zurich, Switzerland
| | - Manuel Kramer
- Laboratory for Muscle Plasticity, Department of Orthopedics, Balgrist University Hospital, University of Zürich, Zurich, Switzerland
| | - Daniel P Fitze
- Laboratory for Muscle Plasticity, Department of Orthopedics, Balgrist University Hospital, University of Zürich, Zurich, Switzerland
| | - Stephanie Kasper
- Laboratory for Muscle Plasticity, Department of Orthopedics, Balgrist University Hospital, University of Zürich, Zurich, Switzerland
| | - Martino V Franchi
- Laboratory for Muscle Plasticity, Department of Orthopedics, Balgrist University Hospital, University of Zürich, Zurich, Switzerland
| | - Paola Valdivieso
- Laboratory for Muscle Plasticity, Department of Orthopedics, Balgrist University Hospital, University of Zürich, Zurich, Switzerland
| |
Collapse
|