1
|
Muelas N, Carretero-Vilarroig L, Martí P, Azorín I, Frasquet M, Poyatos-García J, Portela S, Martínez-Vicente L, Argente-Escrig H, Sivera R, Vázquez-Costa JF, Tárrega M, Más-Estellés F, Vílchez R, Bataller L, Aller E, Diago L, Fores-Toribio L, Sevilla T, Vilchez JJ. Clinical features, mutation spectrum and factors related to reaching molecular diagnosis in a cohort of patients with distal myopathies. J Neurol 2025; 272:97. [PMID: 39775307 DOI: 10.1007/s00415-024-12821-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Distal myopathies (MPDs) are heterogeneous diseases of complex diagnosis whose prevalence and distribution in specific populations are unknown. METHODS Demographic, clinical, genetic, neurophysiological, histopathological and muscle imaging characteristics of a MPDs cohort from a neuromuscular reference center were analyzed to study their epidemiology, features, genetic distribution and factors related to diagnosis. RESULTS The series included 219 patients (61% were men, 94% Spanish and 41% sporadic cases). Mean age at onset and years of follow-up were 29 and 12.4, respectively. Patients commonly presented with gait disturbances in adulthood and did not usually exhibit a purely distal involvement, but disto-proximal involvement. HyperCKemia was detected in 56.6%, leading to consultation in 11.7%. Myopathic electromyography patterns and spontaneous activity were common; however, neurogenic features were also observed. Muscle imaging was useful for diagnosis as were certain histological features. Suspected pathogenic variants were identified in 68.7% of patients across 19 genes, but 85% concentrated in 8: MYH7, ANO5, DYSF, TTN, MYOT, HSPB1, GNE and HNRNPDL. Founder/cluster variants were found as well as overlap between myopathic and neurogenic processes. Onset before 60 years old, familial cases, very high CK levels and myopathic histopathological features were associated with a higher probability of molecular diagnosis. We found a minimum prevalence of MPDs of 3.9 per 100,000 individuals in the Valencian Community. CONCLUSIONS This series being the largest cohort of patients with MPDs presents their frequency and behavior. This study identifies new genes presenting as MPDs, provides data to guide diagnosis and lays the groundwork for cooperative studies.
Collapse
Affiliation(s)
- Nuria Muelas
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain.
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U763, Valencia, Spain.
- Department of Medicine, Universitat de València, Valencia, Spain.
| | - Lidón Carretero-Vilarroig
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Cavanilles Institute of Biodiversity and Evolutionary, University of Valencia, Valencia, Spain
| | - Pilar Martí
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U763, Valencia, Spain
| | - Inmaculada Azorín
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U763, Valencia, Spain
| | - Marina Frasquet
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Javier Poyatos-García
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Sofía Portela
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Laura Martínez-Vicente
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Herminia Argente-Escrig
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Rafael Sivera
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Department of Medicine, Universitat de València, Valencia, Spain
- Department of Medicine, Universidad CEU-Cardenal Herrera, Valencia, Spain
| | - Juan F Vázquez-Costa
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U763, Valencia, Spain
- Department of Medicine, Universitat de València, Valencia, Spain
| | - María Tárrega
- Department of Clinical Neurophysiology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Fernando Más-Estellés
- Ascires, Neurorradiology Section, Área Clínica de Imagen Médica, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Roger Vílchez
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U763, Valencia, Spain
| | - Luis Bataller
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U763, Valencia, Spain
- Department of Medicine, Universitat de València, Valencia, Spain
| | - Elena Aller
- Department of Genetics, Hospital Universitari i Politècnic La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U755, Valencia, Spain
| | - Luján Diago
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Lorena Fores-Toribio
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Teresa Sevilla
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U763, Valencia, Spain
- Department of Medicine, Universitat de València, Valencia, Spain
| | - Juan J Vilchez
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U763, Valencia, Spain
| |
Collapse
|
2
|
Ranta-Aho J, Johari M, Udd B. Current advance on distal myopathy genetics. Curr Opin Neurol 2024; 37:515-522. [PMID: 39017652 PMCID: PMC11377054 DOI: 10.1097/wco.0000000000001299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
PURPOSE OF REVIEW Distal myopathies are a clinically heterogenous group of rare, genetic muscle diseases, that present with weakness in hands and/or feet at onset. Some of these diseases remain accentuated in the distal muscles whereas others may later progress to the proximal muscles. In this review, the latest findings related to genetic and clinical features of distal myopathies are summarized. RECENT FINDINGS Variants in SMPX , DNAJB2, and HSPB6 have been identified as a novel cause of late-onset distal myopathy and neuromyopathy. In oculopharyngodistal myopathies, repeat expansions were identified in two novel disease-causing genes, RILPL1 and ABCD3. In multisystem proteinopathies, variants in HNRNPA1 and TARDBP , genes previously associated with amyotrophic lateral sclerosis, have been shown to cause late-onset distal myopathy without ALS. In ACTN2 -related distal myopathy, the first recessive forms of the disease have been described, adding it to the growing list of genes were both dominant and recessive forms of myopathy are present. SUMMARY The identification of novel distal myopathy genes and pathogenic variants contribute to our ability to provide a final molecular diagnosis to a larger number of patients and increase our overall understanding of distal myopathy genetics and pathology.
Collapse
Affiliation(s)
- Johanna Ranta-Aho
- Folkhälsan Research Center
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Mridul Johari
- Folkhälsan Research Center
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Bjarne Udd
- Folkhälsan Research Center
- Tampere Neuromuscular Center, Tampere University and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
3
|
Murtazina A, Subbotin D, Kuchina A, Gilvanova O, Degterev D, Shchagina O, Cherevatova T, Bulakh M, Sherstyukova D, Ryzhkova O, Kurushina O, Skoblov M, Borovikov A, Kutsev S. Asymmetric scapuloperoneal phenotype of MATR3-related distal myopathy: case series. Front Genet 2024; 15:1414928. [PMID: 39192891 PMCID: PMC11347416 DOI: 10.3389/fgene.2024.1414928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Recent research has sparked a discussion on the spectrum of diseases linked to the MATR3 gene associated with amyotrophic lateral sclerosis and distal myopathy with vocal cord and pharyngeal weakness (VCPDM). To date, fewer than 50 cases of VCPDM have been reported in the literature. We aim to build upon the work of previous researchers by gathering additional information about VCPDM. In this study, we present six patients from four unrelated families affected by VCPDM. Our observations include patients exhibiting both the typical phenotype associated with MATR3-related distal myopathy and rare symptomatic manifestations of the disease. Notably, two cases presented with an asymmetric scapuloperoneal phenotype, leading in one case to an initial misdiagnosis of facioscapulohumeral muscular dystrophy.
Collapse
Affiliation(s)
| | | | - Anna Kuchina
- Research Centre for Medical Genetics, Moscow, Russia
| | - Olga Gilvanova
- Loginov Moscow Clinical Scientific Center, Moscow, Russia
| | | | | | | | - Maria Bulakh
- Research Centre for Medical Genetics, Moscow, Russia
| | | | | | - Olga Kurushina
- Department of Neurology, Neurosurgery, Medical Genetics, Volgograd State Medical University, Volgograd, Russia
| | | | | | - Sergey Kutsev
- Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
4
|
Chiou-Tan FY, Bloodworth D. Approach to gait disorders and orthotic management in adult onset neuromuscular diseases. Muscle Nerve 2024. [PMID: 39105438 DOI: 10.1002/mus.28208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 08/07/2024]
Abstract
In order to understand abnormal gait, this article will first review normal gait, discuss how neuromuscular diseases disturb gait patterns and review orthotic interventions. In normal gait, concentric contractions accelerate and eccentric contractions decelerate the limb. Neuromuscular gait disorders can be grouped into (1) proximal weakness, (2) distal weakness, (3) nonlength-dependent or generalized weakness, (4) asymmetric weakness, and (5) sensory disorders. Identification of gait disturbance type in neuromuscular diseases leads to the appropriate orthotic prescription since orthotic strategies are grouped into (1) proximal weakness, (2) distal weakness, and (3) sensory disturbances. Orthotics is not indicated in all types of gait disturbance. Weakness in proximal hip musculature can be managed with gait aids such as walkers. In contrast, distal muscle weakness can be managed with orthotics. Preservation of gait assists in maintenance of daily function and integration in society.
Collapse
Affiliation(s)
- Faye Y Chiou-Tan
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas, USA
- Harris Health System, Electrodiagnostic Laboratory, Smith Clinic/Ben Taub Hospital, Houston, Texas, USA
| | - Donna Bloodworth
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas, USA
- Harris Health System, Physical Medicine Rehabilitation/ Prosthetics & Orthotics Clinics/ Gulfgate Clinic/Ben Taub Hospital, Houston, Texas, USA
| |
Collapse
|
5
|
Zhong H, Sian V, Johari M, Katayama S, Oghabian A, Jonson PH, Hackman P, Savarese M, Udd B. Revealing myopathy spectrum: integrating transcriptional and clinical features of human skeletal muscles with varying health conditions. Commun Biol 2024; 7:438. [PMID: 38600180 PMCID: PMC11006663 DOI: 10.1038/s42003-024-06143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
Myopathy refers to a large group of heterogeneous, rare muscle diseases. Bulk RNA-sequencing has been utilized for the diagnosis and research of these diseases for many years. However, the existing valuable sequencing data often lack integration and clinical interpretation. In this study, we integrated bulk RNA-sequencing data from 1221 human skeletal muscles (292 with myopathies, 929 controls) from both databases and our local samples. By applying a method similar to single-cell analysis, we revealed a general spectrum of muscle diseases, ranging from healthy to mild disease, moderate muscle wasting, and severe muscle disease. This spectrum was further partly validated in three specific myopathies (97 muscles) through clinical features including trinucleotide repeat expansion, magnetic resonance imaging fat fraction, pathology, and clinical severity scores. This spectrum helped us identify 234 genuinely healthy muscles as unprecedented controls, providing a new perspective for deciphering the hallmark genes and pathways among different myopathies. The newly identified featured genes of general myopathy, inclusion body myositis, and titinopathy were highly expressed in our local muscles, as validated by quantitative polymerase chain reaction.
Collapse
Affiliation(s)
- Huahua Zhong
- Department of Neurology, Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Veronica Sian
- Department of Precision Medicine, "Luigi Vanvitelli" University of Campania, Via L. De Crecchio 7, Naples, Italy
| | - Mridul Johari
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Shintaro Katayama
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ali Oghabian
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Per Harald Jonson
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Peter Hackman
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Marco Savarese
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
- Tampere Neuromuscular Center, University Hospital, Tampere, Finland
| |
Collapse
|
6
|
Bermejo-Guerrero L, de Fuenmayor Fernández-de la Hoz CP, González-Quereda L, Segarra-Casas A, Nedkova V, Gallano P, Martín-Jiménez P, Hernández-Laín A, Olivé M, Arteche-López A, Domínguez-González C. Distal myopathy due to digenic inheritance of TIA1 and SQSTM1 variants in two unrelated Spanish patients. Neuromuscul Disord 2023; 33:983-987. [PMID: 38016875 DOI: 10.1016/j.nmd.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/28/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023]
Abstract
Welander distal myopathy typically manifests in late adulthood and is caused by the founder TIA1 c.1150G>A (p.Glu384Lys) variant in families of Swedish and Finnish descent. Recently, a similar phenotype has been attributed to the digenic inheritance of TIA1 c.1070A>G (p.Asn357Ser) and SQSTM1 c.1175C>T (p.Pro392Leu) variants. We describe two unrelated Spanish patients presenting with slowly progressive gait disturbance, distal-predominant weakness, and mildly elevated creatine kinase (CK) levels since their 6th decade. Electromyography revealed abnormal spontaneous activity and a myopathic pattern. Muscle magnetic resonance imaging (MRI) showed marked fatty replacement in distal leg muscles. A muscle biopsy, performed on one patient, revealed myopathic changes with rimmed vacuoles. Both patients carried the TIA1 p.Asn357Ser and SQSTM1 p.Pro392Leu variants. Digenic inheritance is supported by evidence from unrelated pedigrees and a plausible biological interaction between both proteins in protein quality control processes. Recent functional studies and additional case descriptions further support this. Clinical suspicion is necessary to seek both variants.
Collapse
Affiliation(s)
- Laura Bermejo-Guerrero
- Neuromuscular Disorders Unit, Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Lidia González-Quereda
- Genetics Department, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Genetics and Microbiology Department, Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Alba Segarra-Casas
- Genetics Department, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Genetics and Microbiology Department, Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Velina Nedkova
- Department of Neurology, Bellvitge Hospital, 08041 Barcelona, Spain
| | - Pia Gallano
- Genetics Department, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Montse Olivé
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Neuromuscular Diseases Unit, Neurology Department, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ana Arteche-López
- Department of Genetics, 12 de Octubre University Hospital, 28041 Madrid, Spain
| | - Cristina Domínguez-González
- Neuromuscular Disorders Unit, Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), Madrid, Spain.
| |
Collapse
|
7
|
Felice KJ, Whitaker CH. Late-onset facioscapulohumeral muscular dystrophy type 1 in previously undiagnosed families: Presenting clinical features in an often-misdiagnosed disorder. Muscle Nerve 2023; 68:758-762. [PMID: 37638785 DOI: 10.1002/mus.27962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
INTRODUCTION/AIMS In our experience, patients with late-onset facioscapulohumeral muscular dystrophy type 1 (FSHD1) are frequently misdiagnosed, some for many years. The aim of this report is to document this clinical experience including the presenting symptoms and misdiagnoses and to discuss the challenges in diagnosing patients with late-onset FSHD1. METHODS We performed a retrospective medical record review and recorded clinical data on patients with a genetically confirmed diagnosis of FSHD1, who began to have symptoms at 50 years of age or older, and either had no family history of FSHD1 or had a history of an undiagnosed weakness in a family member. RESULTS Thirteen patients, 7 men and 6 women, met the study inclusion criteria. Age of onset ranged from 52 to 74 (mean, 59.8) years, age of diagnosis ranged from 54 to 80 (mean, 66.5) years, and duration of symptoms from onset to diagnosis was 1 to 15 (mean, 6.7) years. Prior diagnoses included lumbosacral polyradiculopathy in five (38%); statin-related myopathy in two (15%); and one each of polymyositis, inclusion-body myositis, distal myopathy, limb-girdle muscular dystrophy, unspecific myopathy, and unspecified scapular winging. For eight patients (62%), family history was suspected in deceased members or if by confirmed DNA test postdiagnosis. DISCUSSION The diagnosis of late-onset FSHD1 is often delayed by many years with patients frequently receiving misdiagnoses. FSHD1 may not be considered in the differential diagnosis of late-onset weakness due to its rarity and because its clinical features are subtler, nonspecific, and mimic other neuromuscular disorders.
Collapse
Affiliation(s)
- Kevin J Felice
- Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, Connecticut, USA
| | - Charles H Whitaker
- Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, Connecticut, USA
| |
Collapse
|
8
|
Chen Z, Saini M, Koh JS, Lim GZ, Dang NJ, Prasad K, Koh SH, Tay KSS, Lee M, Ong HL, Zhao Y, Tandon A, Chai JYH. A novel variant in the tropomyosin 3 gene presenting as an adult-onset distal myopathy - a case report. BMC Neurol 2023; 23:181. [PMID: 37147571 PMCID: PMC10161565 DOI: 10.1186/s12883-023-03225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/19/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND We report a patient with a novel c.737 C > T variant (p.Ser246Leu) of the TPM3 gene presenting with adult-onset distal myopathy. CASE PRESENTATION A 35-year-old Chinese male patient presented with a history of progressive finger weakness. Physical examination revealed differential finger extension weakness, together with predominant finger abduction, elbow flexion, ankle dorsiflexion and toe extension weakness. Muscle MRI showed disproportionate fatty infiltration of the glutei, sartorius and extensor digitorum longus muscles without significant wasting. Muscle biopsy and ultrastructural examination showed a non-specific myopathic pattern without nemaline or cap inclusions. Genetic sequencing revealed a novel heterozygous p.Ser246Leu variant (c.737C>T) of the TPM3 gene which is predicted to be pathogenic. This variant is located in the area of the TPM3 gene where the protein product interacts with actin at position Asp25 of actin. Mutations of TPM3 in these loci have been shown to alter the sensitivity of thin filaments to the influx of calcium ions. CONCLUSION This report further expands the phenotypic spectrum of myopathies associated with TPM3 mutations, as mutations in TPM3 had not previously been reported with adult-onset distal myopathy. We also discuss the interpretation of variants of unknown significance in patients with TPM3 mutations and summarise the typical muscle MRI findings of patients with TPM3 mutations.
Collapse
Affiliation(s)
- Zhiyong Chen
- Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
| | - Monica Saini
- Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Jasmine Shimin Koh
- Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Gareth Zigui Lim
- Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Nancy Jiaojiao Dang
- Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Kalpana Prasad
- Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Swee Hoon Koh
- Neuromuscular Laboratory, National Neuroscience Institute, Singapore, Singapore
| | - Karine Su Shan Tay
- Neuromuscular Laboratory, National Neuroscience Institute, Singapore, Singapore
| | - Ming Lee
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Helen Lisa Ong
- Department of Clinical and Translational Research, Singapore General Hospital, Singapore, Singapore
| | - Yi Zhao
- Department of Clinical and Translational Research, Singapore General Hospital, Singapore, Singapore
| | - Ankit Tandon
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Josiah Yui Huei Chai
- Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| |
Collapse
|
9
|
Inoue M, Noguchi S, Inoue YU, Iida A, Ogawa M, Bengoechea R, Pittman SK, Hayashi S, Watanabe K, Hosoi Y, Sano T, Takao M, Oya Y, Takahashi Y, Miyajima H, Weihl CC, Inoue T, Nishino I. Distinctive chaperonopathy in skeletal muscle associated with the dominant variant in DNAJB4. Acta Neuropathol 2023; 145:235-255. [PMID: 36512060 DOI: 10.1007/s00401-022-02530-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/15/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
DnaJ homolog, subfamily B, member 4, a member of the heat shock protein 40 chaperones encoded by DNAJB4, is highly expressed in myofibers. We identified a heterozygous c.270 T > A (p.F90L) variant in DNAJB4 in a family with a dominantly inherited distal myopathy, in which affected members have specific features on muscle pathology represented by the presence of cytoplasmic inclusions and the accumulation of desmin, p62, HSP70, and DNAJB4 predominantly in type 1 fibers. Both Dnajb4F90L knockin and knockout mice developed muscle weakness and recapitulated the patient muscle pathology in the soleus muscle, where DNAJB4 has the highest expression. These data indicate that the identified variant is causative, resulting in defective chaperone function and selective muscle degeneration in specific muscle fibers. This study demonstrates the importance of DNAJB4 in skeletal muscle proteostasis by identifying the associated chaperonopathy.
Collapse
Affiliation(s)
- Michio Inoue
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Neurology, Washington University School of Medicine, Saint Louis, USA
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan.
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Aritoshi Iida
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Megumu Ogawa
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
| | - Rocio Bengoechea
- Department of Neurology, Washington University School of Medicine, Saint Louis, USA
| | - Sara K Pittman
- Department of Neurology, Washington University School of Medicine, Saint Louis, USA
| | - Shinichiro Hayashi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuki Watanabe
- First Department of Medicine/Department of Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasushi Hosoi
- First Department of Medicine/Department of Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Terunori Sano
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masaki Takao
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yasushi Oya
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroaki Miyajima
- First Department of Medicine/Department of Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Conrad C Weihl
- Department of Neurology, Washington University School of Medicine, Saint Louis, USA
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
10
|
Savarese M, Jokela M, Udd B. Distal myopathy. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:497-519. [PMID: 37562883 DOI: 10.1016/b978-0-323-98818-6.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Distal myopathies are a group of genetic, primary muscle diseases. Patients develop progressive weakness and atrophy of the muscles of forearm, hands, lower leg, or feet. Currently, over 20 different forms, presenting a variable age of onset, clinical presentation, disease progression, muscle involvement, and histological findings, are known. Some of them are dominant and some recessive. Different variants in the same gene are often associated with either dominant or recessive forms, although there is a lack of a comprehensive understanding of the genotype-phenotype correlations. This chapter provides a description of the clinicopathologic and genetic aspects of distal myopathies emphasizing known etiologic and pathophysiologic mechanisms.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Manu Jokela
- Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland; Division of Clinical Neurosciences, Department of Neurology, Turku University Hospital, Turku, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland; Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland; Department of Neurology, Vaasa Central Hospital, Vaasa, Finland.
| |
Collapse
|
11
|
Kassardjian C, Liewluck T. Systemic Complications of Muscular Dystrophies. CURRENT CLINICAL NEUROLOGY 2023:269-280. [DOI: 10.1007/978-3-031-44009-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Demaegd K, Brilstra EH, Hoogendijk JE, de Bie CI, de Pagter MS, van Hecke W, Mühlebner A, van Es MA, Milone M, van Rheenen W. Distal spinal muscular atrophy featured by predominant calf muscle involvement in VRK1 associated disease – case series and review. Neuromuscul Disord 2022; 32:527-532. [DOI: 10.1016/j.nmd.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
|
13
|
A novel missense HNRNPA1 variant in the PY-NLS domain in a patient with late-onset distal myopathy. Neuromuscul Disord 2022; 32:521-526. [DOI: 10.1016/j.nmd.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/20/2022]
|
14
|
Cavalli M, Cardani R, Renna LV, Toffetti M, Villa L, Meola G. First Family of MATR3-Related Distal Myopathy From Italy: The Role of Muscle Biopsy in the Diagnosis and Characterization of a Still Poorly Understood Disease. Front Neurol 2021; 12:715386. [PMID: 34659085 PMCID: PMC8517147 DOI: 10.3389/fneur.2021.715386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in the MATR3 gene are associated to distal myopathy with vocal cord and pharyngeal weakness (VCPDM), as well as familiar and sporadic motor neuron disease. To date, 12 VCPDM families from the United States, Germany, Japan, Bulgary, and France have been described in the literature. Here we report an Italian family with a propositus of a 40-year-old woman presenting progressive bilateral foot drop, rhinolalia, and distal muscular atrophy, without clinical signs of motor neuron affection. Her father, deceased some years before, presented a similar distal myopathy phenotype, while her 20-year-old son is asymptomatic. Myopathic changes with vacuolization were observed in muscle biopsy from the propositus. These results, together with the peculiar clinical picture, lead to MATR3 gene sequencing, which revealed a heterozygous p.S85C mutation in the propositus. The same mutation was found in her son. Over a 5-year follow-up, progression is mild in the propositus, while her son remains asymptomatic. Clinical, radiological, and pathological data of our propositus are presented and compared to previously reported cases of VCPDM. VCPDM turns out to be a quite homogenous phenotype of late-onset myopathy associated to p.S85C mutation in MATR3 gene. MATR3-related pathology, encompassing myopathy and motor neuron disease, represents an illustrative example of multisystem proteinopathy (MSP), such as other diseases associated to mutations in VCP, HNRNPA2B1, HNRNPA1, and SQSTM1 genes. The present report contributes to a further characterization of this still poorly understood pathology and points out the diagnostic utility of muscle biopsy in challenging cases.
Collapse
Affiliation(s)
- Michele Cavalli
- Université Côte d'Azur, Peripheral Nervous System and Muscle Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Rosanna Cardani
- BioCor Biobank, Department of Clinical Pathology, Istituto di Ricovero e Cura a Carattere Scientifico - IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Laura Valentina Renna
- BioCor Biobank, Department of Clinical Pathology, Istituto di Ricovero e Cura a Carattere Scientifico - IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Mauro Toffetti
- Department of Neurology and Stroke Unit, ASST Franciacorta, Chiari, Italy
| | - Luisa Villa
- Université Côte d'Azur, Peripheral Nervous System and Muscle Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, University of Milan, Milan, Italy
| |
Collapse
|
15
|
Abstract
Electrodiagnostic testing is a useful tool in the evaluation of suspected myopathy and helps to confirm the presence of a myopathy and exclude disease mimickers. The electrodiagnostic pattern of findings during testing guides subsequent laboratory evaluation, genetic testing, and in identifying potential muscle biopsy targets. It also provides a baseline for subsequent assessment of disease progression or response to therapy. This article summarizes the approach to electrodiagnostic assessment in various myopathic disorders.
Collapse
|
16
|
Johari M, Sarparanta J, Vihola A, Jonson PH, Savarese M, Jokela M, Torella A, Piluso G, Said E, Vella N, Cauchi M, Magot A, Magri F, Mauri E, Kornblum C, Reimann J, Stojkovic T, Romero NB, Luque H, Huovinen S, Lahermo P, Donner K, Comi GP, Nigro V, Hackman P, Udd B. Missense mutations in small muscle protein X-linked (SMPX) cause distal myopathy with protein inclusions. Acta Neuropathol 2021; 142:375-393. [PMID: 33974137 PMCID: PMC8270885 DOI: 10.1007/s00401-021-02319-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 01/05/2023]
Abstract
Using
deep phenotyping and high-throughput sequencing, we have identified a novel type of distal myopathy caused by mutations in the Small muscle protein X-linked (SMPX) gene. Four different missense mutations were identified in ten patients from nine families in five different countries, suggesting that this disease could be prevalent in other populations as well. Haplotype analysis of patients with similar ancestry revealed two different founder mutations in Southern Europe and France, indicating that the prevalence in these populations may be higher. In our study all patients presented with highly similar clinical features: adult-onset, usually distal more than proximal limb muscle weakness, slowly progressing over decades with preserved walking. Lower limb muscle imaging showed a characteristic pattern of muscle involvement and fatty degeneration. Histopathological and electron microscopic analysis of patient muscle biopsies revealed myopathic findings with rimmed vacuoles and the presence of sarcoplasmic inclusions, some with amyloid-like characteristics. In silico predictions and subsequent cell culture studies showed that the missense mutations increase aggregation propensity of the SMPX protein. In cell culture studies, overexpressed SMPX localized to stress granules and slowed down their clearance.
Collapse
Affiliation(s)
- Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland.
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland.
| | - Jaakko Sarparanta
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Anna Vihola
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Neuromuscular Research Center, Fimlab Laboratories, Tampere University and University Hospital, Tampere, Finland
| | - Per Harald Jonson
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Manu Jokela
- Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland
- Division of Clinical Neurosciences, Department of Neurology, Turku University Hospital, Turku, Finland
| | - Annalaura Torella
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Giulio Piluso
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Edith Said
- Section of Medical Genetics, Mater Dei Hospital, Msida, Malta
- Department of Anatomy and Cell Biology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Norbert Vella
- Neuroscience Department, Mater Dei Hospital, Msida, Malta
| | - Marija Cauchi
- Neuroscience Department, Mater Dei Hospital, Msida, Malta
| | - Armelle Magot
- Neuromuscular Disease Center AOC, University Hospital Nantes, Nantes, France
| | - Francesca Magri
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Eleonora Mauri
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | | | - Jens Reimann
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Tanya Stojkovic
- AP-HP, Institute of Myology, Centre de Référence des Maladies Neuromusculaires, Hôpital Pitié-Salpêtrière, Paris, France
| | - Norma B Romero
- Neuromuscular Morphology Unit, Institute of Myology, Myology Research Centre INSERM, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Helena Luque
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Sanna Huovinen
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Päivi Lahermo
- Institute for Molecular Medicine Finland FIMM, Technology Centre, University of Helsinki, Helsinki, Finland
| | - Kati Donner
- Institute for Molecular Medicine Finland FIMM, Technology Centre, University of Helsinki, Helsinki, Finland
| | - Giacomo Pietro Comi
- IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Vincenzo Nigro
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland
- Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
17
|
Felice KJ, Whitaker CH, Khorasanizadeh S. Diagnostic yield of advanced genetic testing in patients with hereditary neuropathies: A retrospective single-site study. Muscle Nerve 2021; 64:454-461. [PMID: 34232518 DOI: 10.1002/mus.27368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 11/09/2022]
Abstract
INTRODUCTION/AIMS Advanced genetic testing including next-generation sequencing (AGT/NGS) has facilitated DNA testing in the clinical setting and greatly expanded new gene discovery for the Charcot-Marie-Tooth neuropathies and other hereditary neuropathies (CMT/HN). Herein, we report AGT/NGS results, clinical findings, and diagnostic yield in a cohort of CMT/HN patients evaluated at our neuropathy care center. METHODS We reviewed the medical records of all patients with suspected CMT/HN who underwent AGT/NGS at the Hospital for Special Care from January 2017 through January 2020. Patients with variants reported as pathogenic or likely pathogenic were included for further clinical review. RESULTS We ordered AGT/NGS on 108 patients with suspected CMT/HN. Of these, pathogenic or likely pathogenic variants were identified in 17 patients (diagnostic yield, 15.7%), including 6 (35%) with PMP22 duplications; 3 (18%) with MPZ variants; 2 (12%) with MFN2 variants; and 1 each with NEFL, IGHMBP2, GJB1, BSCL2, DNM2, and TTR variants. Diagnostic yield increased to 31.0% for patients with a positive family history. DISCUSSION AGT/NGS panels can provide specific genetic diagnoses for a subset of patients with CMT/HN disorders, which improves disease and genetic counseling and prepares patients for disease-focused therapies. Despite these advancements, many patients with known or suspected CMT/HN disorders remain without a specific genetic diagnosis. Continued advancements in genetic testing, such as multiomic technology and better understanding of genotype-phenotype correlation, will further improve detection rates for patients with suspected CMT/HN disorders.
Collapse
Affiliation(s)
- Kevin J Felice
- Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, Connecticut, USA
| | - Charles H Whitaker
- Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, Connecticut, USA
| | - Sadaf Khorasanizadeh
- Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, Connecticut, USA
| |
Collapse
|
18
|
Nicolau S, Milone M, Liewluck T. Guidelines for genetic testing of muscle and neuromuscular junction disorders. Muscle Nerve 2021; 64:255-269. [PMID: 34133031 DOI: 10.1002/mus.27337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
Despite recent advances in the understanding of inherited muscle and neuromuscular junction diseases, as well as the advent of a wide range of genetic tests, patients continue to face delays in diagnosis of sometimes treatable disorders. These guidelines outline an approach to genetic testing in such disorders. Initially, a patient's phenotype is evaluated to identify myopathies requiring directed testing, including myotonic dystrophies, facioscapulohumeral muscular dystrophy, oculopharyngeal muscular dystrophy, mitochondrial myopathies, dystrophinopathies, and oculopharyngodistal myopathy. Initial investigation in the remaining patients is generally a comprehensive gene panel by next-generation sequencing. Broad panels have a higher diagnostic yield and can be cost-effective. Due to extensive phenotypic overlap and treatment implications, genes responsible for congenital myasthenic syndromes should be included when evaluating myopathy patients. For patients whose initial genetic testing is negative or inconclusive, phenotypic re-evaluation is warranted, along with consideration of genes and variants not included initially, as well as their acquired mimickers.
Collapse
Affiliation(s)
- Stefan Nicolau
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Teerin Liewluck
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
19
|
Ausems CRM, van Engelen BGM, van Bokhoven H, Wansink DG. Systemic cell therapy for muscular dystrophies : The ultimate transplantable muscle progenitor cell and current challenges for clinical efficacy. Stem Cell Rev Rep 2021; 17:878-899. [PMID: 33349909 PMCID: PMC8166694 DOI: 10.1007/s12015-020-10100-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 01/07/2023]
Abstract
The intrinsic regenerative capacity of skeletal muscle makes it an excellent target for cell therapy. However, the potential of muscle tissue to renew is typically exhausted and insufficient in muscular dystrophies (MDs), a large group of heterogeneous genetic disorders showing progressive loss of skeletal muscle fibers. Cell therapy for MDs has to rely on suppletion with donor cells with high myogenic regenerative capacity. Here, we provide an overview on stem cell lineages employed for strategies in MDs, with a focus on adult stem cells and progenitor cells resident in skeletal muscle. In the early days, the potential of myoblasts and satellite cells was explored, but after disappointing clinical results the field moved to other muscle progenitor cells, each with its own advantages and disadvantages. Most recently, mesoangioblasts and pericytes have been pursued for muscle cell therapy, leading to a handful of preclinical studies and a clinical trial. The current status of (pre)clinical work for the most common forms of MD illustrates the existing challenges and bottlenecks. Besides the intrinsic properties of transplantable cells, we discuss issues relating to cell expansion and cell viability after transplantation, optimal dosage, and route and timing of administration. Since MDs are genetic conditions, autologous cell therapy and gene therapy will need to go hand-in-hand, bringing in additional complications. Finally, we discuss determinants for optimization of future clinical trials for muscle cell therapy. Joined research efforts bring hope that effective therapies for MDs are on the horizon to fulfil the unmet clinical need in patients.
Collapse
Affiliation(s)
- C Rosanne M Ausems
- Donders lnstitute for Brain Cognition and Behavior, Department of Human Genetics, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands
- Donders lnstitute for Brain Cognition and Behavior, Department of Neurology, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands
| | - Baziel G M van Engelen
- Donders lnstitute for Brain Cognition and Behavior, Department of Neurology, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Donders lnstitute for Brain Cognition and Behavior, Department of Human Genetics, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands.
| | - Derick G Wansink
- Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands.
| |
Collapse
|
20
|
Deschauer M, Hengel H, Rupprich K, Kreiß M, Schlotter-Weigel B, Grimmel M, Admard J, Schneider I, Alhaddad B, Gazou A, Sturm M, Vorgerd M, Balousha G, Balousha O, Falna M, Kirschke JS, Kornblum C, Jordan B, Kraya T, Strom TM, Weis J, Schöls L, Schara U, Zierz S, Riess O, Meitinger T, Haack TB. Bi-allelic truncating mutations in VWA1 cause neuromyopathy. Brain 2021; 144:574-583. [PMID: 33459760 DOI: 10.1093/brain/awaa418] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/01/2020] [Accepted: 09/23/2020] [Indexed: 11/15/2022] Open
Abstract
The von Willebrand Factor A domain containing 1 protein, encoded by VWA1, is an extracellular matrix protein expressed in muscle and peripheral nerve. It interacts with collagen VI and perlecan, two proteins that are affected in hereditary neuromuscular disorders. Lack of VWA1 is known to compromise peripheral nerves in a Vwa1 knock-out mouse model. Exome sequencing led us to identify bi-allelic loss of function variants in VWA1 as the molecular cause underlying a so far genetically undefined neuromuscular disorder. We detected six different truncating variants in 15 affected individuals from six families of German, Arabic, and Roma descent. Disease manifested in childhood or adulthood with proximal and distal muscle weakness predominantly of the lower limbs. Myopathological and neurophysiological findings were indicative of combined neurogenic and myopathic pathology. Early childhood foot deformity was frequent, but no sensory signs were observed. Our findings establish VWA1 as a new disease gene confidently implicated in this autosomal recessive neuromyopathic condition presenting with child-/adult-onset muscle weakness as a key clinical feature.
Collapse
Affiliation(s)
- Marcus Deschauer
- Department of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Holger Hengel
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany.,Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Katrin Rupprich
- Department of Neuropediatrics, University Hospital Essen, 45147 Germany
| | - Martina Kreiß
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
| | | | - Mona Grimmel
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Ilka Schneider
- Department of Neurology, University of Halle-Wittenberg, 06097 Halle, Germany
| | - Bader Alhaddad
- Institute of Human Genetics, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Anastasia Gazou
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Matthias Vorgerd
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, 44789 Bochum, Germany
| | - Ghassan Balousha
- Department of Pathology and Histology, Al-Quds University, Eastern Jerusalem, Palestinian Authority
| | - Osama Balousha
- Faculty of Medicine, Al-Quds University, Eastern Jerusalem, Palestinian Authority
| | - Mohammed Falna
- Faculty of Medicine, Al-Quds University, Eastern Jerusalem, Palestinian Authority
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Cornelia Kornblum
- Department of Neurology, University Hospital Bonn, 53127 Bonn, Germany
| | - Berit Jordan
- Department of Neurology, University of Halle-Wittenberg, 06097 Halle, Germany.,Department of Neurology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Torsten Kraya
- Department of Neurology, University of Halle-Wittenberg, 06097 Halle, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Joachim Weis
- Institute for Neuropathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Ludger Schöls
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Ulrike Schara
- Department of Neuropediatrics, University Hospital Essen, 45147 Germany
| | - Stephan Zierz
- Department of Neurology, University of Halle-Wittenberg, 06097 Halle, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.,Center for Rare Diseases, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.,Institute of Human Genetics, Technical University of Munich, School of Medicine, 81675 Munich, Germany.,Center for Rare Diseases, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
21
|
Paul P, Liewluck T. Distal myopathy and thrombocytopenia due to a novel GNE mutation. J Neurol Sci 2020; 415:116954. [PMID: 32505938 DOI: 10.1016/j.jns.2020.116954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 11/18/2022]
Affiliation(s)
- Pritikanta Paul
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Teerin Liewluck
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
22
|
|
23
|
Nicolau S, Liewluck T, Milone M. Myopathies with finger flexor weakness: Not only inclusion-body myositis. Muscle Nerve 2020; 62:445-454. [PMID: 32478919 DOI: 10.1002/mus.26914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022]
Abstract
Muscle disorders are characterized by differential involvement of various muscle groups. Among these, weakness predominantly affecting finger flexors is an uncommon pattern, most frequently found in sporadic inclusion-body myositis. This finding is particularly significant when the full range of histopathological findings of inclusion-body myositis is not found on muscle biopsy. Prominent finger flexor weakness, however, is also observed in other myopathies. It occurs commonly in myotonic dystrophy types 1 and 2. In addition, individual reports and small case series have documented finger flexor weakness in sarcoid and amyloid myopathy, and in inherited myopathies caused by ACTA1, CRYAB, DMD, DYSF, FLNC, GAA, GNE, HNRNPDL, LAMA2, MYH7, and VCP mutations. Therefore, the finding of finger flexor weakness requires consideration of clinical, myopathological, genetic, electrodiagnostic, and sometimes muscle imaging findings to establish a diagnosis.
Collapse
Affiliation(s)
- Stefan Nicolau
- Department of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota, 55905, USA
| | - Teerin Liewluck
- Department of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota, 55905, USA
| | - Margherita Milone
- Department of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota, 55905, USA
| |
Collapse
|
24
|
Papadimas GK, Xirou S, Kararizou E, Papadopoulos C. Update on Congenital Myopathies in Adulthood. Int J Mol Sci 2020; 21:ijms21103694. [PMID: 32456280 PMCID: PMC7279481 DOI: 10.3390/ijms21103694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital myopathies (CMs) constitute a group of heterogenous rare inherited muscle diseases with different incidences. They are traditionally grouped based on characteristic histopathological findings revealed on muscle biopsy. In recent decades, the ever-increasing application of modern genetic technologies has not just improved our understanding of their pathophysiology, but also expanded their phenotypic spectrum and contributed to a more genetically based approach for their classification. Later onset forms of CMs are increasingly recognised. They are often considered milder with slower progression, variable clinical presentations and different modes of inheritance. We reviewed the key features and genetic basis of late onset CMs with a special emphasis on those forms that may first manifest in adulthood.
Collapse
|
25
|
Expanding the disease phenotype of ADSSL1-associated myopathy in non-Korean patients. Neuromuscul Disord 2020; 30:310-314. [PMID: 32331917 DOI: 10.1016/j.nmd.2020.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 11/20/2022]
Abstract
Adenylosuccinate synthase (ADSSL1) is a muscle specific enzyme involved in the purine nucleotide cycle and responsible for the conversion of inosine monophosphate to adenosine monophosphate. Since 2016, when mutations in the ADSSL1 gene were first described to be associated with an adult onset distal myopathy, nine patients with compound heterozygous variants in the ADSSL1 gene, all of Korean origin, have been identified. Here we report a novel ADSSL1 mutation and describe two sporadic cases of Turkish and Indian origin. Many of the clinical features of both patients and muscle histopathology and muscle MRI findings, were in accordance with previously reported findings in the adult onset distal myopathy individuals. However, one of our patients presented with progressive, proximally pronounced weakness, severe muscle atrophy and early contractures. Thus, mutations in ADSSL1 have to be considered in patients with both distal and proximal muscle weakness and across various ethnicities.
Collapse
|
26
|
Nicolau S, Howe BM, Naddaf E. Novel Desmin Mutation Causing Myofibrillar Myopathy in a Hmong Family. Front Neurol 2020; 10:1375. [PMID: 31998224 PMCID: PMC6965354 DOI: 10.3389/fneur.2019.01375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/12/2019] [Indexed: 12/18/2022] Open
Abstract
Myofibrillar myopathies (MFM) are a clinically and genetically heterogenous group of inherited myopathies characterized by aggregation of Z-disc proteins. Mutations in desmin account for ~7% of MFM. We report here a Hmong family with an autosomal dominant MFM caused by a novel variant in the desmin gene. The proband presented with lower limb followed by upper limb weakness starting in the 5th decade. On examination, there was distal more than proximal muscle weakness. One sibling was similarly affected, while another had an asymptomatic elevation of creatine kinase. Genetic testing revealed a novel p.Ser13Tyr variant, which was predicted by in silico algorithms to alter protein function. Muscle biopsy revealed a MFM. Muscle MRI demonstrated selective involvement of the tensor fasciae latae, semitendinosus, sartorius, gracilis, gastrocnemius, soleus, and peroneus longus muscles. In this family, the histological and MRI findings assisted in the interpretation of genetic testing results.
Collapse
Affiliation(s)
- Stefan Nicolau
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Benjamin M Howe
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Elie Naddaf
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
27
|
Gois Beghini D, Iwao Horita S, Monteiro da Fonseca Cardoso L, Anastacio Alves L, Nagaraju K, Henriques-Pons A. A Promising Future for Stem-Cell-Based Therapies in Muscular Dystrophies-In Vitro and In Vivo Treatments to Boost Cellular Engraftment. Int J Mol Sci 2019; 20:ijms20215433. [PMID: 31683627 PMCID: PMC6861917 DOI: 10.3390/ijms20215433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/28/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023] Open
Abstract
Muscular dystrophies (MD) are a group of genetic diseases that lead to skeletal muscle wasting and may affect many organs (multisystem). Unfortunately, no curative therapies are available at present for MD patients, and current treatments mainly address the symptoms. Thus, stem-cell-based therapies may present hope for improvement of life quality and expectancy. Different stem cell types lead to skeletal muscle regeneration and they have potential to be used for cellular therapies, although with several limitations. In this review, we propose a combination of genetic, biochemical, and cell culture treatments to correct pathogenic genetic alterations and to increase proliferation, dispersion, fusion, and differentiation into new or hybrid myotubes. These boosted stem cells can also be injected into pretreate recipient muscles to improve engraftment. We believe that this combination of treatments targeting the limitations of stem-cell-based therapies may result in safer and more efficient therapies for MD patients. Matricryptins have also discussed.
Collapse
Affiliation(s)
- Daniela Gois Beghini
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| | - Samuel Iwao Horita
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| | | | - Luiz Anastacio Alves
- Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| | - Kanneboyina Nagaraju
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, New York, NY 13902, USA.
| | - Andrea Henriques-Pons
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| |
Collapse
|
28
|
Savarese M, Palmio J, Poza JJ, Weinberg J, Olive M, Cobo AM, Vihola A, Jonson PH, Sarparanta J, García-Bragado F, Urtizberea JA, Hackman P, Udd B. Actininopathy: A new muscular dystrophy caused by ACTN2 dominant mutations. Ann Neurol 2019; 85:899-906. [PMID: 30900782 DOI: 10.1002/ana.25470] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/07/2019] [Accepted: 03/17/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To clinically and pathologically characterize a cohort of patients presenting with a novel form of distal myopathy and to identify the genetic cause of this new muscular dystrophy. METHODS We studied 4 families (3 from Spain and 1 from Sweden) suffering from an autosomal dominant distal myopathy. Affected members showed adult onset asymmetric distal muscle weakness with initial involvement of ankle dorsiflexion later progressing also to proximal limb muscles. RESULTS In all 3 Spanish families, we identified a unique missense variant in the ACTN2 gene cosegregating with the disease. The affected members of the Swedish family carry a different ACTN2 missense variant. INTERPRETATION ACTN2 encodes for alpha actinin2, which is highly expressed in the sarcomeric Z-disk with a major structural and functional role. Actininopathy is thus a new genetically determined distal myopathy. ANN NEUROL 2019;85:899-906.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland.,Medicum, University of Helsinki, Helsinki, Finland
| | - Johanna Palmio
- Neuromuscular Research Center, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Juan José Poza
- Department of Neurology, Donostia University Hospital, San Sebastián, Spain
| | - Jan Weinberg
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Montse Olive
- Department of Pathology, Neuropathology and Neuromuscular Unit, Biomedical Research Institute of Bellvitge, Bellvitge University Hospital, Hospitalet de Llobregat, Spain
| | - Ana Maria Cobo
- Neuromuscular Diseases Center of Competence, Marin Hospital, Public Hospital Network of Paris, Hendaye, France
| | - Anna Vihola
- Folkhälsan Research Center, Helsinki, Finland.,Medicum, University of Helsinki, Helsinki, Finland
| | - Per Harald Jonson
- Folkhälsan Research Center, Helsinki, Finland.,Medicum, University of Helsinki, Helsinki, Finland
| | - Jaakko Sarparanta
- Folkhälsan Research Center, Helsinki, Finland.,Medicum, University of Helsinki, Helsinki, Finland
| | | | - Jon Andoni Urtizberea
- Neuromuscular Diseases Center of Competence, Marin Hospital, Public Hospital Network of Paris, Hendaye, France
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland.,Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland.,Medicum, University of Helsinki, Helsinki, Finland.,Neuromuscular Research Center, Tampere University Hospital and Tampere University, Tampere, Finland.,Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|