1
|
Canu MH, Montel V, Dereumetz J, Marqueste T, Decherchi P, Coq JO, Dupont E, Bastide B. Early movement restriction deteriorates motor function and soleus muscle physiology. Exp Neurol 2021; 347:113886. [PMID: 34624327 DOI: 10.1016/j.expneurol.2021.113886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/17/2021] [Accepted: 10/02/2021] [Indexed: 11/19/2022]
Abstract
Children with low physical activity and interactions with environment experience atypical sensorimotor development and maturation leading to anatomical and functional disorganization of the sensorimotor circuitry and also to enduring altered motor function. Previous data have shown that postnatal movement restriction in rats results in locomotor disturbances, functional disorganization and hyperexcitability of the hind limb representations in the somatosensory and motor cortices, without apparent brain damage. Due to the reciprocal interplay between the nervous system and muscle, it is difficult to determine whether muscle alteration is the cause or the result of the altered sensorimotor behavior (Canu et al., 2019). In the present paper, our objectives were to evaluate the impact of early movement restriction leading to sensorimotor restriction (SMR) during development on the postural soleus muscle and on sensorimotor performance in rats, and to determine whether changes were reversed when typical activity was resumed. Rats were submitted to SMR by hind limb immobilization for 16 h / day from birth to postnatal day 28 (PND28). In situ isometric contractile properties of soleus muscle, fiber cross sectional area (CSA) and myosin heavy chain content (MHC) were studied at PND28 and PND60. In addition, the motor function was evaluated weekly from PND28 to PND60. At PND28, SMR rats presented a severe atrophy of soleus muscle, a decrease in CSA and a force loss. The muscle maturation appeared delayed, with persistence of neonatal forms of MHC. Changes in kinetic properties were moderate or absent. The Hoffmann reflex provided evidence for spinal hyperreflexia and signs of spasticity. Most changes were reversed at PND60, except muscle atrophy. Functional motor tests that require a good limb coordination, i.e. rotarod and locomotion, showed an enduring alteration related to SMR, even after one month of 'typical' activity. On the other hand, paw withdrawal test and grip test were poorly affected by SMR whereas spontaneous locomotor activity increased over time. Our results support the idea that proprioceptive feedback is at least as important as the amount of motor activity to promote a typical development of motor function. A better knowledge of the interplay between hypoactivity, muscle properties and central motor commands may offer therapeutic perspectives for children suffering from neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marie-Hélène Canu
- Univ. Lille, Univ Artois, Univ Littoral Côte d'Opale, ULR 7369, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France.
| | - Valérie Montel
- Univ. Lille, Univ Artois, Univ Littoral Côte d'Opale, ULR 7369, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Julie Dereumetz
- Univ. Lille, Univ Artois, Univ Littoral Côte d'Opale, ULR 7369, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Tanguy Marqueste
- Institut des Sciences du Mouvement (ISM), UMR 7287 CNRS, Aix-Marseille Université, Campus Scientifique de Luminy, F-13288 Marseille Cedex 09, France
| | - Patrick Decherchi
- Institut des Sciences du Mouvement (ISM), UMR 7287 CNRS, Aix-Marseille Université, Campus Scientifique de Luminy, F-13288 Marseille Cedex 09, France
| | - Jacques-Olivier Coq
- Institut des Sciences du Mouvement (ISM), UMR 7287 CNRS, Aix-Marseille Université, Campus Scientifique de Luminy, F-13288 Marseille Cedex 09, France
| | - Erwan Dupont
- Univ. Lille, Univ Artois, Univ Littoral Côte d'Opale, ULR 7369, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Bruno Bastide
- Univ. Lille, Univ Artois, Univ Littoral Côte d'Opale, ULR 7369, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| |
Collapse
|
2
|
Mayer WP, Baptista JDS, De Oliveira F, Mori M, Liberti EA. Consequences of ankle joint immobilisation: insights from a morphometric analysis about fibre typification, intramuscular connective tissue, and muscle spindle in rats. Histochem Cell Biol 2021; 156:583-594. [PMID: 34476549 DOI: 10.1007/s00418-021-02027-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 11/26/2022]
Abstract
Orthosis immobilisations are routinely used in orthopaedic procedures. This intervention is applicable in bone fractures, ligament injuries, and tendonitis, among other disorders of the musculoskeletal system. We aimed to evaluate the effects of ankle joint functional immobilisation on muscle fibre morphology, connective tissue, muscle spindle and fibre typification triggered by a novel metallic orthosis. We developed a rodent-proof experimental orthosis able to hold the tibiotalar joint in a functional position for short and long terms. The tibialis anterior muscles of free and immobilised legs were collected and stained by histology and histochemistry techniques to investigate general muscle morphology, connective tissue and muscle fibre typification. Morphometric analysis of muscle cross-section area, fibre type cross-section area, fibre type density, percentage of intramuscular connective tissue, and thickness of the muscle spindle capsule were obtained to gain insights into the experimental protocol. We found that short- and long-term immobilisation decreased the cross-section area of the muscles and induced centralisation of myonuclei. The connective tissue of immobilised muscle increased after 2 and 4 weeks mainly by deposition of type III and type I collagen fibres in the perimysium and endomysium, respectively, in addition to muscle spindle capsule thickening. Type IIB muscle fibre was severely affected in our study; the profile assumed odd shapes, and our data suggest interconversion of these fibre types within long-term immobilisation. In conclusion, our protocol has produced structural and histochemical changes in muscle biology. This method might be applied to various rodent models that enable genetic manipulation for the investigation of muscle degeneration/regeneration processes.
Collapse
Affiliation(s)
- William P Mayer
- Department of Medical Neuroscience, Dalhousie Medicine New Brunswick, Dalhousie University, Saint John, NB, Canada.
| | | | - Flavia De Oliveira
- Department of Biosciences, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Matsuyoshi Mori
- Department of Prothesis, School of Dentistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Edson A Liberti
- Department of Anatomy, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|