1
|
Ramdas S, Painho T, Vanegas MI, Famili DT, Lim MJ, Jungbluth H. Targeted Treatments for Myasthenia Gravis in Children and Adolescents. Paediatr Drugs 2024; 26:719-740. [PMID: 39198371 DOI: 10.1007/s40272-024-00649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2024] [Indexed: 09/01/2024]
Abstract
Myasthenia gravis (MG) is an antibody-mediated disorder of the neuromuscular junction affecting children and adults. MG is a treatable condition with most patients requiring immunosuppression for disease control and/or remission. Juvenile myasthenia gravis (JMG) is rare in comparison with adult-onset MG but given the same underlying pathophysiology, treatment strategies are similar to those in adults. Until recently, there were only a few randomised controlled trials (RCTs) for MG treatments in adults and none in children, and management strategies were primarily based on expert consensus. In addition, treatment options for refractory MG cases have been severely limited, resulting in poor long-term quality of life in such patients due to the significant disease burden. Recently, there have been several RCTs focussing on novel therapeutic strategies with potentially promising outcomes, suggesting a change in MG management over the coming years and access to more effective and faster-acting drugs for MG patients. This paper will review current and new MG treatments including efgartigimod, eculizumab, rozanolixizumab, ravulizumab, and zilucoplan, with a focus on juvenile myasthenia gravis.
Collapse
Affiliation(s)
- Sithara Ramdas
- Department of Paediatrics, MDUK Neuromuscular Centre, University of Oxford, Oxford, UK
- Department of Paediatric Neurology, John Radcliffe Hospital, Oxford, UK
| | - Teresa Painho
- Department of Paediatrics, MDUK Neuromuscular Centre, University of Oxford, Oxford, UK
- Neurology Unit, Hospital Dona Estefânia, Unidade Local de Saúde São José, Centro Clínico Académico de Lisboa, Lisbon, Portugal
| | - Maria I Vanegas
- Department of Paediatric Neurology, Evelina London Children's Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, Children's Neurosciences Centre, F02-Becket House, Lambeth Palace Road, London, SE1 7EU, UK
| | - Dennis T Famili
- Department of Paediatric Neurology, Evelina London Children's Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, Children's Neurosciences Centre, F02-Becket House, Lambeth Palace Road, London, SE1 7EU, UK
| | - Ming J Lim
- Department of Paediatric Neurology, Evelina London Children's Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, Children's Neurosciences Centre, F02-Becket House, Lambeth Palace Road, London, SE1 7EU, UK
- Women and Children's Health, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Evelina London Children's Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, Children's Neurosciences Centre, F02-Becket House, Lambeth Palace Road, London, SE1 7EU, UK.
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK.
| |
Collapse
|
2
|
Aljaafari D, Ishaque N. Thymectomy in myasthenia gravis: A narrative review. SAUDI JOURNAL OF MEDICINE AND MEDICAL SCIENCES 2022; 10:97-104. [PMID: 35602390 PMCID: PMC9121707 DOI: 10.4103/sjmms.sjmms_80_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/20/2022] [Accepted: 04/21/2022] [Indexed: 11/04/2022] Open
|
3
|
Alzuabi MA, Manolopoulos A, Elmashala A, Odabashian R, Naddaf E, Murad MH. Immunoglobulin for myasthenia gravis. Hippokratia 2020. [DOI: 10.1002/14651858.cd013801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Muayad A Alzuabi
- Department of Neuroscience, Division of Clinical Neurology; Medical University of South Carolina; Charleston SC USA
| | - Apostolos Manolopoulos
- Clinical Research and Evidence-Based Medicine Unit, Second Medical Department; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Amjad Elmashala
- Department of Neurology; Iowa University Hospitals; Iowa City IA USA
| | - Roupen Odabashian
- Department of Internal Medicine; University of Toronto; Toronto Canada
| | - Elie Naddaf
- Department of Neurology; Mayo Clinic; Rochester MN USA
| | - M Hassan Murad
- Mayo Evidence-based Practice Center (EPC); Mayo Clinic; Rochester MN USA
| |
Collapse
|
4
|
Maintenance immunosuppression in myasthenia gravis, an update. J Neurol Sci 2019; 410:116648. [PMID: 31901719 DOI: 10.1016/j.jns.2019.116648] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/25/2019] [Accepted: 12/24/2019] [Indexed: 01/08/2023]
Abstract
Therapies for myasthenia gravis (MG) include symptomatic and immunosuppressive/immunomodulatory treatment. Options for immunosuppression include corticosteroids, azathioprine, mycophenolate mofetil, cyclosporine, tacrolimus, methotrexate, rituximab, cyclophosphamide, eculizumab, intravenous immunoglobulin, subcutaneous immunoglobulin, plasmapheresis, and thymectomy. The practical aspects of long-term immunosuppressive therapy in MG are critically reviewed in this article. Application of one or more of these specific therapies is guided based on known efficacy, adverse effect profile, particular disease subtype and severity, and patient co-morbidities.
Collapse
|
5
|
Myasthenia Gravis: Pathogenic Effects of Autoantibodies on Neuromuscular Architecture. Cells 2019; 8:cells8070671. [PMID: 31269763 PMCID: PMC6678492 DOI: 10.3390/cells8070671] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ). Autoantibodies target key molecules at the NMJ, such as the nicotinic acetylcholine receptor (AChR), muscle-specific kinase (MuSK), and low-density lipoprotein receptor-related protein 4 (Lrp4), that lead by a range of different pathogenic mechanisms to altered tissue architecture and reduced densities or functionality of AChRs, reduced neuromuscular transmission, and therefore a severe fatigable skeletal muscle weakness. In this review, we give an overview of the history and clinical aspects of MG, with a focus on the structure and function of myasthenic autoantigens at the NMJ and how they are affected by the autoantibodies' pathogenic mechanisms. Furthermore, we give a short overview of the cells that are implicated in the production of the autoantibodies and briefly discuss diagnostic challenges and treatment strategies.
Collapse
|